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Fast Rerouting (FRR) 

• Networks (enterprise networks, 
datacenter networks, Internet): 
critical infrastructure of the
information society

• Modern communication
networks support fast reroute: 
local failover without invoking
control plane, no reconvergence
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Fast Rerouting (FRR) 

• Networks (enterprise networks, 
datacenter networks, Internet): 
critical infrastructure of the
information society

• Modern communication
networks support fast reroute: 
local failover without invoking
control plane, no reconvergence

s

Challenge: conditional rules can 
only depend on local failures

t

Given 2nd failure, 
this would have

been better!
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A Fundamental Algorithmic Problem

How to define these conditional (local) failover rules?

Challenges: 

• Rules have local knowledge only: can depend only on 
incident failures

• Want to minimize additional information that packets
should carry in header
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Some Recent Results: 
Arborescence-Based (Chiesa et al.)

E.g., Chiesa et al.: 

• Given:

• k-connected network G, destination d

• G decomposed into k d-rooted arc-disjoint spanning 
arborescences

Known result: always exist 
in k-connected graphs 

(efficient)

Basic principle: 

• Route along fixed arborescence (“directed spanning tree”) towards the 
destination d

• If packet hits a failed edge at vertex v, reroute along a different arborescence

The Crux: which arborescence to 
choose next? Influences resiliency! 3



Chiesa et al.: if k-connected graph has k arc 
disjoint Hamilton Cycles, k-1 resilient routing can 

be constructed!

Simple Example: Hamilton Cycle
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Example: 3-Resilient Routing Function for 2-dim Torus

k=4 connected

5
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node visited exactly once!
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Edge disjoint: Together 
span all edges!

Example: 3-Resilient Routing Function for 2-dim Torus
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Make Hamilton cycles 
directed: so 4 Arc-

Disjoint Hamilton Cycles.

Example: 3-Resilient Routing Function for 2-dim Torus
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Example: 3-Resilient Routing Function for 2-dim Torus

d

Failover: In order to reach destination d: go along 
1st directed HC, if hit failure, reverse direction, if 

again failure switch to 2nd HC, if again failure 
reverse direction: no more failures possible!
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Torus 4-connected, has 4 arc disjoint 

Hamilton cycles, so can construct 
optimal 3-resilient routing!

Example: 3-Resilient Routing Function for 2-dim Torus

No header space 
needed at all!

Open Problem: k-resilient local fast failover 
scheme for k-connected graphs?



Variants with Stretch and Load Guarantees: 
Pignolet et al. & Foerster et al.

• Local Fast Failover Routing With Low Stretch
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and 
Gilles Tredan. ACM SIGCOMM Computer Communication Review 
(CCR), 2018.

• Load-Optimal Local Fast Rerouting for Dependable Networks
Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
47th IEEE/IFIP International Conference on Dependable Systems 
and Networks (DSN), Denver, Colorado, USA, June 2017.

Based on Balanced Incomplete Block 
Designs (BIBDs): Distributed 

computing without communication. 
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https://net.t-labs.tu-berlin.de/~stefan/ccr18failover.pdf
https://net.t-labs.tu-berlin.de/~stefan/dsn17failover.pdf
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One failure: push 30: 
route around (v2,v3)

If (v2,v3) failed, 
push 30 and 

forward to v6.

Pop

Normal 
swap

What about multiple link failures?

• MPLS: forwarding based on top label of label stack

Some Recent Results: 
Polynomial-Time What-If Analysis for MPLS
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one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

More efficient but also more complex!
How complex?



Failover Tables

Flow Table

Protected 
link

Alternative 
link

Label

Forwarding Tables for Our Example
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MPLS configurations

Pushdown
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Rewriting Systems 
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rX ⇒ pX

What if...?!

Can be verified in polynomial time 
via automata-theoretic approach
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MPLS configurations

Pushdown
Automaton and Prefix 

Rewriting Systems 
Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Can be verified in polynomial time 
via automata-theoretic approach

Extends to Segment Routing 
networks (SR-MPLS)!

Our focus



Segment Routing Networks
• Attractive: high path diversity (compared to, 

e.g., OSPF), more scalable than MPLS (not 
require state /reservations on all routers), 
backward-compatible, etc.

• Packet can carry in its header, information
about a sequence of segments it should
traverse

• Within segment (i.e., to the next
«waypoint»): shortest path routing (e.g., IGP)

s t

IGP 
Segment

s2s1
s3

s

tw1

w2

Shortest 
path (IGP)

E.g., by default, single
segment shortest path:

11



Segment Routing Networks

Upon failure: can push an intermediate (remote) destination

(waypoint), or an adjacent link (force)

• Resp. a sequence of segments

• Along segments: shortest paths (IGP)

s t

Failover: packet header

w
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Segment Routing Networks

s t

push w
Failover: packet header

wS1 
(shortest path)

wt
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Segment Routing Networks

s t

push w
Failover: packet header

wS1 
(shortest path)

S2 
(shortest path)

pop

t

Upon failure: can push an intermediate (remote) destination

(waypoint), or an adjacent link (force)

• Resp. a sequence of segments

• Along segments: shortest paths (IGP)



Challenges (1)

• Combination of «stack-based 

forwarding» and shortest path 
(IGP) routing

• Failover path should never use
failed links again

• Local knowledge only

• Limited header space

• Multiple failures

Header 
space

Local 
knowledge

Failover Rules:

f(status incident links, header) ➜ push waypoint(s)

13



Challenges (2)

Applies standard 
rules 

Micro loop!

Without header info: does not know 
that packet failed over, applies 
standard rules, i.e., default shortest 
path to destination: may loop

FRR has to ensure 
loop-freedom! 

14



Solution: Loop-Free Alternative (LFA)?

S

N

T

Can Protect

B

Initial Path

LFAFRR

• If (S,N) fails, S can failover to B

• X has shortest path to T that does
not go through (S,N) again

• WORKS: can protect (S,N)

15
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Solution: Loop-Free Alternative (LFA)?

S

N

T

Can Protect

Initial Path

LFAFRR

non-LFAFRR

B

S

NT

Cannot protect

can’t use it!

• If (S,N) fails, S can failover to B

• X has shortest path to T that does
not go through (S,N) again

• WORKS: can protect (S,N)

• If (S,T) fails, S can only try to

failover to N

• However, when N‘s shortest route  
to T goes along S again:  loop

• DOES NOT: Cannot protect (S,T)

Even though loop-free alternative path exists, an LFA 
algorithm cannot use it. Protection ratio of LFA 

depends on topology!



Even though alternative paths exist, I 

cannot use it. Protection ratio of LFA 

depends on topology…

Can we fix it with 

Segment Routing?

16



Topology-Independent LFA (TI-LFA)

• Yes we can! Idea: push a 

segment, i.e., certain
waypoint w

• It must be ensured: second
(IGP) segment w ➝ t does

not go via L again!

s

t

w

s1

s2

s3

IGP

IGP

IGP

wt
pop

t

t

L

How to find such a w? Is it 
always possible? I.e., 

Topology-Independent?

17



TI-LFA

• Yes it is always possible but we need a twist

• We need two definitions: 

• P-Space: the nodes whose shortest path from S does not use L

S T

18
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TI-LFA

• Yes it is always possible but we need a twist

• We need two definitions: 

• P-Space: the nodes whose shortest path from S does not use L

• Q-Space: the nodes whose shortest path to T does not use L

S T

• Idea: choose segment endpoint w at intersection!

• There are IGP routes from s to w and w to t without failures

w

18
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TI-LFA: Properties

P-Space and Q-Space: Are connected subgraphs, cover all 
nodes, overlap or are adjacent

S T

w

S T

W N
∞

Case 1: S can
simply push W 

Case 2: S pushes W and 
(W,N), forces packet to
enter Q-space

19

L

L



TI-LFA Summary

Push W

Push W

Push (W,N)

§

Initial Shortest Path

Backup Shortest Path

T

W

S

X

T

W N
∞

S

X

Works even if 
infinite cost!



TI-LFA is provably robust 

to 1 failure!

What about 2 or 

more failures?

Not really…

21



N W S

T

∞

∞

TI-LFA Under Double Failure (   )

Problem: 
• If S pushes W to reroute…

• … but W also has a link failure and pushes S (only knows local failures)…

• … we have a loop again!

Loop

SW S

Link cost

22No longer TI!



A First Idea: Emulate FRR Based on 
Arborescences (Chiesa et al./Foerster et al.) 

In principle, one can emulate FRR based on arborescences

(Chiesa et al., Foerster et al.): 

22

• Need inport matching

• Need to force one link, hop-by-hop: 
many (forcing) rules!

• Goes against idea of SR

• Paths can be long

•high resiliency



TI-LFA Under Double Failure (   )

N W S

T

∞

∞

Solution:

Loop

SW S

minimal 
info

• The packet could tell W about the failure of ST: W in this case sees and pushes N

• Rerouting through 3 segments would avoid both failures: SW, WN, NT

(S,T) 
failed

TI-MFA: failure-

carrying packets 

for SR!

22

TI-MFA TI-LFA



TI-MFA: Topology-Independent Multi-
Failure Alternate

1. Flush the label stack except for the destination T

2. Based on all link failure info stored in the packet header, compute the segments necessary to 
reach T and the labels accordingly 

3. Find the last node on ShortestPath(S,T) that a packet can reach from S without hitting known 
failed link (”repeated TI-LFA on subgraph”)

a. Let V1 be this node followed by the link (V1,V2) on this path

b. Set the top of label stack as (V1, (V1,V2),…

c. Repeat the same for V2 as the start of next segment and keep repeating until the segment 
that ends with T

4. Dispatch the packet (it will reach T unless it hits a failure disconnecting the network)

From the viewpoint of the node S where the packet hits another failed link:



TI-MFA: Topology-Independent Multi-
Failure Alternate

1. Flush the label stack except for the destination T

2. Based on all failures stored in the packet header, compute the segments necessary to reach T
and the labels accordingly 

3. Find the last node on ShortestPath(S,T) that a packet can reach from S without hitting known 
failed link

a. Let V1 be this node followed by the link (V1,V2) on this path

b. Set the top of label stack as (V1, (V1,V2),…

c. Repeat the same for V2 as the start of next segment and keep repeating until the segment 
that ends with T

4. Dispatch the packet (it will reach T unless it hits a failure disconnecting the network)

From the viewpoint of the node S where the packet hits another failed link:

We also consider a variant without flushing: 
we force to strictly route around each failed 
link, before continuing toward destination. 

Can also extend TI-LFA like this…



TI-MFA Under Many Failures (           )

Theorem: TI-MFA tolerates k failures in k-
connected network! 

Proof:

• Invariant: by construction, previously hit failures won’t be hit 
again

•k failures: by construction the backup path will not use any failed 
link seen previously

• Hence, the packet either hits all the k failures or reaches its 
destination early

24



Experimental Results

• Simulations on Rocketfuel topologies, over 5 million scenarios

• Recorded connectivity, maximum header sizes, and path lengths

25

TI-LFA fails to deal with 
2 failures in many cases 
(and not only in the 
worst case).

Surprisingly, TI-LFA 
cannot benefit from 

flushing!



Experimental Results

• Simulations on Rocketfuel topologies, over 5 million scenarios

• Recorded connectivity, maximum header sizes, and path lengths

26

Stacks are usually small 
(especially with flush of 
course)



Experimental Results

• Simulations on Rocketfuel topologies, over 5 million scenarios

• Recorded connectivity, maximum header sizes, and path lengths
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Path lengths of the 
algorithms are 
comparable (TI-MFA, 
especially with flush 
shorter, as expected)



More Results in the Paper

26

Theorem: There is a fundamental tradeoff

efficiency vs robustness of failover (if packets 

cannot carry failures). Any failover scheme for SR 

which tolerates at least two failures, can be forced 

to use very costly routes even in the presence of 

a single failure.



Summary

• Fast rerouting important but not well-understood

• Interesting algorithmic problem, many open questions

• First look at segment routing

• Limitations of TI-LFA

• Robust to many failures with MI-LFA

• Future work: yes

27



Further Reading

Thank you! Questions?

• Local Fast Failover Routing With Low Stretch
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan. 
ACM SIGCOMM Computer Communication Review (CCR), 2018.

• Load-Optimal Local Fast Rerouting for Dependable Networks
Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
47th IEEE/IFIP International Conference on Dependable Systems and Networks 
(DSN), Denver, Colorado, USA, June 2017.

• Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, 
Hawaii, USA, April 2018.

https://net.t-labs.tu-berlin.de/~stefan/ccr18failover.pdf
https://net.t-labs.tu-berlin.de/~stefan/dsn17failover.pdf
https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf

