“We cannot direct the wind,
but we can adjust the sails.”

(Folklore)
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Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growth

Source: Facebook
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Network equipment reaching

capacity limits
— Transistor density rates stalling
— “End of Moorefs Law in networking” [1]

Hence: more equipment,
larger networks

Resource intensive and:
inefficient

Gbps/€

[1] Source: Microsoft, 2019



How to interconnect?
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Root Cause

Fixed and Demand-Oblivious Topology

Many flavors,
but in common:
fixed and

oblivious to
actual demand.




Root Cause

Fixed and Demand-Oblivious Topology

.............
............
ooooooooooooo

Many flavors,
but in common:
fixed and
oblivious to
actual demand.

Highway which ignores

actual traffic:

frustrating!
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new
demand:
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Our Vision

Flexible and Demand-Aware Topologies

123 456 78

new
demand:

Self-Adjusting
Networks
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mirrors

new flexible
\ interconnect
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Empirical studies:

traffic matrices sparse and skewed
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Sounds Crazy?
Emerging Enabling
Technology.

Photonics

H2020:
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council:
“Photons are the new
Electrons.”
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Spectrum of prototypes

— Different sizes, different reconfiguration times
— From our last year’s ACM SIGCOMM workshop OptSys
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Prototype 1

Prototype 2

Prototype 3



-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/

« X

Rotate Mirror 8§

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010



Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency




Flexibility

Structure

Self-Adjusting
Networks

Now is the time!

Efficiency




Everywhere, but mainly
in software

Algorithmic trading

Our focus:
in hardware

)
R d t
ecommender systems 3| e
NETFLIX chi
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Neural networks
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-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU
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-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU

More uniform More structure

11



-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

-» Which one has more structure?
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-> Two different ways to generate same traffic matrix:

— Same non-temporal structure

-» Which one has more structure?
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)




Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»




Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform
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Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

EEI» »E=EW'
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Can be used to define

Shuffle

g
2-dimensional

Compress U U complexity map!
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uniform

No structure

non-temporal complexity

skewed

skewed

temporal complexity
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non-temporal complexity

bursty uniform
pF
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Multi
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On the Complexity of Traffic Traces and Implications

CHEN AVIN, School of Electrical and Computer Engineering, Ben Gurion University of the Negev, Israel
MANYA GHOBADI, Computer Science and Artificial Intelligence Laboratory, MIT, USA

CHEN GRINER, School of Electrical and Computer Engineering, Ben Gurion University of the Negev,
Israel

STEFAN SCHMID, Faculty of Computer Science, University of Vienna, Austria

This paper presents a systematic approach to identify and quantify the types of structures featured by packet
traces in communication networks. Our approach leverages an information-theoretic methodology, based on
iterative randomization and compression of the packet trace, which allows us to systematically remove and
measure dimensions of structure in the trace. In particular, we introduce the notion of trace complexity which
approximates the entropy rate of a packet trace. Considering several real-world traces, we show that trace
complexity can provide unique insights into the characteristics of various applications. Based on our approach,
we also propose a traffic generator model able to produce a synthetic trace that matches the complexity levels
of its corresponding real-world trace. Using a case study in the context of datacenters, we show that insights
into the structure of packet traces can lead to improved demand-aware network designs: datacenter topologies
that are optimized for specific traffic patterns.

CCS Concepts: « Networks — Network performance evaluation; Network algorithms; Data center
networks; - Mathematics of computing — Information theory;

Additional Key Words and Phrases: trace complexity, self-adjusting networks, entropy rate, compress, com-
plexity map, data centers

ACM Reference Format:

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid. 2020. On the Complexity of Traffic Traces and
Implications. Proc. ACM Meas. Anal. Comput. Syst. 4, 1, Article 20 (March 2020), 29 pages. https://doi.org/10.
1145/3379486

1 INTRODUCTION

Packet traces collected from networking applications, such as datacenter traffic, have been shown
to feature much structure: datacenter traffic matrices are sparse and skewed [16, 39], exhibit




A first insight: entropy of the demand.
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Oblivious networks
(worst-case traffic)

More structure: lower routing cost >




Oblivious networks
(worst-case traffic)

More structure: lower routing cost >




Oblivious networks Demand-aware networks
(worst-case traffic) (spatial structure)

More structure: lower routing cost >




Oblivious networks Demand-aware networks Self-adjusting networks
(worst-case traffic) (spatial structure) (temporal structure)

More structure: lower routing cost




Oblivious networks Demand-aware networks Self-adjusting networks
(worst-case traffic) (spatial structure) (temporal structure)

More structure: lower routing cost >

Traditional BST Demand-aware BST Self-adjusting BST
(Worst-case coding) (Huffman coding) (Dynamic Huffman coding)

BST,
(%)

BST; 1
2

More structure: improved access cost / shorter codes >




Oblivious networks Demand-aware networks Self-adjusting networks
(worst-case traffic) (spatial structure) (temporal structure)

More structure: lower routing cost >

Demand-aware
(Huffman

Traditional PR
(Worst-case

Self-adjusting BST
(Dynamic Huffman codi

BST; BST,.
& 2

More structure: improved access cost / shorter codes >




Traditional networks Demand-aware networks Self-adjusting networks
(temporal structure)

(worst-case traffic) (spatial structure)

More structu.lower routing cost > ‘

Demand-aware
(Huffman

Traditional PR
(Worst-case

Self-adjusting BST
(Dynamic Huffman codi

BST; BST,.
& 2

More structure: improved access cost / shorter codes >

Generalize methodology:
... and transfer
entropy bounds and
algorithms of data-
structures to networks.

First result:
Demand-aware networks
of asymptotically
optimal route lengths.
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~» DAN for A=3

— E.g., complete binary
tree would be log n

— Can we do better?

Ve

-> DAN for A=2

— Set of lines and cycles ‘ ' ‘ ‘ ‘ ‘




-> DAN for A=3

— E.g., complete binary
tree would be log n

— Can we do better?
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-> DAN for A=2
— Set of lines and cycles




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

O O0000




Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 5
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

cost 1

666666




Example A=2: A Minium Linear
Arrangement (MLA) Problem

— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!
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Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!

But what about A>2?

Ot

— Embedding problem still hard
— But we have a new degree of

freedom!



Example A=2: A Minium Linear
Arrangement (MLA) Problem
— Minimizes sum of virtual
edges

MLA is NP-hard
— .. and so 1is our problem!

But what about A>2?

Ot

— Embedding problem still hard
— But we have a new degree of

freedom!



Destinations
1 2 3 4 5 6 7

Sources

Huffman tree:
“ego-tree”




-> Idea for algorithm:

— union of trees
— reduce degree
— but keep distances

~> Ok for sparse demands

— not everyone gets tree
— helper nodes
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Demand graph: Demand-aware network:

Ego-trees for
large nodes
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Demand-Aware Network Designs of Bounded

Chen Avin', Kaushik Mondal!, and Stefan Schmid?

schmiste@cs.aau.dk

Ben Gurion University of the Negev, Israel

avin@cse.bgu.ac.il, mondal@post.bgu.ac.il
2 Department of Computer Science

Aalborg University, Denmark

ing Department

—— Abstract

Traditionally, networks such as datacenter interconnects are designed to optimize worst-case
performance under arbitrary traffic patterns. Such network designs can however be far from
optimal when considering the actual workloads and traffic patterns which they serve. This insight

led to the develop of d 1
depending on the workload.

Motivated by these trends, this paper initiates the algorithmic study of demand-aware net-

datacenter interconnects which can be reconfigured

awarks (NANG) ond in ienlar the degion af } ded ks The innntetnthe L

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid*, Chen Avin®, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, Zvi Lotker

Abstract—This paper initiates the study of locally self-
adjusting networks: networks whose topology adapts dynamically
and in a decentralized manner, to the communication pattern o.
‘Our vision can be seen as a distributed generalization of the self-
adjusting datastructures introduced by Sleator and Tarjan [22]:
In contrast to their splay trees which dynamically optimize the
lookup costs from a single node (namely the tree root), we seek
to minimize the routing cost b arbitrary
pairs in the network.

As a first step, we study distributed binary search trees
{(BSTs), which are attractive for their support of greedy routing.
‘We introduce a simple model which captures the fundamental
tradeofT between the benefits and costs of self-adjusting networks.
We present the SplayNet algorithm and formally analyze its
performance, and prove its optimality in specific case studies. We
also i duce lower hound i based on interval cuts and

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks yet.

We, in this paper, initiate the study of a distributed general-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same
node, the tree root, distributed datastructures and networks
such as skip graphs [2], [13] have to support routing requests
between arbitrary pairs (or peers) of communicating nodes; in
other words, both the source as well as the destination of the
requests become variable. Figure 1 illustrates the difference
between classic and distributed binary search trees.

Iothic naner swe gel Can e rean cimilar b fiic fenm colf,

Toward Demand-Aware Networking:
A Theory for Self-Adjusting Networks

Stefan Schmid
University of Vienna, Austria
stefan_schmid@univie.ac.at

Chen Avin
Ben Gurion University, Israel
avin@cse.bgu.ac.il

This article is an editorial note submitted to CCR. It has NOT been peer reviewed.
The authors take full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
The physical topology is emerging as the next frontier in an
ongoing effort to render communication networks more flex-
ible. While first empirical results indicate that these flexibili-
ties can be exploited to reconfigure and optimize the network
toward the workload it serves and, e.g., providing the same
bandwidth at lower infrastructure cost, only little is known
today about the fundamental algorithmic problems underly-
ing the design of reconfigurable networks. This paper initi-
ates the study of the theory of demand-aware, self-adjusting
networks. Our main position is that self- ad]uslmg networks design of efficient datacenter networks has received much
2 attention over the last vears. The topologies underlying mod-

Demand-Oblivious Demand-Aware

Q‘Em@

Figure 1: Taxonomy of topology optimization

Demand-Aware Network Design with
Minimal Congestion and Route Lengths

Chen Avin Kaushik Mondal Stefan Schmid
Communication Systems Engincering Dept.  Communication Systems Engineering Dept.  Faculty of Computer Science
Ben Gurion University of the Negev, Israel  Ben Gurion University of the Negev. Israel  University of Vienna, Austria
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Abstract—Emerging communication technologies allow o re-
contigure the physical network topology at mmuu

miced toward the workioad they scrve. However, today. on oy e

the design of such demand-aware networks. Thix paper presenty
the first bounded-degree, demand-aware network, ci-DAN, which
route

congestion
stk preeaby (armplotial) o optous fn ench dhmencien

individually: we shoy exist any bounded-degree
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A. Morivation

Data center networks have hecome a critical infrastructure of
our digital society. With the trend towasd more data-intensive
applications, data center network traffc is growing quickly [7],
1311, As much of this wraffc is intermol to the dalg conter (2

However, anly litle is known today about the algoritlmic
challenge of designing demand-aware networks which provide
low congestion and short routes (in the number of hops), for
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— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing

A

000
(]
00

000
©
00

(777,000
©
00

— However, requires optimization and adaption, which takes time



— Self-adjusting networks may be really useful to serve large
flows (elephant flows): avoiding multi-hop routing
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Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— All-reduce/ML: ring or

tree traffic patterns
— Elephant flows

— Query traffic: skewed
— Mice flows

— Control traffic: does not evolve
but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

54
4
?

Shuffling
All-to-All

LL_,.LI Y

ML

Large flows

Delay
sensitive

]
Telemetry

/ control



Diverse topology components:
— demand-oblivious and
demand-aware

Demand- Demand-
oblivious aware



Dynamic

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand- Demand-
oblivious aware

Static



Opportunity: Tech Diversity

Dynamic
Diverse topology components:
— demand-oblivious and — ~N
demand-aware e.g., RotorNet e.g., FireFly
IR . . (SIGCOMM*17), (SIGCOMM‘14),
static vs dynamic Opera (NSDI€20), ProjecToR
Sirius (SIGCOMM‘16),
(SIGCOMM“20) SplayNet (ToN€16)
N\
Demand-
oblivious
(e.g., Clos )
(SIGCOMM‘@8),
BCube
(SIGCOMM‘Q9),
Xpander

\_ (SIGCOMM‘17) Y,

Static

Demand-
aware



Opportunity: Tech Diversity

Diverse topology components:

— demand-oblivious and
demand-aware

— static vs dynamic

Demand-
oblivious

Demand-
Aware

Dynamic
N\
Rotor
N\
\
Static
_J

Static

Demand-
aware



Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

Demand-
oblivious

Dynamic

(

~
Rotor
_J
~
Static
_J

Demand-
Aware

Static

Demand-
aware



Diverse topology components:
— demand-oblivious and

demand-aware
— static vs dynamic

As always in CS:
It depends..

Demand-
oblivious

Dynamic

Demand-
Aware

N\
Rotor
O\
\
Static
J
Static

Demand-
aware



Rack Interconnect

Optical Switches
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(=] (=] (=] (=] (=] (=] (=] (=]
1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model



Rack Interconnect

2@8| [E@3| |2©8| [2@3| |2©@8| |=2©@3| [2©@8| [2©3
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1 2 3 4 5 6 7 8

Typical rack internconnect: ToR-Matching-ToR (TMT) model



Details: Switch Types

Periodic Switch (aka Rotor Switch)

Rotor switch: periodic matchings (demand-oblivious)

- BHASOR

»  time




Details: Switch Types

Demand-Aware Switch
Demand-aware switch: optimized matchings

- BRAARE

»  time




Static switches: combine for optimized static topology

S1:

e.g, tree, expander



Design Tradeoffs (1)

The ‘“Awareness-Dimension”

4 ) @ )
Demand -
Rotor
Aware
\— ) \— _J
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead
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Demand-
Rotor
Aware
J \—
Demand- Demand-
oblivious aware
Good for all-to-all traffic! Good for elephant flows!
— oblivious: very fast — optimizable toward traffic
periodic direct connectivity — but slower

— no control plane overhead

Compared to static networks: latency tax!



Design Tradeoffs (2)

The “Flexibility-Dimension”

Good for high throughput!
— direct connectivity saves
bandwidth along links

Good for low latency!

— no need to wait for
reconfigurable links

— compared to dynamic:
bandwidth tax (multi-hop)

Dynamic
(
Rotor /
Demand-
Aware
\
(
Clos
\

Static




Good for high throughput!
— direct connectivity saves
bandwidth along links

Good for low latency!

— no need to wait for
reconfigurable links

— compared to dynamic:
bandwidth tax (multi-hop)

Dynami

C

f
Rotor
Demand -
Aware
\_
f
Clos
\_

Static




-> Observation 1: Different topologies provide
different tradeoffs.

-> Observation 2: Different traffic requires different
topology types.

-> Observation 3: A mismatch of demand and topology
can increase flow completion times.
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Shuffling

Dynamic

Demand-
Aware
Delay Telemetry
iti / trol
sensitive contro Demand - Demand.-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Topology
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Shuffling

Dynamic

Demand-
Aware
Delay Telemetry
sensitive / control
Demand- Demand-
oblivious aware
Demand
Static
Serving mice flows on demand-aware? Static

Bad idea! Latency tax.

Topology
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Shuffling

Dynamic

= < i = ‘ m n -
INI Demand
= Aware
Delay Telemetry
sensitive / control
Demand-
aware

Demand
Static

Serving elephant flows on static? Static
Bad idea! Bandwidth tax.

Topology



Dynamic

iy

Shuffling

Demand-
oblivious

Demand-
aware

)

Delay Telemetry
sensitive / control

Static

Our system Cerberus* serves traffic on the “best topology”!

* Griner et al., ACM SIGMETRICS 2022
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-> Observation 1: Different apps have different flow size distributions.



Flow transmission time (40Gbps)
100ns 1us 10us 100us 1Ims 10ms 100ms 1s
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-> Observation 1: Different apps have different flow size distributions.
-> Observation 2: The transmission time of a flow depends on its size.
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Flow Size Matters

Flow transmission time (40Gbps)
100ns 1us 10us 100us 1Ims 10ms 100ms 1s
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Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.
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Flow Size Matters

Flow transmission time (40Gbps)
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Observation 1: Different apps have different flow size distributions.
Observation 2: The transmission time of a flow depends on its size.
Observation 3: For small flows, flow completion time suffers if

network needs to be reconfigured first.
Observation 4: For large flows, reconfiguration time may amortize.
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Scheduling: Small flows go via static switches..
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Scheduling: ..

medium flows via rotor
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Scheduling: .. and large flows via demand-aware switches
(if one available, otherwise via rotor).
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Metric: throughput
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Metric: throughput
of a demand matrix..
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. 1s the maximal scale
down factor by which
traffic is feasible.
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Throughput of network 6*:
worst case T



Throughput Analysis

Demand Matrix
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0" 0.53 0.45 Open
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-> Demand completion time: How long does
it take to serve a demand matrix?
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Data mining workload

-» Also useful in analysis: throughput can be computed more
easily via demand completion time.



-»> Diverse traffic requires
diverse technologies

-» Cerberus aims to assign
traffic to its best topology

— Depending on flow size

-» Many challenges

— Impact on routing and congestion control
— Sensitivity analysis

— Prototyping

Thank you!
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Overview: Models

Static Optimality

Demand-Aware Network Designs of Bounded Degree

Chen Avin  Kaushik Mondal  Stefan Schmid

Abstract Traditionally, networks such as datacenter 1 Introduction
interconneets are designed to optimize worst-case per-

Toward Demand-Aware Networking:
A Theory for Self-Adjusting Networks

Chen Avin Stefan Schmid o L
Ben Gurion University, Isracl University of Vienna, Austria Chen Avin'  Stefan Schmid
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ABSTRACT

ReNets: Toward Statically Optimal
Self-Adjusting Networks

Abstract

This paper studies the design of self-adjusting networks whose topol-
ogy dynamically adapts to the workload, in an online and demand-aware

formance under arbitrary traffic patterns, Such network — The problem studied in this paper is motivatod by the
designs can however be far from optimal when consider-  advent of more flexible datacenter interconnects, such
ing the actual worklaads and traffic patterns which they  as ProjecToR [20,31). These interconnects aim to over- ongoing cffort to render communication networks more flex-
serve. This insight led to the development of demand-  come a fundamental drawback of traditional datacenter ible. Wluk first empirical results mdkale that these flexibili-
aware datacenter interconnects which can be reconfig-  notwork designs: the fact that network designers must imize the network
ured depending on the workload. decide m advance on how much capacity to provision Sowaid the workload it serves knd & g, providiag the same
Motivated by these trends, this paper initiates the  betwoen electrical packet switches, e.g., between Top- bandwidth at lower infrastructure cost, only little is known
algorithmic study of demand-aware networks (DANs), OFRock (ToR) switches in datacenters. This leads to today about the fundamental algorithmic problems underly-
and in particular the design of bounded-degree net- ing the design of reconfigurable networks. This paper s
works. The inputs to the network design problem area  Provisioned and therefore the interconnect expensive ates the study of the theory of demand-aware, self-adjusting
discrete communication request distribution, D, defined  (¢:8. a fat-tree provides full-bisection bandwidth), or networks. Our main position is that self-adjusting networks dts'sn of efficient datacenter networks has received much
over communicating pairs from the node set V, and a  0ne may risk congestion, resulting in a poor cloud appli- should be seen through the lense of self-adjusting datas- ti the last years. The topol nod-
bound, 4, on the maximum degree. In turn, our ob-  cation ccordingly. systems such as Pro- tructures. Accordingly, we present a taxonomy classifying ern datacenter networks range from trees (7, 8] over hyper-
jective is to design an (undirected) demand-sware net-  jecToR provide a roconfigurable interconnect, allowing the different -lsor-ﬂum el of demand-oblivious, fixed cubes [9, 10] to expander networks [11] and provide high
work N = (V. E) of bounded-degree A, which provides ~ to establish links flexibly and in a demand-aware man- 4 d Siviteie at low cost [1].
st rotin s betwen ey commnicning 77 For campe, dire ke o o ot sort o introduce a e " il s, it sk 13 N S A
e o . e . e B s e fon et Ve b cxompis henhere _0polog s fxed an oblivios o the sctualdemand
{with_resnact 40 D) _which_is a_hasic measure of the  plemented using a bounded number of lasers, mirrors,

‘manner. This problem is motivated by emerging optical technologies
which allow to reconfigure the datacenter topology at runtime. Our
main contribution is ReNet, a self-adjusting network which maintains a
balance between the benefits and costs of reconfigurations. In partic-
ular, we show that ReNets are statically optimal for arbitrary sparse
communication demands, i.c.. perform at least as good as any fixed
demand-aware network designed with a perfect knowledge of the future
demand. Furthermore, ReNets provide compact and local routing, by
leveraging ideas from self-adjusting datastructures.

‘The physical topology is emerging as the next frontier in an

Figure 1: Taxonomy of topology optimization

1 Introduction

Modern datacenter networks rely on efficient network topologies (based on
fat-trees [1], hypercubes [2, 3], or expander [4] graphs) to provide a high
connectivity at low cost [5]. These datacenter networks have in common that
their topology is fired and oblivious to the actual demand (i.e., workload

Robust DAN

rDAN: Toward Robust Demand-Aware Network Designs

Chen Avin'  Alexandr Hercules'  Andreas Loukas®  Stefan Schmid?
* Ben-Gurion University, Il EPFL, CH  ® University of Vienna, AT & TU Berlin, DE

Abstract

‘We currently witness the emergence of interesting new network topologies optimized towards the
traffic matrices they serve, such as demand-aware datacenter interconnects {e.g.. ProjecToR) and
demand-aware peer-to-peer overlay networks (e.g., SplayNets). This paper introduces a formal
framework and approach to reason about and design robust demand-aware networks (DAN). In
particular, we establish a connection between the communication frequency of two nodes and
the path length between them in the network, and show that this relationship depends on the
entropy of the communication matrix. Our main contribution is a novel robust. yet sparse, family
of networks, short 7DANs, which guarantee an expected path length that is proportional to the

entropy of the communication patterns.

Dynamic DAN

Jsract—This paper nklnies the sindy of lcaky s

Mh-d«auﬂmﬂ lnmrmnledmlnmnu
Ourvuuu-b:un--dnri generalization
datastructures bymuamy-m].
hmmm:uhdr-pl-ylmwhu optimize
huymm--mghm&(u-dynkmm).nmk
to minimize the routing cost between arbitrary communication

We introduce u simple model which captures the
We present the SplayNet algorithm and formally analyze its
and prove its in specific We

edge expaation, o study he imitatlons of say dermd-optimised
network. Finally, we our study to multi-tree networks,
unﬂﬁlumrﬁnmmd—kwm
splay trees.

L. INTRODUCTION
In the 1980s, Sleator and Tarjan [22] proposed an appealing
new paradigm to design efficient Binary Search Tree (BST)
datastructures: rather than optimizing traditional metrics such

SplayNet: Towards Locally Self-Adjusting Networks

Stefan Schmid*, Chen Avin®, Christian Scheideler, Michacl Borokhovich, Bernhard Hacupler, Zvi Lotker

toward static metrics, such as the diameter or the length of
the longest route: the self-adjusting paradigm has not spilled
over to distributed networks

We, in this paper, initiate the study of a distributed gencral-
ization of self-optimizing datastructures. This is a non-trivial
generalization of the classic splay tree concept: While in clas-
sic BSTs, a lookup request always originates from the same
node. the tree root, distributed datastructures and networks
such as skip graphs (2], [13] have (o support routing requests
between arbitrary pairs (or peers) of communicating nodes; in
other words, both the source as well as the destination of the
requests become variable, Figure 1 illustrates the difference
between classic and distributed binary scarch trees.

In this paper, we ask: Can we reap similar benefits from self-
adjusting entire networks, by adaptively reducing the distance
between frequently communicating nodes?

As a first step, we explore fully decentralized and self-
adjusting Binary Search Tree networks: in these networks,
nodes are amanged in a binary tree which respects node
identifiers. A BST topology is attractive as it supports greedy
routing: a node can decide locally 10 which port to forward a
request given its destination address.

or communication pattern) they currently serve. Rather, they are designed
for all-to-all communication patterns, by ensuring properties such as full
bisection bandwidth or O(logn) route lengths between any node pair in a
constant-degree n-node network. However, demand-oblivious networks can
be inefficient for more specific demand patterns, as they usually arise in
tica: Bennirical studioe chon: that traffie nattarne § g

Concurrent DANs

CBNet: Minimizing Adjustments in
Concurrent Demand-Aware Tree Networks

Otavio Augusto de Oliveira Souza!  Olga Goussevskaia’  Stefan Schmid?
! Universidade Federal de Minas Gerais. Brazil  * University of Vienna, Austria

Abstroct—This paper studies the dosign of demand-sware  CBNet is bused on concepts from self-adjusting data struc]

metwark topologics: networks that dynamically adapt themselves ures. and in purticular, CBTrees [12). CBNet gradually adapt]

toward the demand they curready serve, o an one MABIET (e pctwork topology fowand the communication pater in =]
mare

are a
still costly. Furthermore. distribution. bidirectional
comtes e wed 10 mainiae s, mimmin conigmatio
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Reconfigurable Optical Networks
Will Move Supercomputer Data
100X Faster

Newly designed HPC network cards and software that
reshapes topologies on-the-fly will be key to success

By Michelle Hampson
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