Competitive MAC under Adversarial SINR

Adrian Ogierman, Andrea Richa, Christian Scheideler, **Stefan Schmid**, Jin Zhang

Competitive MAC under Adversarial SINR

Adrian Ogierman, Andrea Richa, Christian Scheideler, **Stefan Schmid**, Jin Zhang

MAC: A Distributed Coordination Problem

Models for Wireless

- The Radio Model
 - All nodes within range

The Unit Disk Graph Model Unit radius

The SINR Model

- Polynomial decay of signal
- Best explained with a rock concert

 $\frac{P(u)/d(u,v)^{\alpha}}{\mathcal{N} + \sum_{w \in S} P(w)/d(w,v)^{\alpha}} \ge \beta$

0

© Roger Wattenhot

A Tough Model: External Interference

External interference due to:

- Co-existing networks
- Microwave Ovens
- Jammers

Ideal world!

A Tough Model: External Interference

External interference due to:

- Co-existing networks
- Microwave Ovens
- Jammers

MAC: exponential backoff, ALOHA, etc. will do the job: constant cumulative probability «per disk»

Noise

Ideal world!

Time

Adding External Interference

External interference due to:

- Co-existing networks
- Microwave Ovens
- Jammers

Adding External Interference

External interference due to:

- Co-existing networks
- Microwave Ovens
- Jammers

Adding External Interference

External interference due to:

- Co-existing networks
- Microwave Ovens
- Jammers

The Adversary Model

$$\frac{P(u)/d(u,v)^{\alpha}}{\mathcal{N} + \sum_{w \in S} P(w)/d(w,v)^{\alpha}} \ge \beta \qquad \qquad \mathbf{Classic SINR}$$

$$\frac{P/d(u,v)^{\alpha}}{\mathcal{ADV}(v) + \sum_{w \in S} P/d(w,v)^{\alpha}} \ge \beta$$

worst-case
(e.g., jammer)

The (B,T)-Adversary Model

- **Energy-bounded** adversary: the (B,T)-adversary
 - In time period of duration T, the adversary can spend a budget of B*T to jam each node arbitrarily («bursty», non-uniform)
 - Theoretically can jam each round «a little bit»

Adversary is adaptive: knows history and state!

The Model

- Single channel, backlogged, synchronized
- Protocol is randomized
- Adversary is adaptive (but not reactive)
- Nodes cannot distinguish busy from «jammed»
- Nodes cannot distinguish idle from busy!

- Obviously, cannot achieve a throughput if constantly jammed
- Goal hence: Provable throughput in non-jammed rounds!
- Constant competitive troughput: in non-jammed rounds, whenever they occur, a constant number of messages are successfully transmitted and received

- Obviously, cann
 Non-jammed round: Node within transmission radius, i.e., P/r^α > β∨ could still successfully send to that node (given no other transmissions).
 - Constant competitive troughput: in non-jammed rounds, whenever they occur, a constant number of messages are successfully transmitted and received

med

- Obviously, cannot achieve a throughput if constantly jammed
- Goal hence: Provable throughput in non-jammed rounds!
 - Constant competitive troughput: in non-jammed rounds, whenever they occur, a constant number of messages are successfully transmitted and received

Let N(v) be the number of time steps in which v is non-jammed, and count the number S(v) of successful message receptions!

Success!

Constant: Sum of all S(v) is at least a constant fraction of N(v):

 $\Sigma S(v) \ge const * \Sigma N(v)$

pnstantly jammed

nmed rounds!

Constant competitive troughput: in non-jammed rounds, whenever they occur, a constant number of messages are successfully transmitted and received

Let N(v) be the number of time steps in which v is non-jammed, and count the number S(v) of successful message receptions!

G

Success!

The Result: The Sade Protocol

Theorem 1

Sade has a $2^{-O((1/\varepsilon)^{2/(\alpha-2)})}$ -competitive throughput if the jammer is uniform or the node density is high! With ε constant, we obtain a constant throughput.

Theorem 2

No MAC protocol can achieve any throughput against a (B,T)-bounded adversary with $B > \vartheta$.

SINR is fundamentally different from UDG: A second lower bound

shows that a constant cumulative probability per disk cannot yield a throughput polynomial in ε (for UDG it can).

The MAC Protocol

First idea: "Exponential backoff with state"

(goal: constant cumulative probability)

If (idle):
$$p_v := (1+\gamma) p_v$$

If (success): $p_v := 1/(1+\gamma) p_v$

Problem 1: "Idle" is subjective.

Problem 2: Not robust to jamming: May miss "good" cumulative probability.

The MAC Protocol SADE

Estimate adversary window: decrease more slowly!

```
 (T_v, c_v, p_v) = (1,1,p), \text{ fixed noise threshold } \vee \\ \text{With probability } p_v, \text{ send a message} \\ \text{Else:} \\ \quad \text{if successful reception, } p_v = p_v / (1+\chi) \\ \quad \text{if sense idle channel, } p_v = p_v * (1+\chi), T_v - \\ \quad c_v + + \\ \quad \text{if } c_v > T_v \text{: if no idle among last rounds,} \\ \quad p_v = p_v / (1+\chi), T_v = T_v + 2 \\ \end{array}
```

The Analysis

Zone 1: (transmission range: constant)

- $R_1 \coloneqq \sqrt[\alpha]{P/(\beta\vartheta)}$
- If there is at least one sender, v will not sense idle
- v successfully receives a message from another node within R_1 provided $ADV(v) \le \vartheta$ and no collision occurs

<u>Zone 2</u>: (critical interference range: constant) - $R_2 \coloneqq O\left((1/\varepsilon)^{1/(\alpha-1)}R_1\right)$

- **buffer**: interference from Zone 3 is at most $\varepsilon \vartheta$

Zone 3: (noncritical interference range) - every node outside Zone 1 and Zone 2

Analysis

- Cumulative sending probabilities in Zone 1 and Zone 2 at most constant
- Power of Zone 3 grows in n, but at v received power is constant in expectation too

Analysis over thresholds of cumulative probability:

Simulations

Throughput better than what expected from worst-case analysis

Fast convergence

Conclusion

SADE: A very robust MAC protocol with provable throughput guarantees in a harsh and realistic environment

A new adversary model: energy-constrained

G Future work:

- Polynomial throughput? Only possible with sub-constant cumulative probability
- □ Adaptive power

poly(1/
$$\varepsilon$$
)-competitive?

$$2^{-O((1/\varepsilon)^{2/(\alpha-2)})}$$
-competitive

Thank you.

