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Teaser: Can we verify reachability under k failures 

without trying exponentially many options? 

Yes. MUCH FASTER! 

An Automata-Theoretic 

Approach.
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We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed 
incorrectly […] more “stuck” volumes and 
added more requests to the re-mirroring storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Credits: Nate Foster

Datacenter, enterprise, carrier networks: mission-critical infrastructures.
But even techsavvy companies struggle to provide reliable operations.

Configuring Networks is Hard…
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Example: BGP in 
Datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
at

ac
e

n
te

r
… Especially Under Failures

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2
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If link (G,X) fails and traffic from G is rerouted 
via Y and C to X: X announces (does not block) 

G and H as it comes from C. (Note: BGP.)
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Internet what is from G* 

(prefix).

X and Y block what is 
from P*.
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Network Administration Today

• Many forwarding tables with many rules, 
distributed across network

• Sysadmin responsible for:

• Reachability: Can traffic from ingress port
A reach egress port B?

• Loop-freedom: Are the routes implied by
the forwarding rules loop-free?

• Non-reachability: Is it ensured that traffic
originating from A never reaches B?

• Waypoint ensurance: Is it ensured that
traffic from A to B is always routed via a 
node C (e.g., a firewall)?

Policy ok?

A

B

C
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Network Administration Today

• Many forwarding tables with many rules, 
distributed across network

• Sysadmin responsible for:

• Reachability: Can traffic from ingress port
A reach egress port B?

• Loop-freedom: Are the routes implied by
the forwarding rules loop-free?

• Non-reachability: Is it ensured that traffic
originating from A never reaches B?

• Waypoint ensurance: Is it ensured that
traffic from A to B is always routed via a 
node C (e.g., a firewall)?

• … even under (multiple) failures!
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The Good News

• Networks are becoming more programmable and
logically centralized, have open interfaces, …

• … are based on formal foundations…

• … researchers develop high-level specification
languages such as NetKAT.

Enables a more automated network operation and verification!

4



The Bad News

• For many traditional networks (still predominant!), 
such benefits are not available yet

• Many existing tools cannot deal with failures

• Super-polynomial runtime, verification PSPACE-hard

• Other limitations: e.g., fixed header size

4



Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.
Self-loop: could be 

replaced by “dummy 
switch”.
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Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.
Idea: packet header stores 

Turing machine configuration 
(tape, head, state). 
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Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.

Switch action: each time packet 
arrives, performs one Turing 

machine step and updates header.
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Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.
Only if accept or reject, 

forwarded to out. Is it ever 
reached?

Undecidable!
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Our Contribution

6

Polynomial-Time What-if Analysis 
for Prefix Rewriting Networks



Our Contribution

Polynomial-Time What-if Analysis 
for Prefix Rewriting Networks

Independently of the 
number of failures! No need 

to try combinations.

e.g., MPLS networks or 
Segment Routing networks

Support arbitrary header sizes!

Reachability, loop-
freedom, 

waypointing, etc.!
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MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2
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out2
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20
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• MPLS: forwarding based on top label of label stack
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MPLS Networks: 1 Failure
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MPLS Networks: 1 Failure
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One failure: push 30: 
route around (v2,v3)

If (v2,v3) failed, 
push 30 and 

forward to v6.

Pop

Normal 
swap

What about multiple link failures?

• MPLS: forwarding based on top label of label stack
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MPLS Networks: 2 Failures
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one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 
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(v7,v3,v8) could be shortcut 
to (v7,v8). 

More efficient but also more complex!
How complex?



Failover Tables

Flow Table

Protected 
link

Alternative 
link

Label

Forwarding Tables for Our Example
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MPLS configurations, 
Segment Routing etc.

Pushdown
Automaton and Prefix 

Rewriting Systems 
Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Polynomial-Time Verification:
An Automata-Theoretic Approach
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Polynomial-Time Verification:
An Automata-Theoretic Approach

MPLS configurations, 
Segment Routing etc.

Pushdown
Automaton and Prefix 

Rewriting Systems 
Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!
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Questions with Answers in 
Polynomial Time

Interface Connectivity Problem

• Can a packet arriving at interface A with 
label-stack header h reach an interface 
B?

• Does the route avoid a given set of 
nodes?

• Will the packet always traverse a given 
waypoint?

• What subset of headers guarantees that 
a given interface is not reachable under 
at most k link failures?

• And everything for up to k failures!

A

B

C: with firewall

Waypoint: 
use!

D

Blacklisted: 
avoid

Push/pop/
swap

Label stack:
5|12|4
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Questions with Answers in 
Polynomial Time

Transparency

• MPLS: transit networks!

• Will a packet with empty label-
stack arriving at ingress interface 
A always leave at egress interface 
B also with the empty label-stack?

• Also under k failures?
A

B

Label stack:
empty?

Label stack:
empty

Cyclic and repeated routing

• Will some server receive a given 
packet more than r-times during 
the routing?

• What is the max stack size during 
the routing?

• Under failures as well…

A

B

Label stack:

size?
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Our Approach

The clue: exploit the specific structure of MPLS rules

• OpenFlow rules: arbitrary rewriting

Header size 
not fixed!

vs

in x L* → out x L*

• (Simplified) MPLS rules: prefix rewriting

FT: in x L → out x OP, where OP = {swap,push,pop}

FFT: out x L → out x OP, where OP = {swap,push,pop}

14



• A general network

A Network Model

Nodes

Links

Incoming 
interfaces

Outgoing 
interfaces

Set of labels in 
packet header

15



Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is:                               and

A Network Model

• A general network

Interface 
function

16



Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers. 

A Network Model

• A general network

Routing 
function

17



Packet routing sequence can be represented using tuples:

Routing in Network

• Packet routing is then (in)finite sequence of tuples

Node 
receives…

… on interface…

… packet 
with header…

… forwards it to
live next hop…

… with new header..

… given that these 
links are down.

18



MPLS Network Model

• MPLS supports three operations on header sequences:

• The local routing table can then be defined as

• Local link protection function suggests backup interface

protected backup typically: 
push

Interface + 
label

Maps to next hop
and operation

19



• Prefix rewriting system is called pushdown system if

and for all 

MPLS Pushdown Prefix Rewriting System

First symbol of v and w: 
control state of 

pushdown system. 

Second symbol of v: 
top of stack label.

push
swap

pop

Replace prefix

20

• Prefix rewriting system is set of rewriting rules

•We write for generates a transition system          

such that iff



MPLS Pushdown Prefix Rewriting System

• Control states:             and

• Labels: stack symbols and at bottom

• Packet with header arriving at interface in at  

represented as pushdown configuration:

• Packet to be forwarded at node to outgoing interface

represented by configuration: 

How many times have we tried to
reroute at this node already?

21

Node and incoming link



Pop:

Example Rules: 
Regular Forwarding on Top-Most Label

Push label on stack

Swap top of stack

Pop top of stack

Push:

Swap:

22



Failover-Push:

Example Failover Rules 
Emumerate all 

rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first
backup

Try second
backup 23



Why Polynomial Time?!

• Arbitrary number k of failures: 
How can I avoid checking all (𝑛

𝑘
)

many options?!  

• Even if we reduce to push-down 
automaton: simple operations
such as emptiness testing or
intersection on Push-Down 
Automata (PDA) is
computationally non-trivial and 
sometimes even undecidable!

k failures = 

(
𝑛
𝑘
) possibilities

24
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we will use the PDA!
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Why Polynomial Time?!

k failures = 

(
𝑛
𝑘
) possibilities
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The words in our language are sequences of pushdown 
stack symbols, not the labels of transitions.

The Clue: this is not how 
we will use the PDA!

• Arbitrary number k of failures: 
How can I avoid checking all (𝑛

𝑘
)

many options?!  

• Even if we reduce to push-down 
automaton: simple operations
such as emptiness testing or
intersection on Push-Down 
Automata (PDA) is
computationally non-trivial and 
sometimes even undecidable!



Time for Automata Theory!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all 
reachable configurations of a pushdown
automaton a is regular set

• Hence, we can operate only on 
Nondeterministic Finite Automata (NFAs)
when reasoning about the pushdown 
automata

• The resulting regular operations are all 
polynomial time 

• Important result of model checking
25



Question: Beginning with an empty
header [], can we get from s1 to s7 in any 
number of steps, and end with an empty 
header []?

Query: []s1 >> s7[]

Output: Yes and witness 
trace (excerpt)

Preliminary Query Language: Example

26

Take multiple 
steps

Empty 
header

!

!
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Down!

YES!push

pop

swap swap swap

Traversal test: Can traffic starting with [] go through s3, under up to k=1 failures?

Query: k=1 [] s1 >> s3 >> s7 []

1 failure

Example 2: Traversal Testing
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Example 3: Traversal with 2 Failures

Traversal test with k=2: Can traffic go through s5, under up to k=2 failures?

2 failures

push

push

stack
size!

pop

pop

YES!

Query: k=2 [] s1 >> s5 >> s7 []
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Example 4: Transparency Violation

Transparency with k=3: Can transparency be violated under up to k=3 failures?

3 failures

Root cause is a 
misconfiguration in 
s5, causing it to swap 
to 11 instead of 
popping when doing 
the failover on s5-s4.

empty non-empty

YES!

Query: k=3 [] s1 >> s7 [+]



Preliminary Tool

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability 
analysis of 
constructed PDS

•Using Moped tool

30



Preliminary Evaluation

For small queries fast: 1000s of links, within seconds

Bottleneck are
large queries

100,000s

secs1000s

31

# failures 
affects
performance
only linearly!



Summary

• Polynomial-time verification of MPLS reachability and policy-
related properties like waypointing

• For arbitrary number of failures (up to linear in n)!

• Supports arbitrary header sizes („infinite“) 

• Also allows to compute headers which do (not) fulfill a property

• Allows to support a constant number of stateful nodes as well

• Extends to Segment Routing networks based on MPLS (SR-MPLS)

• Leveraging theory from Prefix Rewriting Systems and Büchi‘s
classic result
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Future Work

• Other networks and properties which can be verified in 
polynomial time?

• Good tradeoff expressiveness vs polynomial-time 
verifiability? 

• We‘re looking for industrial case studies and collaborations

Thank you! Questions?

33



Further Reading
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, 
Hawaii, USA, April 2018.

WNetKAT: A Weighted SDN Programming and Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of Distributed Systems (OPODIS), 
Madrid, Spain, December 2016.

TI-MFA: Keep Calm and Reroute Segments Fast
Klaus-Tycho Foerster, Mahmoud Parham, Marco Chiesa, and Stefan Schmid.
IEEE Global Internet Symposium (GI), Honolulu, Hawaii, USA, April 2018.

Local Fast Failover Routing With Low Stretch
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
ACM SIGCOMM Computer Communication Review (CCR), 2018.

34

https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf
https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf
https://net.t-labs.tu-berlin.de/~stefan/gi18.pdf
https://net.t-labs.tu-berlin.de/~stefan/ccr18failover.pdf

