
Polynomial-Time What-If Analysis for
Prefix-Manipulating MPLS Networks

Stefan Schmid
University of Vienna, Austria

Jiri Srba
Aalborg University, Denmark

… and Segment Routing!
...

Polynomial-Time What-If Analysis for
Prefix-Manipulating MPLS Networks

Stefan Schmid
University of Vienna, Austria

Jiri Srba
Aalborg University, Denmark

Teaser: Can we verify reachability under k failures

without trying exponentially many options?

Yes. MUCH FASTER!

An Automata-Theoretic

Approach.

Polynomial-Time What-If Analysis for
Prefix-Manipulating MPLS Networks

Stefan Schmid
University of Vienna, Austria

Jiri Srba
Aalborg University, Denmark

Kudos to collaborators:
Jesper Stenbjerg Jensen, Jonas Sand Madsen, Troels Beck Krøgh
at Aalborg University, Denmark

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Credits: Nate Foster

Datacenter, enterprise, carrier networks: mission-critical infrastructures.
But even techsavvy companies struggle to provide reliable operations.

Configuring Networks is Hard…

1

Example: BGP in
Datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
at

ac
e

n
te

r
… Especially Under Failures

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

C

A

D

B

X Y

G

E

H

F

Internet

… Especially Under Failures

Cluster with
services that

should be globally
reachable.

Cluster with services
that should be
accessible only

internally.

G1 G2 P1 P2

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

C

A

D

B

X Y

G

E

H

F

Internet

… Especially Under Failures
X and Y announce to

Internet what is from G*
(prefix).

X and Y block what is
from P*.

G1 G2 P1 P2

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

C

A

D

B

X Y

G

E

H

F

Internet

… Especially Under Failures

G1 G2 P1 P2

What can go wrong?

X and Y announce to
Internet what is from G*

(prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

Example: BGP in
Datacenter

D
at

ac
e

n
te

r

C

A

D

B

X Y

G

E

H

F

Internet

… Especially Under Failures

G1 G2 P1 P2

X

If link (G,X) fails and traffic from G is rerouted
via Y and C to X: X announces (does not block)

G and H as it comes from C. (Note: BGP.)

X and Y announce to
Internet what is from G*

(prefix).

X and Y block what is
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 2

Network Administration Today

• Many forwarding tables with many rules,
distributed across network

• Sysadmin responsible for:

• Reachability: Can traffic from ingress port
A reach egress port B?

• Loop-freedom: Are the routes implied by
the forwarding rules loop-free?

• Non-reachability: Is it ensured that traffic
originating from A never reaches B?

• Waypoint ensurance: Is it ensured that
traffic from A to B is always routed via a
node C (e.g., a firewall)?

Policy ok?

A

B

C

3

Network Administration Today

• Many forwarding tables with many rules,
distributed across network

• Sysadmin responsible for:

• Reachability: Can traffic from ingress port
A reach egress port B?

• Loop-freedom: Are the routes implied by
the forwarding rules loop-free?

• Non-reachability: Is it ensured that traffic
originating from A never reaches B?

• Waypoint ensurance: Is it ensured that
traffic from A to B is always routed via a
node C (e.g., a firewall)?

A

B

C

Policy ok?

3

Network Administration Today

• Many forwarding tables with many rules,
distributed across network

• Sysadmin responsible for:

• Reachability: Can traffic from ingress port
A reach egress port B?

• Loop-freedom: Are the routes implied by
the forwarding rules loop-free?

• Non-reachability: Is it ensured that traffic
originating from A never reaches B?

• Waypoint ensurance: Is it ensured that
traffic from A to B is always routed via a
node C (e.g., a firewall)?

• … even under (multiple) failures!

What if...?!

A

B

C

3

Network Administration Today

• Many forwarding tables with many rules,
distributed across network

• Sysadmin responsible for:

• Reachability: Can traffic from ingress port
A reach egress port B?

• Loop-freedom: Are the routes implied by
the forwarding rules loop-free?

• Non-reachability: Is it ensured that traffic
originating from A never reaches B?

• Waypoint ensurance: Is it ensured that
traffic from A to B is always routed via a
node C (e.g., a firewall)?

• … even under (multiple) failures!

A

B

C

k failures =

(
𝑛
𝑘
) possibilities

3

The Good News

• Networks are becoming more programmable and
logically centralized, have open interfaces, …

• … are based on formal foundations…

• … researchers develop high-level specification
languages such as NetKAT.

Enables a more automated network operation and verification!

4

The Bad News

• For many traditional networks (still predominant!),
such benefits are not available yet

• Many existing tools cannot deal with failures

• Super-polynomial runtime, verification PSPACE-hard

• Other limitations: e.g., fixed header size

4

Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.
Self-loop: could be

replaced by “dummy
switch”.

5

Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.
Idea: packet header stores

Turing machine configuration
(tape, head, state).

5

Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.

Switch action: each time packet
arrives, performs one Turing

machine step and updates header.

5

Tractability of Verification

in out

in’ out’

Reachability is undecidable in SDN:

Can emulate a Turing machine.
Only if accept or reject,

forwarded to out. Is it ever
reached?

Undecidable!

5

Our Contribution

6

Polynomial-Time What-if Analysis
for Prefix Rewriting Networks

Our Contribution

Polynomial-Time What-if Analysis
for Prefix Rewriting Networks

Independently of the
number of failures! No need

to try combinations.

e.g., MPLS networks or
Segment Routing networks

Support arbitrary header sizes!

Reachability, loop-
freedom,

waypointing, etc.!

6

MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

7

MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stackpush swap swap pop

pop

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

7

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22

MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

7

MPLS Networks: 1 Failure

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22 Default routing of
two flows

• For failover: push and pop label

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

• MPLS: forwarding based on top label of label stack
10
20

11
21

8

MPLS Networks: 1 Failure

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22 Default routing of
two flows

• For failover: push and pop label

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

If (v2,v3) failed,
push 30 and

forward to v6.

Pop

Normal
swap

• MPLS: forwarding based on top label of label stack

8

MPLS Networks: 1 Failure

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

10
20

11
21 12

22 Default routing of
two flows

• For failover: push and pop label

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

If (v2,v3) failed,
push 30 and

forward to v6.

Pop

Normal
swap

What about multiple link failures?

• MPLS: forwarding based on top label of label stack

8

MPLS Networks: 2 Failures

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

MPLS Networks: 2 Failures

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

MPLS Networks: 2 Failures

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

More efficient but also more complex!
How complex?

Failover Tables

Flow Table

Protected
link

Alternative
link

Label

Forwarding Tables for Our Example

10

MPLS configurations,
Segment Routing etc.

Pushdown
Automaton and Prefix

Rewriting Systems
Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Polynomial-Time Verification:
An Automata-Theoretic Approach

11

Polynomial-Time Verification:
An Automata-Theoretic Approach

MPLS configurations,
Segment Routing etc.

Pushdown
Automaton and Prefix

Rewriting Systems
Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

11

Questions with Answers in
Polynomial Time

Interface Connectivity Problem

• Can a packet arriving at interface A with
label-stack header h reach an interface
B?

• Does the route avoid a given set of
nodes?

• Will the packet always traverse a given
waypoint?

• What subset of headers guarantees that
a given interface is not reachable under
at most k link failures?

• And everything for up to k failures!

A

B

C: with firewall

Waypoint:
use!

D

Blacklisted:
avoid

Push/pop/
swap

Label stack:
5|12|4

12

Questions with Answers in
Polynomial Time

Transparency

• MPLS: transit networks!

• Will a packet with empty label-
stack arriving at ingress interface
A always leave at egress interface
B also with the empty label-stack?

• Also under k failures?
A

B

Label stack:
empty?

Label stack:
empty

Cyclic and repeated routing

• Will some server receive a given
packet more than r-times during
the routing?

• What is the max stack size during
the routing?

• Under failures as well…

A

B

Label stack:

size?

13

Our Approach

The clue: exploit the specific structure of MPLS rules

• OpenFlow rules: arbitrary rewriting

Header size
not fixed!

vs

in x L* → out x L*

• (Simplified) MPLS rules: prefix rewriting

FT: in x L → out x OP, where OP = {swap,push,pop}

FFT: out x L → out x OP, where OP = {swap,push,pop}

14

• A general network

A Network Model

Nodes

Links

Incoming
interfaces

Outgoing
interfaces

Set of labels in
packet header

15

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is: and

A Network Model

• A general network

Interface
function

16

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

A Network Model

• A general network

Routing
function

17

Packet routing sequence can be represented using tuples:

Routing in Network

• Packet routing is then (in)finite sequence of tuples

Node
receives…

… on interface…

… packet
with header…

… forwards it to
live next hop…

… with new header..

… given that these
links are down.

18

MPLS Network Model

• MPLS supports three operations on header sequences:

• The local routing table can then be defined as

• Local link protection function suggests backup interface

protected backup typically:
push

Interface +
label

Maps to next hop
and operation

19

• Prefix rewriting system is called pushdown system if

and for all

MPLS Pushdown Prefix Rewriting System

First symbol of v and w:
control state of

pushdown system.

Second symbol of v:
top of stack label.

push
swap

pop

Replace prefix

20

• Prefix rewriting system is set of rewriting rules

•We write for generates a transition system

such that iff

MPLS Pushdown Prefix Rewriting System

• Control states: and

• Labels: stack symbols and at bottom

• Packet with header arriving at interface in at

represented as pushdown configuration:

• Packet to be forwarded at node to outgoing interface

represented by configuration:

How many times have we tried to
reroute at this node already?

21

Node and incoming link

Pop:

Example Rules:
Regular Forwarding on Top-Most Label

Push label on stack

Swap top of stack

Pop top of stack

Push:

Swap:

22

Failover-Push:

Example Failover Rules
Emumerate all

rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first
backup

Try second
backup 23

Why Polynomial Time?!

• Arbitrary number k of failures:
How can I avoid checking all (𝑛

𝑘
)

many options?!

• Even if we reduce to push-down
automaton: simple operations
such as emptiness testing or
intersection on Push-Down
Automata (PDA) is
computationally non-trivial and
sometimes even undecidable!

k failures =

(
𝑛
𝑘
) possibilities

24

Why Polynomial Time?!

k failures =

(
𝑛
𝑘
) possibilities

24

The Clue: this is not how
we will use the PDA!

• Arbitrary number k of failures:
How can I avoid checking all (𝑛

𝑘
)

many options?!

• Even if we reduce to push-down
automaton: simple operations
such as emptiness testing or
intersection on Push-Down
Automata (PDA) is
computationally non-trivial and
sometimes even undecidable!

Why Polynomial Time?!

k failures =

(
𝑛
𝑘
) possibilities

24

The words in our language are sequences of pushdown
stack symbols, not the labels of transitions.

The Clue: this is not how
we will use the PDA!

• Arbitrary number k of failures:
How can I avoid checking all (𝑛

𝑘
)

many options?!

• Even if we reduce to push-down
automaton: simple operations
such as emptiness testing or
intersection on Push-Down
Automata (PDA) is
computationally non-trivial and
sometimes even undecidable!

Time for Automata Theory!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all
reachable configurations of a pushdown
automaton a is regular set

• Hence, we can operate only on
Nondeterministic Finite Automata (NFAs)
when reasoning about the pushdown
automata

• The resulting regular operations are all
polynomial time

• Important result of model checking
25

Question: Beginning with an empty
header [], can we get from s1 to s7 in any
number of steps, and end with an empty
header []?

Query: []s1 >> s7[]

Output: Yes and witness
trace (excerpt)

Preliminary Query Language: Example

26

Take multiple
steps

Empty
header

!

!

27

Down!

YES!push

pop

swap swap swap

Traversal test: Can traffic starting with [] go through s3, under up to k=1 failures?

Query: k=1 [] s1 >> s3 >> s7 []

1 failure

Example 2: Traversal Testing

28

Example 3: Traversal with 2 Failures

Traversal test with k=2: Can traffic go through s5, under up to k=2 failures?

2 failures

push

push

stack
size!

pop

pop

YES!

Query: k=2 [] s1 >> s5 >> s7 []

29

Example 4: Transparency Violation

Transparency with k=3: Can transparency be violated under up to k=3 failures?

3 failures

Root cause is a
misconfiguration in
s5, causing it to swap
to 11 instead of
popping when doing
the failover on s5-s4.

empty non-empty

YES!

Query: k=3 [] s1 >> s7 [+]

Preliminary Tool

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability
analysis of
constructed PDS

•Using Moped tool

30

Preliminary Evaluation

For small queries fast: 1000s of links, within seconds

Bottleneck are
large queries

100,000s

secs1000s

31

failures
affects
performance
only linearly!

Summary

• Polynomial-time verification of MPLS reachability and policy-
related properties like waypointing

• For arbitrary number of failures (up to linear in n)!

• Supports arbitrary header sizes („infinite“)

• Also allows to compute headers which do (not) fulfill a property

• Allows to support a constant number of stateful nodes as well

• Extends to Segment Routing networks based on MPLS (SR-MPLS)

• Leveraging theory from Prefix Rewriting Systems and Büchi‘s
classic result

32

Future Work

• Other networks and properties which can be verified in
polynomial time?

• Good tradeoff expressiveness vs polynomial-time
verifiability?

• We‘re looking for industrial case studies and collaborations

Thank you! Questions?

33

Further Reading
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu,
Hawaii, USA, April 2018.

WNetKAT: A Weighted SDN Programming and Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of Distributed Systems (OPODIS),
Madrid, Spain, December 2016.

TI-MFA: Keep Calm and Reroute Segments Fast
Klaus-Tycho Foerster, Mahmoud Parham, Marco Chiesa, and Stefan Schmid.
IEEE Global Internet Symposium (GI), Honolulu, Hawaii, USA, April 2018.

Local Fast Failover Routing With Low Stretch
Klaus-Tycho Foerster, Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
ACM SIGCOMM Computer Communication Review (CCR), 2018.

34

https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf
https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf
https://net.t-labs.tu-berlin.de/~stefan/gi18.pdf
https://net.t-labs.tu-berlin.de/~stefan/ccr18failover.pdf

