
Network Slicing: Predictable Performance in Unpredictable Environment?

Stefan Schmid (University of Vienna, Austria)



The Promise: Network Slicing

• Flexible resource allocation: where and when most useful…

• … while providing isolation!

• Often: leveraging virtualization.

1



Workload 1

Realization and Embedding

Virtualization and Isolation

Quality-of-Service
& Resource
Requirements

Computational
& Storage
Requirements

Workload 2

2



This Talk: 3 Challenges

• Embedding slices resource-efficiently is an open challenge

• But perhaps our model is wrong anyway? Practical challenges

• Performance isolation is one thing, security another

3



Challenge 1: Embedding

• Embedding problems are often NP-hard

• Possible solutions:

– Exact exponential algorithms, e.g., formulate Mixed Integer Program (MIP)

– Polynomial-time approximation algorithms, e.g., randomized rounding

Slice/VNet/Guest Hard in many ways:

– Minimum Linear Arrangement
(min sum embedding on a line)

– Subgraph isomorphism (cost=1 
per virtual link: subgraph)

– Endpoints fixed: disjoint paths

4



?

Formulating a Fast MIP

5



Formulating a Fast MIP
• Recall: Mixed Integer Program (MIP)

– Linear objective function (e.g., minimize embedding footprint)
– Linear constraints (e.g., do not violate capacity constraints)

• Solved, e.g., with branch-and-bound search tree Initially: no variables set

subset of variables set

all variables set: infeasible, 
feasible, optimal? 

Usual procedure:

5



Formulating a Fast MIP

Usual procedure:

Assume: best
feasible so far!

Assume: best
(still unknown)

Assume: already
explored, subset
of variables set

• Recall: Mixed Integer Program (MIP)
– Linear objective function (e.g., minimize embedding footprint)
– Linear constraints (e.g., do not violate capacity constraints)

• Solved, e.g., with branch-and-bound search tree

5



Formulating a Fast MIP

Usual procedure: Decide: Is it worth 
exploring subtree?!

• Recall: Mixed Integer Program (MIP)
– Linear objective function (e.g., minimize embedding footprint)
– Linear constraints (e.g., do not violate capacity constraints)

• Solved, e.g., with branch-and-bound search tree

5



• Recall: Mixed Integer Program (MIP)
– Linear objective function (e.g., minimize embedding footprint)
– Linear constraints (e.g., do not violate capacity constraints)

• Solved, e.g., with branch-and-bound search tree

Formulating a Fast MIP

Usual procedure:

Usual trick: Relax! Solve LP (fast!), 
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

5



• Recall: Mixed Integer Program (MIP)
– Linear objective function (e.g., minimize embedding footprint)
– Linear constraints (e.g., do not violate capacity constraints)

• Solved, e.g., with branch-and-bound search tree

Formulating a Fast MIP

Usual procedure:

Usual trick: Relax! Solve LP (fast!), 
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

Bottomline: If MIP provides «good
relaxations», large parts of the
search space can be pruned.

5



MIP: A Formulation
• „Usual MIP“ 

– Binary variables map(v,s) to
map virtual node v to
substrate node s

– Introduce flow variables for
paths

– Ensure flow conservation: all 
flow entering a node must 
leave the node, unless source
or destination

v

s

Σu->v fuv = Σv->w fvw

In Out 6



What will happen in this case?

em
b

ed
d

in
g?

v1

v2

s1

s2

7



What will happen in this case?

v1

v2

s1

s2

map(v1, s1)=.5

map(v2, s2)=.5

7



What will happen in this case?

v1

v2

map(v1, s1)=.5

map(v2, s2)=.5

v1

v1

v2

v2

flow = 0

flow = 0

Minimal flow = 0: fulfills flow conservation but relaxation useless! 
Does not provide any lower bound or indication of good mapping! 7



What will happen in this case?

v1

v2

map(v1, s1)=.5

map(v2, s2)=.5

v1

v1

v2

v2

flow = 0

flow = 0

Minimal flow = 0: fulfills flow conservation but relaxation useless! 
Does not provide any lower bound or indication of good mapping!

The MIP 
formulation

matters!

7



Another Approach: Approximation

• MIPs take super-polynomial time in worst case

• Alternative: polynomial-time approximation

• E.g., randomized rounding:
– Formulate MIP resp. ILP
– Compute relaxation: relaxed solutions are linear combinations of 

elementary solutions
– Probabilistically choose any of the elementary solutions based on their 

weights

8



Idea: Approx Using MCF Formulation 

For example, VNEP based
on standard Multi-
Commodity Flow (MCF) 
formulation

9



Randomized Rounding Can Fail

• Good news: works on line and tree requests

– E.g., approximate service chain embeddings

– Apply Raghavan and Thompson 

• Bad news: for requests which are not acyclic, the integrality gap can
be infinite and the problem not decomposable
– LP solutions to classic MCF formulation can no longer be decomposed into

convex combinations of valid mappings

10



Randomized Rounding Can Fail

u1

u6 u2

u4

u5 u3

VNet/Slice
Host

em
b

ed
d

in
g?

i

k j

11



Randomized Rounding Can Fail

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Valid LP solution: virtual node 
mappings sum to 1 and each virtual 
node connects to its neighboring 
node with half a unit of flow…

12



Randomized Rounding Can Fail

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Partial 
Decomposition

Impossible to decompose and extract any single valid mapping. 
Intuition: Node i is mapped to u1 and the only neighboring node that
hosts j is u2, so i must be fully mapped on u1 and j on u2. Similarly, k 
must be mapped on u3. But flow of virtual edge (k,i) leaving u3 only
leads to u4, so i must be mapped on both u1 and u4. This is impossible.

12



Randomized Rounding Can Fail

u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

u1

u6 u2

u4

u5 u3

Relaxations of classic MCF formulation cannot be decomposed into convex
combinations of valid mappings (so we need different formulations!)

Partial 
Decomposition

Solution for cactus graphs: first compute acyclic orientations such 

that per cycle at most one node has more than one incoming edge

(„anchor“). Then make multiple MIPs (based on MCF formulation), 

one for each cycle component. 

Challenge: How to devise a Linear Programming formulations, such 

that convex combinations of valid mappings can be recovered? 

12



Challenge 2: Model
How good are your models anyway?!

• Predictable performance is about more than just bandwidth reservation

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

13An Experiment: 2 vSDNs with bw guarantee! 



Models Must Be More Complex

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

To enable multi-tenancy, 
need network hypervisor: 

provides network
abstraction and control

plane translation!

13An Experiment: 2 vSDNs with bw guarantee! 



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Intercepts control
plane messages. 

An Experiment: 2 vSDNs with bw guarantee! 

Models Must Be More Complex

13



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee! 

Models Must Be More Complex

13



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

The network hypervisor can be source 
of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee! 

Models Must Be More Complex

13



SDN Network Hypervisor

vSDN-1
controller

vSDN-2
controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

Models Must Be More Complex

13



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

Need to Know Your Network Hypervisor

14



Challenge 3: Security

• Performance isolation between slices is essential for providing a 
predictable performance 

• Can be achieved using virtualization

• However, isolation between slices is also crucial for security

15



Virtual Switches are Complex, e.g.: 
(Unified) Packet Parsing

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

16



A Threat: Packet Parser

• More and more complex (unified parsing for speed)

• Faces the attacker: first component to receive adversarial inputs

• Virtual switches run with high security privileges

• Case study: 
– Fuzzing 2% of OVS code

– Bugs e.g. in MPLS

17



• Issue 1: Increases attack surface and moves it closer to adversary

• Issue 2: Cheap to exploit
– Use some standard fuzzer to find bugs

– Rent a VM in the cloud (low cost!)

• Issue 3: Huge impact
– Collocation: Do to virtualization, can attack collocated applications

– Logical Centralization: Can spread a worm, e.g., over logically centralized controller

Discussion

New threat model: The vAMP Attack
18



Compromising the Cloud

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

19



User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

1

2

3

3

Compromising the Cloud

19



Conclusion

• Challenge 1: Fast algorithms for slice resource allocation

• Challenge 2: Good models

• Challenge 3: Security

20



Further Reading
• Hardness of embedding:

• Randomized rounding and decomposability:

• Modeling and hypervisor interference:

• Isolation and security:

Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

Virtual Network Embedding Approximations: Leveraging Randomized Rounding
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

Logically Isolated, Actually Unpredictable? Measuring Hypervisor Performance in Multi-Tenant SDNs
Arsany Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. ArXiv Technical Report, May 2017.

Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, 
and Stefan Schmid. ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.

The vAMP Attack: Taking Control of Cloud Systems via the Unified Packet Parser
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, 
and Stefan Schmid. 9th ACM Cloud Computing Security Workshop (CCSW), collocated with ACM CCS, Dallas, 
Texas, USA, November 2017.

https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/sosr18.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ccsw17.pdf

