#### On the power of preprocessing in decentralized network optimisation

Klaus-Tycho Foerster, University of Vienna Juho Hirvonen, Aalto University Stefan Schmid, University of Vienna Jukka Suomela, Aalto University

**INFOCOM 2019, Paris, France** 





Everybody's favourite network topology, the ring



Problem: 2-coloring

#### Locality: 2-coloring



Each computer must decide its own color

#### Locality: 2-coloring



#### Each computer must decide its own color



Once a color is fixed, it is propagated

#### Locality: 3-coloring



What if we have one extra color?

## Locality

- 2-coloring a ring is inherently *global*: each node must see the whole network in order to decide its color
- 3-coloring a ring is inherently *local:* a greedy approach works, nodes need only to avoid the colors of their neighbors

#### We want to understand the **locality** of problems

#### This talk

**Theory warning!** 

- 1. Modelling the concept of **locality**
- 2. Recent developments in theoretical understanding
- 3. Transferring the understanding to the context of networking (e.g. *distributed SDN control plane*)



# Modelling and undestanding locality

# Modeling locality

- LOCAL model of Linial (SICOMP, 1992)
- Model locality by *abstracting away* other aspects of distributed computing
  - Synchronous communication rounds
  - Unbounded messages
  - Free of faults, crashes, byzantine behavior
  - Static network, no dynamic changes



- In T synchronous rounds flooding collects all information inside T-hop neighbourhood
  - In particular, no information outside the T-hops!

#### time = distance



#### Complexity

= number of communication rounds (time)= radius of each node's view (distance)

#### time = distance

#### Locality of some problems

- Classic symmetry breaking problems are *local*: MIS, MM, (Δ+1)-coloring in O(Δ + log\* n) rounds\*
- 2-coloring, MST, spanners, leader election are *global*, require diameter time
- optimization, new "intermediate" problems in polylog in n time
- everything in diameter time

 $\Delta$  = maximum degree log\* (number of atoms in the observable universe) = 5

## Algorithmic model?

Asynchronous: use synchronisers

*Limited bandwidth:* algorithms often don't abuse this (e.g. *coloring, network decomposition* with O(log n)-bit messages)

*Fault-tolerance:* efficient distributed algorithms stabilise quickly after faults, dynamic changes

However, e.g. triangle detection trivial in LOCAL

## Impossibility results

- **Powerful model** implies very general **negative results** 
  - Results apply in the presence of congestion, faults, asynchrony, byzantine behaviour, ...
- Upper bounds show whether tasks are locality constrained

## Impossibility results

- **Powerful model** implies very general **negative results**
- A number of *recent developments* 
  - Simulation speedup for intermediate problems (Brandt et al., STOC 2016)
  - Simulation gap and derandomization (Chang et al., FOCS 2016)
  - SLOCAL-completeness (Ghaffari et al., STOC 2017)
  - Derandomization (Ghaffari et al., FOCS 2018)
  - Simulation speedup for maximal matching (Balliu et al., 2019)

#### Locally checkable labellings



## Locality, networking, preprocessing

# Modelling locality in networking

- We study a particular model, the supported LOCAL model of Schmid and Suomela (HotSDN, 2013)
- Inspiration e.g. a distributed control plane in SDN
  - The physical network known in advance
  - The global logical state of the network unknown
- Also a study on the **power of preprocessing**

### Supported LOCAL



*support* = graph **known** to all nodes

## Supported LOCAL



network, logical graph = **subgraph** of the support

# Supported LOCAL

- At least as powerful as the LOCAL model
  - The input is a subgraph of the globally and consistently known support
- Are the "removed" edges available for communication?
  - Affects computational power
  - active / passive model

### The Bad, The Good

- Support is not useful in some corner cases
- Let's make a wild assumption: we have some degree of control over the network...
  - We can actually **design** the network?
  - The switches have a **finite** number of ports?

#### Our work

- The support can be used to precompute various useful primitives, e.g.
  - coloring
  - network decomposition
  - spanning tree
- Support particularly useful if it has nice structure

### Coloring

- In networks of e.g. bounded maximum degree, colorings are a useful primitive
- many problems solvable in constant time given a coloring (i.e. independent of the network size)

#### Coloring



#### Coloring



#### Colorings

- Coloring  $\rightarrow$  greedy algorithms (e.g. maximal matching, maximal independent set, ( $\Delta$ +1)-coloring)
- Distance-T coloring → simulate and speed up LOCAL
- **Distance-T coloring** → simulate **SLOCAL**

# Special graph classes

- Support with small chromatic number is useful
- Planar graphs are particularly useful (4-colorable, large degree)
  - Case study: approximation of minimum dominating set
  - Use preprocessing to speed up subroutines in existing distributed algorithms
  - (1+ε)-approximation in constant time

#### Network decomposition



## Network decomposition

- Useful primitive in the case of large degrees (coloring a special case!)
- All edges must be available for communication to be useful (removing edges affects cluster diameter)
- Simulation of the SLOCAL model of Ghaffari et al. (STOC 2016)
  - PSLOCAL-completeness: supported LOCAL closes the gap between randomised and deterministic
  - Symmetry breaking in **polylog time**

# Impossibility in the supported LOCAL

• Example: Hardness of approximation for maximum cut

- 2 vertex labels, edge is *cut*, if endpoints have different labels
- optimum cannot be found in o(log n) rounds
- hard even in the active model with bounded degrees



 Proof sketch: "hide" subgraphs with large and small optima in the support s.t. locally you cannot know which one has been selected

## Concluding

- Understanding of locality in distributed message passing has developed significantly in recent years
- This understanding can be extended to models of networking
  - Lot of work still left!
- Network topology can be designed to improve the locality of distributed algorithms