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Segment routing has recently received much attention in
industry and academia for providing simple yet powerful and
scalable traffic engineering, a most important concern for In-
ternet Service Providers. However, the fundamental optimiza-
tion problem underlying segment routing needs to be better
understood today. This paper addresses this gap and presents
a novel algorithmic approach to optimize traffic engineering in
segment routing networks, accounting for demand uncertainty.
In particular, we propose a stochastic approach to online segment
routing which uses a conditional value at risk when accounting
for the traffic matrix uncertainty. This approach can perform
significantly better than the worst-case approach often considered
in the literature. We also show that depending on the demand
volatility, our stochastic approach can be further optimized in
that it is sufficient to account for only a part of the demand
without sacrificing traffic engineering quality.

Index Terms—Traffic engineering, segment routing, optimiza-
tion, uncertainty

I. INTRODUCTION

To make efficient use of their infrastructure and to avoid
congestion, most major Internet Service Providers (ISPs) today
employ sophisticated algorithms for traffic engineering (TE),
i.e., to steer intra-domain traffic through their network opti-
mally. Indeed, given the explosive growth of communication
traffic, especially to and from data centers, due to the popular-
ity of data-centric applications, TE is a crucial concern of ISPs,
and many innovations in networking over the last years were
at least partially motivated by the desire to improve TE [1],
[2]. Traditionally, TE was relatively inflexible as routes could
only be influenced indirectly via link weight optimization.
Moreover, the network operator has no direct control over
the repartition of flows on multiple shortest paths, as this
repartition is usually handled using Equal Cost Multi-Paths
rules (ECMP).

Segment routing (SR) is an emerging networking architec-
ture developed within the IETF, which introduces a novel vari-
ant of source routing in which traffic can be steered away from
congested shortest paths by inserting intermediate destinations,
so-called waypoints. More specifically, in a segment-routed
network, a source node s can prepend one or multiple way-
points w to packet headers, which will be traversed between
the source s and destination d. In each such segment, packets
are forwarded along the shortest path. Segment routing hence
provides an additional dimension for optimization: waypoints
can also be optimized in addition to the link weights. Empirical
studies show that such a redirection, already with a single
waypoint, can significantly improve TE [3], [4]. SR is also
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attractive in that, compared to other approaches such as MPLS,
it only requires maintaining the path state on the ingress node
and allows for a significantly simpler control plane [5].

This paper considers the segment routing problem from
a fundamental algorithmic perspective. In particular, we are
interested in the question of how segment routing can be op-
timized under demand uncertainty, a significant practical con-
cern: in many practical deployments, traffic demands change
over time and are not always perfectly predictable, e.g., due
to optimizations by content providers [6], [7]. The segment
routing mechanism hence cannot be tailored toward a given
scenario but should also account for variability. In particular, it
should balance the benefits of optimizing the routes toward the
demand and the stability benefits of not rerouting the traffic
frequently.

This paper makes a case for a stochastic approach to online
segment routing. Given a possible demand polytope or set of
traffic matrices, we propose considering the conditional value
at risk to account for the uncertainty. While this approach is
still very conservative, it goes beyond the common methods
revolving around the worst case.

While our model and approach are more general, for our
empirical evaluation, we focus on a single waypoint through-
out this paper and to compare it to state-of-the-art (so: two
segments). It has been shown that most benefits of segment
routing can be reaped already in such a scenario [5].

Our stochastic approach can perform significantly better
than the worst-case approach often considered in the literature.
We also show that depending on the demand volatility, our
stochastic approach allows for further interesting optimizations
in that it is sufficient to only account for a part of the demand
space without sacrificing TE quality.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related work on TE using
segment routing. In Section III, we introduce the problem
definition and generic formulations of segment routing, which
are used in the online procedure described in Section IV. The
robust segment routing algorithm using a single waypoint of
Bhatia et al. [5] and the formulations we use in our online
procedure are presented in Section V. In Section VI, we
present numerical experiments illustrating the benefits of a
stochastic approach over a robust approach. Conclusions are
presented in Section VII.

II. RELATED WORK

There already exists a large body of literature on TE, for
various network protocols, from MPLS [8] over SDN [9] to



segment routing [10]. There are several well-known analytical
and complexity results on the achievable performance of TE,
e.g., by [11], [12] and others [12], [13],

Many results on TE for segment routing are already avail-
able in e.g. [3], [5], [14], [15], see [4] for a recent survey. [16]
considers the problem of determining the optimal parameters
for segment routing in offline and online scenarios; the authors
present a game-theoretic analysis and propose an oblivious
segment routing approach. Moreno et al. [15] showed that,
interestingly, a minimal number of stacked labels suffice to
exploit the benefits of segment routing successfully. Aubry
et al. [3], [17] lay the algorithmic foundations of segment
routing, considering different and related applications. Re-
cently, Parham et al. [1] present an analytical quantification
of the benefits of joint waypoint and weight optimization with
segment routing. Bhatia et al. [5] develop a traffic matrix
oblivious algorithm for robust segment routing in the offline
case. However, we are unaware of any work on stochastic
approaches to deal with uncertainty in segment routing TE.

III. PROBLEM DESCRIPTION AND GENERIC MODELS

We consider a directed network described by a graph
G = (V,A) where V is the set of nodes and A is the set
of arcs, and each arc a € A has a given capacity ¢, > 0. A
static routing strategy is also given (in our experiments, we
assume OSPF with ECMP and inverse capacity metrics, but
our results hold for any routing pattern), as well as a set of
traffic matrices D that represent different potential scenarios
for the evolution of the traffic. Each traffic matrix D € D,
also called Traffic Matrix (TM), has an entry dg for each
pair (i,7) € V? representing the amount of flow requested
between ¢ and j. These matrices might be based, for example,
on historical data. Our objective is to use segment routing to
improve TE for this set of matrices.

We represent a routing by a vector ¢ € X where X™ is the
set of all feasible routings using w waypoints (corresponding
to w + 1 segments, i.e., the w waypoints plus the final
destination). A routing is feasible if all the demand is routed
through the network for each pair (i,5) € V2. Vector x
defines the quantity routed for each pair (i, j) € V2 through w
waypoints and lies in [0,1]"""". Several TE measures 12 (z)
can be used to evaluate the quality of a routing = and a given
TM D € D [18]. A common TE measure is the maximum link
utilization providing an upper bound on the congestion on a
network. A generic formulation for segment routing using w
waypoints on a given TM D can be written as follow:

(SR-w)
min () (la)
st. ze XY (1b)

A. Robust optimization

The first approach is to develop a fully robust solution to
the problem, finding a good set of waypoints for all the TMs
in D. We introduce variable © to represent the resulting worst-
case TE measure. A linear program that achieves this purpose
(R-SR-w) is presented below.

(R-SR-w)
min © (2a)
st. pP(x)<© DeD (2b)
re XY (2¢)

Inequalities (2b) force © to be equal to the worst TE
measure in an optimal solution.

To illustrate the benefits of such an approach, consider the
example network in Figure 1a, where we assume all links have
a capacity equal to 10. Consider 3 demands in this network,
from A to D, A to E, and B to E. Using OSPF with ECMP
on uniform weights would result in the routing shown in
Figure 1b, where the demand from A to D is split evenly
on paths A-B-C-D and A-F-E-D. Suppose the three demands
have a volume of 4. In that case, the resulting flows lead to a
maximum link utilization of 1 reached on link F-E (the flow
on F-E is composed of 4 units of demand A-E, 4 units of
demand B-E, and 2 units of demand A-D as this last one is
split due to ECMP, so the capacity of 10 is exactly reached).
Using a single waypoint for demand A-E, forcing it to go
through C, leads to the routing shown in Figure 1c where the
maximum utilization is 0.6, reached on links B-C and F-E,
a much better solution. Finally, consider a shift in demand
where the volume of demand A-D is still 4, but demand A-E
is now of 2 units while demand B-E becomes 8 units. For this
new TM, both OSPF and the addition of segment A-C-E have
a maximum utilization of 1. Adding the segment path A-B-D,
as illustrated in Figure 1d, reduces the maximum utilization to
0.8. Moreover, this solution is more robust than the previous
one as the maximum link utilization for the initial TM is also
0.8, hence better than the original OSPF solution.

However, this robust model is very conservative. Some
matrices in D might represent extremely bad situations with a
very low appearance rate. In this case, the average case may
deteriorate too much with a robust approach. On the other
hand, we still want some protection against bad cases. The
following subsection presents a model based on the concept
of Conditional Value-at-Risk as a better compromise between
nominal behavior and worst-case situations.

B. Stochastic optimization

There is a vast literature on the development of optimiza-
tion models aimed at controlling the trade-off between risk
and reward, especially in finance. Conditional value-at-risk
(CVaR), first introduced in [19], has probably become the
most popular risk measure over the last decades. Optimization
models integrating CVaR to control risk have been applied in
several application domains beyond financial optimization, see
e.g. [20] for a recent survey.

In our context, let us assume that each TM d € D appears
with a given probability pp. For a given assignment of
waypoints to demands, let us define U as the random variable
representing the TE measure over matrices randomly picked in
D, and let Fyy(z) = P(U < z) be its cumulative distribution



(c) OSPF routing + segment A-C-E

(d) OSPF routing + segments A-C-E and A-B-D

Fig. 1: An illustration of several routing strategies

function. For a given confidence level € € [0,1), the Value at
Risk of U is the e-quantile, i.e.

VaR (U) = min{z|Fy(z) > €}.

The CVaR of U measures the conditional expectation of U
given that U > VaR.(U), i.e.,

CVaR.(U) = E[U|U > Var(U)].

Following the fundamental result of [19], we can compute the
CVaR as the solution to a minimization problem, that is,

. 1 D +
CVaR. (U) = mzln{z—i— T pr(@ —z) }

deD

The parameter e controls the aversion to risk. The extreme
case ¢ = ( corresponds to no aversion to risk at all, i.e., the
objective is equivalent to the expected value of the TE mea-
sure. As € tends to 1, the objective tends to a fully conservative
solution, i.e., the solution presented in the previous subsection.

Integrating this objective in a linear program is now straight-
forward and leads to the stochastic model (S-SR-w):

(S-SR-w)
min z 4+ %—e DZE:DprD (3a)
st. yP>uPx)—2 DeD (3b)
yP >0 DeD (3c)
re XY (3d)

The auxiliary variables y” are used to model the non-linear
term (u” (x) — 2)* and their values are set by constraints (3b)
and (3¢).

IV. ONLINE ROUTING

The generic formulations proposed in the previous section
need a set of TMs D over which segment routing is optimized.
The segment routing defined at a given point in time might not
be efficient for TMs not considered in D, which might occur
after the routing is already defined. To address this situation,
we propose a robust and a stochastic online procedure opti-
mizing the routing each time a new TM is available, typically
a couple of times per day for internet service providers [21].

In the robust situation, the routing is optimized only when
a new worse-case TM is observed. A traffic matrix D is a
new worse case if the TE measure p”(x) computed based
on the current segment routing x € X" is greater than the
last optimal value of R-SR-w. If this happens, the TM is
added to D. This prevents the model from considering all TMs
observed. Figure 2 provides a flow chart of the Robust Online
segment routing (RO).

In the stochastic situation, each new TM is added to D
before reoptimizing S-SR-w. Figure 3 provides a flow chart
of the Stochastic Online segment routing (SO).

Unlike RO, SO adds each TM to D, potentially leading to
a larger formulation for the routing problem. In order to limit
the size of S-SR-w, we consider restricting the TMs used in
procedure SO-n. As TMs have a certain stability through time,
the last n TMs observed are kept in with a probability %,
and the former n matrices are averaged in a central TM with
an associated probability of % The number of TMs in D in
procedure SO-n is thus equal to n+1, the n last TM observed,
and an additional central TM.

V. SEGMENT ROUTING WITH ONE WAYPOINT

In this paper, we consider the frequently used Maximum
Link Utilization (MLU) as TE measure and a single waypoint
to use in the formulations presented in the previous sections
for comparison purposes with the oblivious model of Bhatia
et al. [5]. Still, any additive convex function in the loads on
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the arcs or any number of waypoints might be used without
changing our methodology. The formulation of Bhatia et al. [5]
considering a single waypoint and minimizing the MLU © for
a predetermined TM D is the following:

(SR-1)
min © (4a)
st ) =1 (i,j) € V? (4b)
keV
Z d;; Z g (a)zf; < c,® ac€A, (40
(i,5)eV? keVv
75 > 0 (i,j,k) € V3 (4d)

The demand from ¢ to j in D is denoted dg and zfj is the
proportion of this demand routed through waypoint k. Note
that by convention, we can use k = j if no waypoint is used.
Given a fixed underlying routing strategy such as OSPF, we
denote g;;(a), the fraction of the flow from i to j that would be
sent on arc a if waypoint k is used, for all ¢, j,k € V and a €
A. These values can be easily pre-computed [5]. Constraint

(4b) ensures all the demand from each pair (i,7) € V? is
routed through the network. Combined with the minimizing
objective function, constraint (4c) ensures the MLU is properly
© computed.

From formulation SR-1, Bhatia et al. derive a formulation
for an oblivious TM:

(O-SR-1)
min © (52)
st Y af=1 (i,7) € V?  (5b)
keV
> gima,d) = gi(a)al
acA keV
meV,a' €A (5¢)
Z com(a,a’) < c,© ad €A (5d)
acA
x>0 (i,5,k) € V3 (5e)
pi(a,a’) >0 a,a’ € A (5)

Constraints (5¢) and (5d) enforce that the routing is optimal
for the worse case TM based on capacity constraints; see [5]
for further details. One advantage of this formulation is that
it defines a routing that does not need to be reoptimized
through time as all possible TMs are implicitly considered.
As a drawback, the size of the formulation is significantly
larger because of variables 7(a,a’) and constraints (5b).

We now present the formulations used in the online proce-
dures presented in Section IV. Based on formulation SR-1 and
a set of TMs D, formulations R-SR-w and S-SR-w used for
the online procedures RO and SO can be adapted for a single
waypoint. The robust routing R-SR-1 is defined as follows:

(R-SR-1)
min © (6a)
st Y ak =1 (i,j) € V2 (6b)
kev
> B ghfa)rh < e

(i,j)EV? keV
a€e A, DeD (6¢)
k>0 (i,4,k) € V¥ (6d)

As before, equations (6b) ensure that the demands are fully
routed, while inequalities (6¢c) combined with the minimizing
objective function force the MLU O to be equal to the MLU
of worst TM in D.



The stochastic routing S-SR-1 is defined as follows:
(S-SR-1)

: 1 D, D
min z+1—_62py (7a)
DeD
st Yy af=1 (i,§) € VZ (7b)
keV
Z dg Z gfj(a)xfj < c,0F
(i,5)€V? keVv
a€ A, DeD (Tc)
yP? > 0P - D e D (7d)
yP >0 DeD (Te)
zh >0 (i,4,k) € V3 (1)

Inequalities (7¢) fix ©F to the MLU for the TM D € D while
(7d) and (7e), together with the objective function, enforce the
proper computation of the CVaR.

VI. NUMERICAL RESULTS

Numerical experiments are performed with an 8-core Intel
Xeon CPU ES5-2670 v3 at 2.30GHz with 32 Gb. The robust and
stochastic optimization is modelled in Julia 1.7.2 and solved
with Gurobi 9.5.1. The time limit when solving the routing
problem is set to 3600 s. A value ¢ = 10% is used for the
CVaR, representing a moderate aversion to risk.

A. Instances

The online algorithms are tested on networks provided by
REPETITA [22], a framework aimed at easing repeatable
experiments on TE algorithms, with associated OSPF metrics.
For each network, initial TMs are generated with a gravity
model proposed by [23], which produces realistic TMs for
internet networks. The final TMs used in the experiments are
then generated by averaging n consecutive matrices from the
initial set, with n € {2,5,10}, leading to a maximum variation
in demand between two nodes of 50%, 20% and 10% in two
consecutive TMs. To evaluate the improvement of SR on OSPF
easily, all TM are normalized so that the MLU is equal to 1
when the routing is performed with OSPF only.

B. Online vs. oblivious routing

The performance of the online procedures is compared
to the oblivious routing obtained with O-SR-1, proposed by
Bhatia et al. [S]. We compare our online procedures with the
model of Bhatia et al. on networks solved under 3600 s with
O-SR-1.

Our tests were performed over three sets of 100 consecutive
TMs with a maximum variation in demand of respectively
50%, 20%, and 10%. Table I reports the solving time of
the model of Bhatia et al., the maximum solving time of
the robust (R-SR-1) and stochastic (S-SR-1) formulations
over all iterations of the online procedure, and the mean
(1) and standard deviations (o) of the MLUs. The MLUs
reported for the online procedure are those obtained before
reoptimizing the routing based on the current TM. Column

Imp indicates the percentage of TM for which the online
routing provides a better MLU than the oblivious routing O-
SR-2. Overall, both online procedures find better routings than
O-SR-1, especially when the variation in demand between two
consecutive TM is smaller. The lowest MLUs are obtained
with the SO procedure, while the RO procedure has smaller
solving times as the formulations consider a smaller number
of TMs. The maximum number of TMs in the robust model
is indicated in column Nb. TMs. The solving time of O-SR-1
is significantly larger than for R-SR-1 and S-SR-1 because
of the size of the formulation. The oblivious approach is
overly conservative and, as expected, performs poorly for
many matrices. A possible explanation is that the model of
Bhatia et al. [5] corresponds roughly to our robust approach
with a set D containing all matrices that can be segment
routed. Therefore, the focus is on very pathological TM cases
unlikely to appear in a real setting. The RO procedure’s worse
results than the SO online procedure can be explained similarly
as the pathological TMs are added to D and kept throughout
the procedure.

The computation time of each iteration for network Sunet. is
illustrated in Figure 4. The computation time of SO increases

T
RO

SO

Time (s)

0 20 40 60 80
Iteration

Fig. 4: Computation time per iteration on Sunet. (|V| =
26, |A| = 98), 10% variation in demand

linearly as the number of TMs in the model increases. The
RO curve illustrates that the routing is reoptimized only
when new worse-case TMs are found, limiting the increase
in computation time. The SO-30 curve shows that a constant
time is reached for the maximum number of TMs to consider
(the 30 last TMs plus 1 central matrix averaged over the former
30 TMs).

Figures 5 and 6 illustrate the evolution of the MLU for
networks BtEur and Hurri. The MLUs are reported pre-
optimization (as reported in Table I) and post-optimization for
both procedures. The minimum possible MLU is reported as
Optimal SR and is obtained by optimizing the routing with SR-
1 on the TM of the current iteration. As observed in Table I,
both online procedures provide better results, especially the
stochastic one. We also observe that the routing obtained post-



Bhatia et al. RO SO
£ [7 [

Network Var (%) t(s) IIZILU (/z;) t(s) I;;ILU (‘72) %\Il\t/)[q Imp. (%) t(s) 1/\;[LU (/g) Tmp (%)
Highw. 50.0 635.92 092 | 0.11 2.86 0.98 | 0.09 33 34.0 15.14 | 0.9 0.14 66.0
V] =18 20.0 635.92 0.88 | 0.09 0.69 0.95 | 0.04 10 27.0 12.72 | 0.83 0.1 90.0
|A| =106 10.0 635.92 0.87 | 0.07 0.66 0.95 | 0.04 10 14.0 11.58 0.8 0.07 94.0

Easyn. 50.0 28.97 1.07 0.1 3.51 0.83 | 0.08 43 99.0 19.8 0.78 | 0.09 99.0
V=19 20.0 28.97 1.08 | 0.09 393 0.77 | 0.05 49 100.0 15.06 | 0.72 | 0.07 100.0
|A] =58 10.0 28.97 1.08 | 0.06 32 0.72 | 0.04 42 100.0 15.04 | 0.69 | 0.05 100.0

Janet 50.0 33.21 1.02 | 0.04 6.53 1.12 | 0.18 63 52.0 18.45 | 1.11 | 0.16 47.0
V] =20 20.0 33.21 1.02 | 0.03 4.85 1.07 | 0.12 51 59.0 14.0 1.06 0.1 60.0
|A] =80 10.0 33.21 1.02 | 0.02 | 422 1.04 | 0.07 45 70.0 12.81 1.03 | 0.05 70.0

BtEur. 50.0 337.08 0.99 | 0.09 9.31 1.03 0.1 57 52.0 37.83 | 0.97 0.1 78.0
V] =24 20.0 337.08 0.98 | 0.08 6.78 0.98 | 0.09 44 69.0 28.86 | 0.92 | 0.09 92.0
|A| =74 10.0 337.08 0.98 | 0.06 5.71 0.97 | 0.06 38 65.0 28.88 | 0.87 | 0.09 90.0

Hurri. 50.0 3459.5 094 | 0.11 6.28 0.98 | 0.09 38 42.0 55.74 | 0.85 | 0.12 83.0
V] =24 20.0 3459.5 0.92 0.1 8.6 0.87 | 0.08 49 71.0 5548 | 0.72 | 0.09 99.0
|Al =74 10.0 3459.5 0.92 | 0.08 9.67 0.72 | 0.06 53 100.0 62.98 | 0.64 | 0.06 100.0

Sunet. 50.0 2167.13 1.1 0.05 | 1296 | 1.02 | 0.08 40 90.0 58.73 1.0 0.1 96.0
V| =26 20.0 2167.13 0.04 7.08 1.0 0.04 26 100.0 39.29 | 0.99 | 0.05 97.0
|A] =98 10.0 2167.13 0.02 3.46 1.0 0.01 16 100.0 37.77 | 0.99 | 0.03 99.0

TABLE I: Results from Bhatia et al. and the RO and SO procedures over 100 TMs

S
-]
—
=
Optimal SR
0.4 [ ——— O-SR-2 B
RO pre-opt.
— — — RO post-opt.
0‘2 [ SO pre-opt. ]
— — — SO post-opt.
| | | |
0 20 40 60 80 100
Iteration

Fig. 5: MLU comparison on BtEur. (|]V| = 24, |A| = 74) with
10% variation

optimization in the SO procedure is almost always as efficient
as the Optimal SR. On the other hand, the RO procedure stays
relatively far from the Optimal SR, confirming that a robust
procedure is too conservative.

Table II provides results of the SO procedure when con-
sidering a limited number of TMs. As seen in Figure 4, the
maximum solving time per iteration significantly decreases
when limiting the number of TMs. As one could expect, the
average MLU increases as the variation in demand increases
and the number of TMs decreases. Still, for TMs with a
10% variation, the MLU is, on average, only 1% worse when
considering only 10 TMs in SO-10 rather than all of them in
SO.

C. Larger networks

Results on larger networks are reported in Table III on 50
consecutive TMs. TMs with a variation of 10% between two

1.2 - .
S
o)
=
=
Optimal SR
0.4 [ ——— O-SR-2 B
RO pre-opt.
02| o |1
— — — SO post-opt.
| | | |
0 20 40 60 80 100
Iteration

Fig. 6: MLU comparison on Hurri. (|[V| = 24, |A| = 74) with
10% variation

consecutive ones are considered. The average MLU is reported
pre- and post-optimization. A time-out and a run-out of mem-
ory are reported respectively as T.O. and MEM. along with the
iteration at which the issue occurred in brackets. The average
optimal MLU obtained with SR-1 considering the TMs are
known in advance is reported in column Optimal MLU. The
proportion of TMs added in RO increases significantly with
the size of the network, all of them being added to D starting
for Uunet and larger networks. This leads to memory issues
and worse MLUs, especially pre-optimization. SO reaches the
timeout on the largest network with about 100 nodes at the
9t" TM. The MLUs with SO-10 improve as the number of
nodes of the network increases, which can be explained by
the larger number of routing possibilities on large networks.
We can also see the MLUs obtained with SO-10 is close to
the optimal MLU, as illustrated in Figure 7, confirming the
efficiency of the stochastic approach.



SO-30 SO-20 SO-10
Network | Var (%) [~ I:L/ILU (0/2) 1mp. (%) | £ ) IZL/ILU (0/.;) 1mp. (%) | £ ) 1/\;[LU (0/2) Tmp(%)
Highw. 50 345 | 0.89 | 0.12 75.0 20 | 091 | 0.13 64.0 091 | 093 | 0.12 54.0
V] =18 20 32 084 | 0.1 89.0 1.85 | 0.84 | 0.1 86.0 095 | 0.85 | 0.1 85.0
|A| =106 10 339 | 0.81 | 0.07 95.0 191 | 0.81 | 0.07 95.0 09 | 0.81 | 0.07 92.0
Easyn. 50 381 | 0.79 | 0.09 100.0 23 [ 079 | 0.09 100.0 0.89 | 0.81 | 0.1 99.0
V] =19 20 3.6 0.72 | 0.07 100.0 1.86 | 0.72 | 0.07 100.0 0.74 | 0.72 | 0.07 100.0
|A| =58 10 342 | 0.69 | 0.05 100.0 1.85 | 0.69 | 0.05 100.0 084 | 0.7 | 0.05 100.0
Janet. 50 402 | 1.14 | 0.18 40.0 257 | 1.15 | 0.19 43.0 0.9 1.19 | 0.21 34.0
V] =20 20 359 | 1.07 | 0.11 53.0 228 | 1.09 | 0.12 49.0 0.95 1.1 | 0.12 36.0
|A| =80 10 3.43 1.04 | 0.05 48.0 2.1 1.06 | 0.08 43.0 0.9 1.06 | 0.07 47.0
BtEur. 50 7.14 1 098 | 0.11 77.0 43 1099 | 0.12 70.0 1.69 1.0 | 0.09 72.0
V] =24 20 931 | 093 | 0.08 89.0 521 | 093 | 0.08 86.0 1.52 | 0.94 | 0.08 88.0
|A| =74 10 723 | 0.87 | 0.09 90.0 497 | 0.87 | 0.08 90.0 1.78 | 0.87 | 0.09 91.0
Hurri. 50 8.66 | 0.86 | 0.12 82.0 572 | 0.87 | 0.13 82.0 241 | 0.88 | 0.12 74.0
V] =24 20 11.2 | 0.73 | 0.09 99.0 6.33 | 0.74 | 0.09 99.0 277 | 0.74 | 0.08 99.0
|A| =74 10 10.66 | 0.65 | 0.06 100.0 6.43 | 0.65 | 0.06 100.0 2.56 | 0.66 | 0.06 100.0
Sunet. 50 13.08 1.0 | 0.09 96.0 6.27 1.0 0.1 95.0 2.49 1.0 | 0.08 94.0
V| =26 20 9.81 0.99 | 0.04 99.0 5.61 | 099 | 0.04 100.0 2.28 1.0 | 0.04 98.0
|A| =98 10 10.11 | 0.99 | 0.03 99.0 54 ] 099 | 0.04 99.0 2.37 1.0 | 0.03 99.0
TABLE II: Impact of limiting the number of demands in the SO procedure over 100 TMs
Instance RO SO-10 Optimal
MLU Nb. MLU MLU
Network | |V/| |4] t(s) Pre-opt. | Post-opt. | TMs t(s) Pre-opt. | Post-opt.
Deuts 30 | 110 6.77 0.99 0.99 18 3.98 0.99 0.98 0.97
Ntt 32 | 432 6.75 1.01 1.0 16 4.83 1.01 1.0 1.0
China 42 | 132 2.96 0.78 0.78 5 9.53 0.77 0.76 0.75
Palme 45 140 59.84 0.9 0.9 34 15.15 0.79 0.77 0.78
Uunet 49 168 467.89 1.4 0.84 50 28.28 0.84 0.8 0.8
synth 50 | 276 686.67 1.54 0.44 50 318.65 0.45 0.39 0.38
rf396 79 | 294 702.22 1.3 0.57 50 231.02 0.58 0.54 0.54
rf175 87 | 322 | MEM. (38) - - 37 991.32 0.51 0.48 0.47
synth 100 | 572 | MEM. (7) - - 6 | TO.(9) - - -

TABLE III: Results on large instances of the online procedure over 50 TMs

S 04 .
-]
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Optimal SR
SO pre-opt
— — — SO post-opt
| |
0 20 40
Iteration

Fig. 7: MLU per iteration on rfl175. (|[V| = 87,|A| = 322)
with 10% variation

VII. CONCLUSION

This paper studied TE in segment routing under demand
uncertainty. We made a case for a stochastic approach and
showed that it performs well across a wide range of scenarios.
This approach outperforms robust approaches, which often

turn out to be too conservative. While without further con-
sideration, our stochastic approach has a higher runtime, we
showed that it can be sped up significantly without sacrificing
TE quality by reducing the number of scenarios and using
only the recent traffic history observed. This allows to scale
efficient segment routing to larger instances than with state-
of-the-art methods. We also empirically studied the impact of
demand volatility on the relative benefits of segment routing
over traditional approaches.

The MLU and a single waypoint are considered in the
numerical results of this paper for comparison purposes. Still,
our methodology stays valid for any additive convex function
in the loads on the arcs or any number of waypoints. Other
deterministic SR formulations considering more waypoints can
be embedded in the robust and stochastic models to be used
in the online procedures proposed.

We understand our work as a first step and believe it opens
several interesting avenues for future research. In particular, it
would be interesting to explore whether the conditional value
at risk approaches could also be useful in other contexts, such
as datacenter networks, and how it could be combined with
existing concepts such as semi-oblivious routing [24].
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