
SplitCast: Optimizing Multicast Flows in
Reconfigurable Datacenter Networks

Long Luo
University of Electronic Science

and Technology of China
P.R. China

Klaus-Tycho Foerster
Faculty of Computer Science

University of Vienna
Austria

Stefan Schmid
Faculty of Computer Science

University of Vienna
Austria

Hongfang Yu
University of Electronic Science

and Technology of China
P.R. China

Abstract—Many modern cloud applications frequently gen-
erate multicast traffic, which is becoming one of the primary
communication patterns in datacenters. Emerging reconfigurable
datacenter technologies enable interesting new opportunities to
support such multicast traffic in the physical layer: novel circuit
switches offer high-performance inter-rack multicast capabilities.
However, not much is known today about the algorithmic
challenges introduced by this new technology.

This paper presents SplitCast, a preemptive multicast schedul-
ing approach that fully exploits emerging physical-layer multicast
capabilities to reduce flow times. SplitCast dynamically reconfig-
ures the circuit switches to adapt to the multicast traffic, account-
ing for reconfiguration delays. In particular, SplitCast relies on
simple single-hop routing and leverages flexibilities by supporting
splittable multicast so that a transfer can already be delivered to
just a subset of receivers when the circuit capacity is insufficient.
Our evaluation results show that SplitCast can reduce flow times
significantly compared to state-of-the-art solutions.

I. INTRODUCTION

With the vast popularity of data-centric applications, it is
expected that datacenter traffic will continue to grow ex-
plosively in the coming decades, pushing today’s datacenter
designs to their limits. Accordingly, we currently witness great
efforts to design innovative datacenter topologies, offering
high throughput at low cost [1]–[8], or even allowing to adjust
networks adaptively, in a demand-aware manner [9]–[11].

A particularly fast-growing communication pattern in dat-
acenters today are multicasts. Data-centric applications in-
creasingly rely on one-to-many communications [12, 13], in-
cluding distributed machine learning [14], applications related
to financial services and trading workloads [15, 16], virtual
machine provisioning [17], pub/sub systems [18], etc. [19, 20].
In many of these applications, multicasts are frequent and
high-volume and are becoming a bottleneck [12, 13, 21]–[23].
For example, in distributed machine learning frameworks, the
training model has to be updated and communicated to all
computation nodes frequently [14]. Despite the wide use of
multicast, there is currently no support among cloud providers
for efficient multicasting: a missed opportunity [12, 21].

Our paper is motivated by emerging optical technologies
which can potentially improve the performance of transfer-
ring multicast flows by supporting in-network multicast on
the physical layer. In particular, recent advancements for
reconfigurable circuit switches (RCS) allow to set up high-
bandwidth port-to-multiport circuit connections which support
adaptive and demand-aware multicasting among top-of-rack
(ToR) switches [11, 13, 22]–[26]. See the example in Fig. 1(a)

Rack 1

…

ToR 1

Rack 2

…

ToR 2

Rack 3

…

ToR 3

Rack 4

…

ToR 4

Packet switching
network

RCS

(a) t=1

Rack 1

…

ToR 1

Rack 2

…

ToR 2

Rack 3

…

ToR 3

Rack 4

…

ToR 4

Packet switching
network

RCS

(b) t=2

Fig. 1. A reconfigurable datacenter network based on a reconfigurable circuit
switch (RCS) allows to enhance the conventional packet switching network
with multicast capabilities: e.g. at time t = 1, RCS supports multicasting ToR
1 to ToRs 3 and 4, at time t = 2, from ToR 2 to ToRs 1, 3 and 4.

for an illustration: in this example, the RCS can be used to
first create a circuit connection to directly multicast data from
ToR 1 to ToRs 3 and 4, after which the RCS is reconfigured to
support multicast from ToR 2 to ToRs 1, 3, and 4 in a demand-
aware manner (see Fig. 1(b)). In general, the possibility to
simultaneously fan out to multiple receiver racks over a single
port-to-multiport circuit connection can greatly improve the
delivery of multicast flows.

However, while this technology is an interesting enabler, we
currently lack a good understanding of how to algorithmically
exploit this technology to optimize multicast communications.
While interesting first approaches such as Blast [22] and
Creek [23] are emerging, these solutions are still limiting in
that they cannot fully use the high capacity of the circuit switch
as they only transfer data as long as a circuit connection can
be created to match all the receivers of a flow.
Motivating Example. Consider the situation shown in Fig. 2,
where there are three multicast flows f1, f2 and f3, each
of unit size. In this example, each node denotes one port of
the circuit switch and connects a ToR. Using the approaches
in [22, 23], the three flows will be delivered one by one: the
output of a circuit (right) can only receive traffic from a single
input (left) on the other side of the circuit, while any two of
these three flows compete for one outport (f1 contends with
f2, f3 at outport R3, R2, respectively, and f2 contends with
f3 at outport R1). Hence, a circuit can be created only for
matching one of the multicast flows at a time, as shown in
Fig. 2(a), resulting in an average flow time (i.e., average of
the multicast flow durations) of two units of time.

However, if just matching the multicasts, we observe that
there are some free ports: an unused optimization opportunity
we want to exploit in this work. For example, R1, R2, R3 in
Fig. 2(a) are unused when f1, f2, f3 are delivered, respectively.

1

In principle, all these ports can be fully used if one splits and
schedules f2 in two steps, each transferring data to one of its
receivers, as shown in Fig. 2(b). This reduces the average flow
time by 16.7%.

f1
f2

f3

R1
R2
R3

(a) Non-splittable multicast

f1
f23

f21
f3

R1
R2
R3

(b) Splittable multicast

Fig. 2. A splittable multicast decreases the average flow time by 16.7%,
compared to a non-splittable multicast.

Problem. This simple example motivates us, in this paper,
to study the opportunities to improve the multicast perfor-
mance by supporting splittable multicasting: multicast data
which can be sent just to a subset of receivers at a time.
Essentially, a circuit connecting an input port to multiple
outports forms a hyperedge and creating port-to-multiport
circuit connections for multicast data produces a hypergraph
matching problem [27]. We are particularly interested in the
splittable multicast matching problem: a sender port/rack is
allowed to match to just a subset of the receiver ports/racks
of a multicast flow at a time.

More specifically, our objective is to design a scheduler
which reconfigures the circuit switch in a demand-aware
manner, in order to minimize multicast flow times. In our
model, a created port-to-multiport circuit allows one ToR to
simultaneously transmit to multiple ToRs at bandwidth bc.
Inter-rack multicast flows arrive in an online manner and have
a certain size, and also need to be transmitted from server to
ToR first via a link with bandwidth bs ≤ bc.
Our Contributions. This paper presents SplitCast, an efficient
scheduler for multicast flows in reconfigrauble datacenter
networks, which leverages splitting opportunities to improve
performance of multicast transfers. By dynamically adjusting
the network topology and supporting splittable multicasting,
SplitCast fully exploits the available infrastructure, reducing
flow times and improving throughput. SplitCast is also simple
in the sense that it relies on segregated routing: similarly to
reconfigurable unicast solutions, routing is either 1-hop along
the reconfigurable circuit switch or along the (static) packet
switching network, but never a combination.

We provide insights into the algorithmic complexity of
a simplified problem variant and present a general problem
formulation. We also show how to tackle the challenges
of splittable flows and how to account for reconfiguration
delays. Our extensive simulations indicate that SplitCast can
significantly outperform state-of-the-art approaches: not only
are the flow times reduced by up to 9× but also the throughput
increased by up to 3×. We will also make our implementation
and experimental results publicly available so as to facilitate
future research and reproducibility1.
Organization. Our paper is organized as follows. We first
provide some algorithmic background to the multicast transfer

1https://github.com/ilongluo/SplitCast.git

problem in §II. We next provide a formulation and motivating
example for the generalized scheduling problem, and discuss
the challenges of splittable multicast scheduling in §III. In §IV,
we present our solution, SplitCast, in detail. After reporting
on simulation results in §V, we review related work in §VI,
and conclude in §VII.

II. BACKGROUND TO THE ALGORITHMIC PROBLEM

Before studying how to reconfigure circuit switches to
optimally serve multicasts online, we first present some back-
ground insights into the fundamental static problem underlying
the design of datacenter topologies optimized for multicasts.

Scheduling. Sun and Ng [23] proved that already the optimal
scheduling of unicast transfers w.r.t. flow time is NP-hard,
via the sum coloring problem. Hence it is NP-hard for both
splittable and unsplittable multicast transfer scheduling.

Achievability. Sundararajan et al. [28] study whether given
rate requirement vectors are achievable in multicast settings.
Herein the question is, if there is a schedule to serve the flow
rates, without unbounded queues. They prove that deciding
achievability is NP-hard, for splittable and unsplittable set-
tings. They also show connections to fractional graph coloring.

Matching. Computing a maximum matching for unicast
transfers can be done in polynomial time, even for general
settings [29]. However, the (unsplittable) multicast matching
problem is essentially a specific hypergraph matching prob-
lem [27]. This connection has also been observed in [22],
where the authors also provide some intuition that “the mul-
ticast matching problem has a similar complexity”. We now
show that the NP-hardness already holds for simple scenarios:

Theorem 2.1: Multicast matching is NP-hard, already in the
unit weight case with at most k = 2 receivers per transfer.

Proof: We use a variant of the 3-dimensional matching
problem for our proof, which is NP-hard as well [30]: Given
a set M ⊆ X × Y × Z, where X,Y, Z are disjoint sets of q
elements each. Does M contain a subset (matching) M ′ s.t.
|M | = q and no two elements in M ′ share a coordinate?

Observe that we can cast (in polynomial time) each such
instance as a multicast matching problem, which will complete
the proof. To this end, we translate M into transfers by setting
X as the sources and Y,Z as the receiver nodes. Now, if q such
transfers can be admitted simultaneously, it directly translates
to a set M ′ of q elements and vice versa.

Moreover, restricting the number of transfers per source turns
the problem tractable, but only to a certain degree:

Theorem 2.2: If each source node appears in at most a single
transfer, the multicast matching problem is polynomial-time
solvable for k = 2 receivers and NP-hard for every k > 2.

Proof: We begin with k = 2. Observe that if we want to
admit a specific transfer, it will only block the usage of the
receiver nodes. The source can never be a conflict, as it only
takes part in at most one transfer. Hence, we can leverage
standard matching algorithms [29] between the receivers to
obtain a maximum result. We investigate k > 2 next.

2

To this end, we consider the case of k = 3, which is
contained in every k > 2. We use the problem of hypergraph
matching for our proof, which is NP-hard to maximize even
when all edges contain exactly 3 nodes [27]. Similarly to the
proof of Theorem 2.1, we cast the hypergraph matching as a
multicast matching, this time with each transfer having exactly
3 receivers, where the source is ignored as for k = 2.
On the other hand, allowing for splittable multicast matchings
expands the number of possible receivers beyond k = 2:

Theorem 2.3: If each source node appears in at most a
single transfer, the splittable multicast matching problem is
polynomial-time solvable for any value of k receivers.

Proof: For this proof we rely on a technique commonly
used for normal matchings in bipartite graphs [31]: by adding
a super-source (connected to all sources) and a super-sink
(connected from all receivers), the bipartite matching problem
can be cast as a directed max-flow problem, where the single-
source/sink property guarantees the existence of an integral
solution. As all edge capacities are unit size, the flow between
sources and receivers corresponds to a maximum matching.

We can directly adapt this technique to splittable multicast
matchings. To this end, we adapt each transfer from a source
si to ki receivers as follows: The edge from the super-source
to si has a capacity of ki and the transfer edge is cast as ki unit
capacity edges, directed from si to each of the ki receivers.

In this setting, the integral max-flow solution guarantees that
each receiver is only part of one admitted transfer, whereas the
capacity of ki to si guarantees that any subset of the single
transfer containing si can be served.

III. PROBLEM, APPROACH AND CHALLENGES

Given the first insights in §II, we now formulate the general
multicast scheduling problem considered in this paper.

A. Problem Statement
We consider a hybrid datacenter including a reconfigurable

circuit switching network and a packet switching network,
recall Fig. 1. We focus on the former that is enabled by the
high-bandwidth circuit switch, as in Blast [22] and Creek [23],
and consider multicast flows that arrive over time and can be
of arbitrary size. Our main goal is to minimize flow time, but
we will also consider a throughput maximization objective.

In our reconfigurable network model, every ToR is directly
connected to the circuit switch via an exclusive port. The
bandwidth of a circuit switch port is generalized to bc, which is
typically multiple times the bandwidth bs of the link between
a server and a ToR. For example, bc can be 10Gbps, 40Gbps,
100Gbps and beyond while bs is 10Gbp [13, 22, 23].

The circuit switch can constantly reconfigure high-speed
port-to-multiport circuit connections between ToRs, but comes
with a reconfiguration delay and stops transmitting data during
the reconfiguration period. Any two circuit connections can
share neither sender port nor receiver ports [8, 13, 22, 23].

A multicast flow f is characterized by a tuple
(sf ,df , vf , t

arr
f), where sf , df , vf , and tarr

f denote the
sender rack, the set of receiver racks, the data volume, and

the release time, respectively. By taking advantage of the
application knowledge, the multicast group membership and
traffic volume is available upon flow arrival [22, 32]. We
assume segregated routing model in this work, where a flow
routed using either a single-hop circuit switching or multihop
packet switching, but not a combination of both [9, 33]. Such
a single-hop segregated routing avoids moving traffic between
the circuit and the packet switching network.

The question is to decide which circuit connections to create
and which flows to transfer over these connections, optimizing
the objective and accounting for the circuit switch constraints.

B. Scheduling Approach: Splittable and Preemptive Multicast

Flows are scheduled epoch by epoch, where in each epoch
the circuit connections and the set of serving flows are fixed.
At the beginning of an epoch, the circuit connections are
determined as well as the flows to be served in this epoch. We
also have to determine the epoch duration in order to properly
trade off reconfiguration overhead against sub-optimal config-
urations. Overall, we adopt splittable and preemptive transfers.

We briefly explain the key idea of our solution and its
advantages over only splittable respectively only preemptive
solutions in Fig. 3. Using splittable transfers, the scheduling
algorithm may transfer data to just a subset of the receivers of
a multicast flow in an epoch. For example, for a flow f2, the
circuit switch may transfer data to its receiver 1 in the first
epoch and its receivers 3, 6 in the second epoch, respectively,
as shown in Fig. 3(b). Additionally, a circuit connection can
transfer multiple matched flows to fully use the capacities.

As the bandwidth (bc) of per circuit switch port is assumed
to be twice the fan-in rate (bs) of each flow, f1 and f4 are
simultaneously transferred over a circuit connecting inport 1
and outports 2 to 6 in the first epoch in Fig. 3(b). Therefore, f1
also reaches the non-receiver ToRs via outports 5, 6. However,
it is necessary to prevent the non-receiver ToRs from further
forwarding f1 to non-destination racks for storage efficiency.
To this end, we install ToR forwarding rules only for the
flows with this rack destination. Hence, the ToRs connecting
outports 5, 6 will directly discard the packets of f1 due to no
matching rule.

Using preemptive transfers, the scheduling algorithm may
reconfigure the circuit connections and reallocate the connec-
tions to the most critical flows before the completion of serving
flows. For example, the circuit switch can be reconfigured with
a delay of 1ms and flow f4 is preempted by f3 and f5 after
the completion of f1 shown in Fig. 3(c). With preemption, the
average flow time (see Fig. 3(f)) is sped up 1.43× over the
splittable but non-preemptive plan shown in Fig. 3(e).

Moreover, by combining splittable and preemptive schedul-
ing (Fig. 3(d)), the average flow time (Fig. 3(g)) can be sped
up 1.74× and 1.22× over the only splittable plan (Fig. 3(b))
and the only preemptive plan (Fig. 3(c)), respectively.

C. Formulations

We now present our formulation for the splittable multicast
problem in an epoch, using the notations shown in Table I.

3

#Flows sender-
receivers

time needs
to complete

f1 1→2,3,4 20ms
f2 5→1,3,6 20ms
f3 3→1,2,5 20ms
f4 1→5,6 100ms
f5 3→1,2,4 40ms

(a) Multicast flows

f1

f4

T1=[1ms, 101ms] T2=[102ms, 142ms]

f2

f3

f5

f2

1

2

3

4

5

6

(b) Plan A: splittable&non-preemptive

f1

f4
f3

f5

f2

T1=[1ms, 21ms] T2=[22ms, 42ms] T4=[64ms, 84ms]

f4

T5=[85ms, 145ms]

f5

T3=[43ms, 63ms]

f4

(c) Plan B: non-splittable&preemptive, e.g., Creek [23]

f1

f4
f3

f5

T1=[1ms, 21ms] T2=[22ms, 42ms]

f4

T3=[43ms, 123ms]

f5

f2
f2

(d) Plan C: splittable&preemptive

21 101 122
reconfiguration

Time(ms)

1

f2
f1

f3
f4
f5

142

(e) Multicast flow times of Plan A

Time(ms)

21 42 63 84 145
reconfiguration

1

f2
f1

f3
f4
f5

(f) Multicast flow times of Plan B

21 42 63 123
reconfiguration

Time(ms)

1

f2
f1

f3
f4
f5

(g) Multicast flow times of Plan C
Fig. 3. Preemptive and splittable scheduling can significantly speed up the flow time, compared to the solutions that are just based on splittable or preemptive.

TABLE I
KEY NOTATIONS USED PROBLEM FORMULATIONS

Network model
n the number of all racks connecting to circuit switch
bs bandwidth of per server NIC port
bc bandwidth of per circuit switch port, bc ≥ bs
δ reconfiguration time of switch circuit

Multicast flow f
sf the sender rack
af,i indicator whether rack i is the sender rack
df the set of receiver racks
vf the (remaining) flow size
tarr
f the arrival time

Internal and decision variables for epoch t
xti,j binary: indicate whether there is a circuit connection destining

to rack j from rack i
wt

f binary: indicate whether flow f is to be scheduled
wt

f,d binary: indicate whether flow f transfers data to its receiver d
θt the time duration of the concerned epoch

Herein, we determine the circuit connections, the flows to-
be-scheduled and the length of a concerned epoch t. We first
point out the constraints of building circuit connections and
of scheduling flows and then formalize the objectives.
Constraints: Constraints (1) express that the output of a
circuit connection can only receive traffic from a single input
on the other side of the circuit. Constraints (2) constrict the
transmission rate of flows from a rack i to the circuit should
not exceed the circuit port bandwidth bc. Constraints (3) state
that a flow f could transfer data to its receiver rack d ∈ df

via the circuit switch only if there is a circuit connection
originating from the sender rack sf to d. Constraints (4)
together with (5) express that a flow f is to be scheduled
as long as at least one of its receivers is to be served.

∀j :
∑
i

xti,j ≤ 1 (1)

∀i :
∑
f

bsaf,iw
t
f ≤ bc (2)

∀f, d ∈ df : wt
f,d ≤ xtsf ,d (3)

∀f : wt
f ≤

∑
d∈df

wt
f,d (4)

∀f, d ∈ df : wt
f ≥ wt

f,d (5)

Objectives: A most fundamental objective is to maximize the
average throughput

max g(wt, θt) =

∑
f

∑
d∈df

min(vtf,d, bsθ
t)wt

f,d

(θt + δ)
(6)∑

f

∑
d∈df

min(vtf,d, bsθ
t)wt

f,d is the total size of data trans-
ferred over the circuit switch in epoch t.

A second important objective is to minimize the flow times.
As we are just planning epoch-by-epoch, we cannot know the
exact flow times of unfinished flows. However, we could know
and optimize the lower bound of the minimum flow times

minh(wt, θt) =
∑
f

∑
d∈df

(I(vtf,d > bsθ
twt

f,d)(θ
t + δ)

+ I(vtf,d < bsθ
twt

f,d)
vtf,d
bs

+ tstart − tarr
f) (7)

where I(vtf,d > bsθ
twt

f,d)(θ
t + δ) is the time experienced by

the receiver d of flow f if it has not finished by the end of
epoch t, and I(vtf,d < bsθ

twt
f,d)

vt
f,d

bs
otherwise. tstart is the

start time of epoch t and tarr
f is the arrival time of flow f .

The above formulations are Integer Linear Programs (ILPs)
for the given epoch length θt. However, if the epoch length
is also subject to optimization, then the objective function
becomes non-linear, introducing additional challenges (see
next subsection).

D. Challenges

Even though the above formulation is linear, solving the
resulting ILP can be time-consuming. Furthermore, we would
like to exploit the flexibility of adapting the epoch lengths
dynamically, and also schedule multicasts over time. However,
we can see that the circuit connections xt, the flow scheduling
decisions wt and the epoch duration θt actually interact with
each other and they together determine the network throughput
and the sum of flow times. This renders it challenging to find
an optimal solution. In addition to the above challenges in the
optimization formulations, there is also a synchronization issue
introduced, as we discuss in more details in the following.

4

Epoch

reconfiguration

d1

d2
d3

1 2 3 4

(a)

X Z Y

X Y Z

Y Z X

impossible

Epoch

reconfiguration

d1

d2
d3

1 2 3 4

(b)
Fig. 4. The challenge of receiver asynchronization: All the receivers of a
splittable flow have not yet received all requested data (see (b)) despite the
equivalent volume of requested data (see (a)).

Let’s consider an illustrative flow f1 with three receivers d1,
d2 and d3 that request three units of data. Assuming that the
circuit switch has unit capacity per port and can only build a
circuit connecting two of the three receivers in the first three
epochs with unit time length, due to one port that has been
taken by other circuit connections. In particular, considering
that a unit of data has been transferred to (d1, d2), (d2, d3),
and (d1, d3) in the first, the second, and the third epoch,
respectively, as shown in Fig. 4(a). When it comes to the fourth
epoch, the circuit switch now can create a circuit connecting all
the receivers. Seemingly, f1 could be completed as d1, d2, d3
will receive three units of data, the total requested data size,
at the end of the fourth epoch.

However, f1 cannot been completed because two receivers
did not receive the data they request in the last epoch. Assume
that the requested data is {X, Y, Z} (each has a unit size)
and that X, Y and Z are transferred in the first, the second
and third epoch, respectively, as illustrated in Fig. 4(b). In the
fourth epoch, as the circuit can only transfer either X or Y or
Z, two receivers cannot receive their lastly requested data. We
refer to this as the receiver asynchronization problem.

When scheduling splittable flows, one should be careful to
handle receiver asynchronization to ensure that every multicast
receiver obtains all requested data, which is challenging in
general. A naive solution is to partition the receivers of a flow
into multiple non-neighboring subsets, consider each subset
of receivers together with the sender as a subflow and inde-
pendently scheduled these subflows without allowing further
splitting during the transmission. However, such a premature
fixed partition cannot adapt to the traffic dynamics, and it is
difficult to determine an optimal partition in advance [34].

IV. SPLITCAST: OPTIMCAL MULTICAST SCHEDULING
OVER RECONFIGURABLE NETWORKS

Given the motivation and challenges discussed above, we
are now ready to present details of our scheduler, SplitCast.
SplitCast solves the multicast scheduling problem in reconfig-
urable datacenter networks, in an online and efficient manner.
Overview. In a nutshell, SplitCast works in an epoch by epoch
manner. At the beginning of an epoch, SplitCast creates the
circuit connections, chooses the flows to be transferred and
determines the time duration of the epoch. SplitCast chooses
the to-be-served flows and creates circuit connections in a
hierarchical fashion, see the pseudo-code in Alg. 1. It firstly
picks the flows where all receivers can be served without
splitting and creates the circuit connections that match them
(line 1, Alg. 1), and then determines the epoch duration

according to the picked flows (line 2, Alg. 1). Subsequently,
SplitCast searches for more flows where subsets of their
receivers can be served by employing or extending the created
circuit connections (line 3, Alg. 1).

A. Creating Circuit Connections and Scheduling Flows

In our algorithm, a circuit configuration is modeled as a
directed hypergraph H , where each node denotes a rack and
each directed hyperedge denotes a circuit connection, as in [22,
23]. The creation of circuit connections is modeled as adding
directed hyperedges (without sharing tail node and head nodes)
to the hypergraph H . Initially, the hyperedge set is empty.

Given a set F of multicast flows, we consider flows in
a shortest remaining processing time first (SRPT) manner
to determine a subset of flows where all their receivers
can be matched by creating circuit connections under the
circuit switch constraints. We consider flows and create circuit
connections in two rounds. In the first round, we only consider
the multicast flows with all receivers (line 9-12, Alg. 1).
In the second round, we consider the subflows of multicast
flows (line 13-16, Alg. 1), where subflows are products of
splitting flows, and a subflow includes a subset of receivers,
as explained later.

The scheduler considers a flow to be servable if the follow-
ing two conditions are satisfied: i) the number of to-be-served
flows that use the hyperedge originating from its sender is less
than bc

bs
(line 2, Alg. 2), ii) all the receivers of this flow are

included in the hyperedge originating from its sender (line 13,
Alg. 2). Once such a flow is found, a directed hyperedge is
added from the sender to all the receivers if no hyperedge
originates from the sender (line 19, Alg. 2). Otherwise, the
directed hyperedge originating from the sender is extended to
include the unconnected receivers (line 21, Alg. 2).

B. Calculating The Epoch Length

We determine the epoch length θ according to the created
circuit connections (via the hypergraph H) and the to-be-
served unsplittable flows found in the last step. Given the set of
to-be-scheduled flows (wt is known), the network throughput
function g(wt, θt) and the flow time function h(wt, θt) can
be proven to have unique extreme values [23]. The optimal
epoch length θ is related to the completion times of the flows
to be served. Thus, we enumerate all possible epoch lengths
and pick the one that achieves the optimal value of (6) or
(7). After determining the θ, we know whether a flow can be
completed in the epoch because every to-be-served flow can
send up to θbs of data in the epoch.

C. Scheduling Splittable Flows

In order to fully use the remaining circuit capacity, we
further schedule flows for which subsets of receivers can still
be served (line 15, Alg. 2). Recall the example flow f1 in
Fig. 4, where the switch could only send a unit of data to
d1 and d2 in the first epoch. At the end of this epoch, our
solution will decrease the remaining size of f1 by one and

5

Algorithm 1 Splittable Multicast Scheduling Algorithm
Input: A set F of flows to be scheduled in an epoch;
Output: A hypergraph H of the circuit configuration, a set F serve

of to-be-served flows and the epoch duration θ;
1: (H,F serve)← NONSPLITSCHEDULE(F);
2: θ ← CALCULATEEPOCHLENGTH(F serve, δ);
3: (H,F serve

split)← SPLITSCHEDULE(H,F \ F serve, θ);
4: F serve ← F serve ∪ F serve

split ;

5: procedure NONSPLITSCHEDULE(F)
6: F serve ← ∅;
7: F .order(policy = SRPT);
8: Initialize a hypergraph H to include the nodes of all racks

and an empty hyperedge set;
9: for f ∈ F do . Check every multicast f

10: schedule← CREATECIRCUIT(H, f,False);
11: Add f to F serve if schedule is True;
12: end for
13: for (fs, f) ∈ F do . Check every subflow fs of each

multicast f
14: schedule← CREATECIRCUIT(H, fs,False);
15: Add fs to the to-be-served subflow list of f and add f

to F serve if schedule is True;
16: end for
17: return (H , F serve)
18: end procedure

19: procedure SPLITSCHEDULE(H , F ′, θ)
20: F serve

split ← ∅;
21: F ′.order(policy = SRPT);
22: for f ∈ F ′ do
23: try CONSOLIDATESUBFLOW(SFf); . SFf stores all

unfinished subflows of f
24: for fs ∈ SFf do
25: schedule← CREATECIRCUIT(H, fs, True);
26: if schedule then
27: Add fs to the to-be-served subflow list of f ;
28: F serve

split .add(f);
29: Create a subflow f ′

s if f has unserved receivers;
30: try MERGESUBFLOW(SFf , f

′
s);

31: end if
32: end for
33: end for
34: return (H , F serve

split)
35: end procedure

create a subflow f11 with the unserved receiver d3: the flow
size equals to the amount of untransmitted data in this epoch.
The algorithm works similarly in the second and the third
epoch: it decreases the remaining size of f1 by one and creates
a subflow f12 with the unserved receiver d1 and f13 with the
unserved receiver d2, respectively. In the following epochs,
subflows are scheduled independently with other flows, which
is easy to operate. In addition, if a newly created subflow has
the same receivers as other unfinished subflows, it is natural to
merge them into a larger one: the resulting flow size equals to
the sum of the sizes of the merged subflows (line 30, Alg. 1).

D. Complexity Analysis and Discussion

We first analyze the complexity of our algorithm and then
discuss an opportunity for further performance improvement.

The computation time of Alg. 1 depends on the time to

Algorithm 2 Create circuit connections
1: procedure CREATECIRCUIT(H , f , split)
2: if not H .hasfreeCapacity(sf) then
3: return H , False
4: end if
5: rlistcover ← ∅, rlistoutlier ← ∅;
6: for d ∈ df do
7: if H .predecessor(d) = sf then
8: rlistcover .add(d);
9: else if H .inDegree(d) = 0 then

10: rlistoutlier .add(d);
11: end if
12: end for
13: if not split and len(rlistcover + rlistoutlier)< |df | then
14: return False
15: else if split and len(rlistcover + rlistoutlier)= 0 then
16: return False
17: end if
18: if H .outDegree(sf)= 0 then
19: H .addHyperedge(sf , rlistoutlier);
20: else
21: H .extendHyperedge(sf , rlistoutlier);
22: end if
23: H .decreaseCapacity(sf);
24: dunserved

f ← df \
(
rlistcover ∪ rlistoutlier

)
;

25: return True
26: end procedure

X Z Y

X Y Z

Y Z X

reconfiguration

d1

d2
d3

Epoch1 2 3 4 5 6

(a) Possible scheduling solution A

X Z X Y Z

X Y X Y Z

Y Z X Y Z

reconfiguration

d1

d2
d3

Epoch1 2 3 4

(b) Possible scheduling solution B

Fig. 5. Subflow scheduling

schedule non-splittable flows, the time to compute the epoch
length, and the time to schedule the splittable flows. They
have a time complexity of O(m logm+mn+mn2), O(m),
O(m logm + mn2), respectively, if the algorithm schedules
m flows in a network containing n racks. In total, the com-
putation complexity of our scheduling algorithm is therefore
O(m log(m) +mn2).

While our algorithm performs well as we will see in
the evaluation section, it offers an interesting opportunity
to further improve the transfer performance through subflow
consolidation when scheduling splittable flows. Recall that the
multicast flow f1 in Fig. 4 has three subflows, f11, f12 and
f13, at the end of the third epoch. If the fourth epoch has
only one unit of time, it is impractical to simultaneously finish
f11, f12 and f13 over a circuit connection between the sender
and all receivers due to the receiver asynchronization problem.
The circuit switch has to schedule these subflows one by one
and reconfigures the circuit connections for scheduling each of
them, as shown in Fig. 5(a). However, if the fourth epoch lasts
for three units of time, we could consolidate these subflows as
a larger one and finish them over the circuit connection to all
their receivers without more reconfigurations, as shown in Fig.
5(b). In our algorithm, we use a greedy subflow consolidation
method (line 23, Alg. 1). For every considered multicast flow,

6

we first determine which of its receivers could be matched,
if one more hyperedge is added subject to the capacity
constraints. Then, we greedily consolidate the subflows which
can be matched by this hyperedge, and we stop before the
remaining sizes of the consolidated subflows exceeds θbs.

V. EVALUATION

We conduct extensive simulations to study the performance
of SplitCast in different scenarios and to compare our results to
that of the state-of-the-art. In the following, we first introduce
our setup in §V-A, and then discuss our results in §V-B. We
find that SplitCast can significantly improve the performance
of multicast transfers across multiple networks and workloads.

A. Evaluation Setup

Our evaluation setup largely follows [22, 23].
Network topologies: We run simulations over four typical
datacenter sizes, which have 32, 64, 128, and 256 racks,
respectively. According to recent circuit switch designs, the
bandwidth per circuit switch port is chosen from 10Gbps,
40Gbps, and 100Gbps, and the circuit reconfiguration time
ranges from 0.1ms to 100ms. The bandwidth between the
server and the ToR switch is 10Gbps.
Workloads: We use synthetic multicast traffic resulting from
real datacenter applications similar to related work [13, 23].
The distribution of data sizes (in GB) follows a beta dis-
tribution B(0.7, 1.7). The sender and the receivers of every
multicast flow are randomly chosen from the racks in the
network. The number of receiver racks follows a uniform
distribution U [2, nγ], where n is the total number of racks in
a network and γ is chosen from [10%, 20%, 30%]. The total
simulation time T of every experiment ranges from 5,000ms to
10,000ms and flows uniformly arrive between 1ms and T

10ms.
Compared approaches: We compare SplitCast against the
state-of-the-art approaches for scheduling multicast demands
using a reconfigurable circuit switch.
• Blast [22] performs non-preemptive scheduling and iter-

atively schedules the flows in an decreasing order of a
“score” defined by (size

#receivers). The latest flow from a
set of flows that can be simultaneously transferred in an
epoch determines the epoch duration.

• Creek [23] adopts preemptive scheduling, uses the SRPT
policy to schedule flows, and chooses the epoch duration
that can maximize the circuit switch utilization. We first
let Creek use the 1-hop segregated routing model, but will
later show how SplitCast compares when Creek may use
a multi-hop routing model as well (see Fig. 10).

As in Blast [22] and Creek [23], we focus on the circuit
switching network and hence the performance of flows deliv-
ered by it. We conduct at least 100 runs for every experiment
setting over each network and report the average results (e.g.,
flow time, throughput) below unless otherwise specified.

B. Evaluation Results

The impact of circuit port bandwidth: In this group of
experiments, we evaluate the impact of circuit port bandwidth

1

10

100

10Gbps 40Gbps 100Gbps

Sp
ee

du
p

of
 a

vg
. f

lo
w

 ti
m

e

Circuit switch port bandwidth

w.r.t. Blast w.r.t. Creek

(a) Network with 256 racks

1

10

100

32 64 128

Sp
ee

du
p

of
 a

vg
. f

lo
w

 ti
m

e

#number of racks in topology

w.r.t. Blast w.r.t. Creek

(b) 40Gbps circuit port bandwidth

Fig. 6. Impact of the circuit switch port bandwidth. (a), (b) show the speedup
of the average flow time of SplitCast to Blast and to Creek over all runs.

0 5000 10000 15000 20000 25000
Flow time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F Creek, 10Gbps

SplitCast, 10Gbps

Creek, 40Gbps

SplitCast, 40Gbps

Creek, 100Gbps

SplitCast, 100Gbps

(a) Flow time

0

20

40

60

80

100

10Gbps 40Gbps 100Gbps

Sp
ee

du
p

fl
ow

s
(%

)

Circuit switch bandwidth (per port)

(b) Flows experience speedup

0
500

1000
1500
2000
2500
3000
3500
4000

1
10

01
20

01
30

01
40

01
50

01
60

01
70

01
80

01
90

01
10

00
1

11
00

1
12

00
1

13
00

1
14

00
1

15
00

1
16

00
1

17
00

1
18

00
1

19
00

1
20

00
1

21
00

1
22

00
1

23
00

1
24

00
1

Th
ro

ug
hp

ut
 (G

bp
s)

Time (ms)

Blast Creek SplitCast

(c) Throughput over time

Fig. 7. (a)-(c) show the CDF of the flow time, the percentage of flows
experiencing speedup, and the throughput over time in the 256 rack topology.

by varying it from 10Gbps to 100Gbps. The receiver fraction
γ is fixed to 10% and the circuit reconfiguration time is
0.1ms in these experiments. Fig. 6 shows the speedup of
the average flow time of SplitCast in log scale. We can see
from Fig. 6(a) that the speedup increases with an increasing
circuit switch port bandwidth in the topology with 256 racks.
We also see that SplitCast outperforms Blast and Creek in
reducing the average flow time by up to a factor of 27×
and 9×, respectively. Additionally, our experiments for three
other simulated topologies also show a similar trend. We here
present only the experimental results (see Fig. 6(b)) of these
topologies obtained under 40Gbps port bandwidth due to the
space constraints. We can see that SplitCast also speeds up the
average flow time over Blast and Creek in these topologies
and that the speedup increases as the topology size grows.
Thanks to the preemptive scheduling, both Creek and SplitCast
outperform Blast. However, Creek cannot beat SplitCast as
Creek only transfers data when the circuit connections can
match all the receivers of a multicast flow, even through a
subset of receivers could be matched. In contrast, SplitCast
allows data to be transferred to partially matched receivers,
fully using the circuit capacity and achieving the shortest
average flow time.

Fig. 7 reports more detailed results obtained from the

7

0

10

20

0.1 1 10 100

Sp
ee

du
p

of
 a

vg
. f

lo
w

 ti
m

e

Switch reconfiguration time (ms)

w.r.t. Blast w.r.t. Creek

(a) Speedup of average flow time

0
50

100
150
200
250
300
350
400

0.1 1 10 100

N
um

ne
r o

f r
ec

on
fig

ur
at

io
ns

Switch reconfiguration time (ms)

Blast Creek SplitCast

(b) Number of circuit reconfigurations

Fig. 8. Impact of the reconfiguration time of circuit switch. (a-b) show the
maximum-average-minimum speedups of average flow time and the number
of reconfigurations of SplitCast over all runs in the 256-rack topology. The
simulation results show that the improvement of SplitCast in flow time is
quite stable for all common switch reconfiguration times.

topology with 256 racks. Fig. 7(a) shows that SplitCast reduces
the flow time of the latest flow from around 20s to less than 5s
when the circuit port bandwidth is 40Gbps and 100Gbps, and
Fig. 7(b) shows that around 68%-98% of the flows experience
speedups, compared to Creek. This is consistent with the
results in Fig. 6. Fig. 7(a) also shows that Creek obtains very
close flow times under different circuit port bandwidth, which
indicates that it cannot efficiently use the high-bandwidth
circuit capacity. Fig. 7(c) shows the throughput over time
(averaged in every epoch) in one experiment simulated with
40Gbps circuit port bandwidth. SplitCast achieves the highest
throughput in the early stage, Creek comes second and Blast
follows. The high throughput of SplitCast is also related to its
flow time improvements.
The impact of circuit switch reconfiguration time: As the
circuit switch will stop transmitting data during circuit re-
configuration, we evaluate how different reconfiguration times
impact scheduling approaches in this group of experiments.
Fig. 8(a) shows that the speedup of the average flow time
of SplitCast over Blast and Creek is stable as the reconfig-
uration time increases from 0.1ms to 100ms over the 256-
rack topology. We omit the presentations of the similar results
obtained from other three topologies due to the limited space.
Additionally, Fig. 8(b) shows that SplitCast has the minimum
number of reconfigurations, Blast comes second, and Creek is
last. The very small number of reconfigurations of SplitCast
also indicates lower operating cost, compared to Creek and
Blast. Additionally, the average number of reconfigurations
of SplitCast and that of Creek drop as the reconfiguration
time increases. In contrast, the number of reconfigurations of
Blast is unadapted to reconfiguration times. This is as expected
because SplitCast and Creek consider the reconfiguration time
when determining the epoch length, while Blast does not.
The impact of the number of receivers: In this part, we
evaluate how the receiver scale impacts the performance of
the scheduling approaches. To this end, we set the number
of receivers of every multicast to be different percentages γ
of the racks and vary γ from 10% to 30%. Fig. 9(a) shows
the speedups of the average flow time of SplitCast over Blast
and Creek. We can see that the speedup of the average flow
time almost linearly increases with an increasing number of
receivers and topology size. In addition, we collect the circuit
utilization which is defined as a ratio: the total data size

w.r.t. Blast, 𝛾=10% w.r.t. Blast, 𝛾=20% w.r.t. Blast, 𝛾=30%
w.r.t. Creek, 𝛾=10% w.r.t. Creek, 𝛾=20% w.r.t. Creek, 𝛾=30%

0

5

10

15

20

25

32 64 128 256

Sp
ee

du
p

of
 av

g.
 fl

ow
 ti

m
e

#number of racks in network topology

(a) Speedup of average flow time

1

2

3

4

5

32 64 128 256

Im
pr

ov
em

en
t o

f u
lti

liz
at

io
n

#number of racks in network topology

(b) Improvement of circuit utilization

Fig. 9. Impact of the number of receivers. (a) and (b) show the speedup of the
average flow time and the improvement of the switch utilization, respectively,
in experiments where γ of racks are the receivers of multicast flows.

Sp
ee

du
p

of
 fl

ow
 ti

m
e

0

2

4

6

8

10

12

32-rack topology 64-rack topology
128-rack topology 256-rack topology

(a) Speedup of flow time

82
84
86
88
90
92
94
96

32 64 128 256

Sp
ee

du
p

flo
w

s (
%

)

#number of racks in topology

(b) Flows experience speedup

Fig. 10. SplitCast even outperforms Creek when Creek does m-hop circuit
routing, on average speeding up the flow time 2× to 4×.

actually transferred, compared to the theoretical total data size
that can be delivered with full capacity of the circuit switch
for every epoch. We compare the average circuit utilization
over all epochs. Fig. 9(b) shows that SplitCast improves the
average circuit utilization up to 4.3× and 3× over Blast and
Creek, respectively. Also, the improvement of the average
circuit utilization increases as the network size scales up.

Additionally, we count the number of subflows that
SplitCast creates for every multicast flow in these experiments.
The experimental results show that SplitCast splits only 55%
of multicast flows with three receivers on average and creates
just one additional subflow for mutlicast flows with an average
of three to nine receivers in 32-rack network. Also, SplitCast
creates two more subflows for 30%-35% flows and at most
four subflows for 80% flows in 256-rack network. The small
number of subflows created indicates that the cost of main-
taining the state of subflows is low or negligible.
SplitCast vs. Creek with multi-hopping: In the last group
of experiments, we evaluate how our 1-hop solution SplitCast
compares against the multi-hop version of Creek. Fig. 10
shows that SplitCast can still outperform Creek, speeding up
the flow times for around 87% to 94% flows and achieving 2×
to 4× speedups on average. These results indicate the great
potential of splittable multicast for improving the performance
of multicast transfers in reconfigurable datacenter networks.
Also, it motivates us to exploit splittable multicast in multi-
hop routing enabled reconfigurable networks in future work.

VI. RELATED WORK

Multicast communication in datacenter networks: Multi-
cast is a typical communication pattern of many datacenter ap-
plications, such as the data dissemination of publish-subscribe

8

services [18], distributed caching infrastructures updates [21]
and state machine replication [35]. Multicast communications
are growing explosively in scale due to the proliferation of
applications based on big data processing frameworks [36]–
[38]. In order to improve the performance of multicast trans-
fers, many works turn to IP multicast and focus on issues like
scalability and reliability [12, 39, 40] of the deployment of
IP multicast in the datacenter context. These above proposals
consider multicast over static networks.
Reconfigurable datacenter networks: One of the recent tech-
nology innovations in networking research is the possibility
of providing reconfigurable high-bandwidth inter-rack connec-
tions at runtime, with reconfigurable circuit switches. Impor-
tantly, such technology also supports high-performance inter-
rack multicasting. This capability of data multicast is enabled
by circuit switching technologies [13, §I], e.g., optical circuit
switches (OCS) [22, 23], free-space optics (FSO) [9, 41], and
60 GHZ wireless links [42]–[44].

This work is in turn motivated by such novel circuit
switching technologies and focuses on scheduling algorithms
for multicast flows. The most related works are Blast [22] and
Creek [23]. Both transfer data only when there exists a circuit
connection matching all the receivers of a multicast flow. In
contrast, we also allow a flow to transfer data when a circuit
connection matches only a subset of its receivers.

Such splitting has also been studied by Sundararajan et
al. [28] for optical switches. The authors extend the Birkhoff-
von Neumann strategy to multicast switching, and investigate
its complexity. Their main focus is on rate regions and achiev-
ability of rate requirements, whereas we focus on minimizing
flow times via scheduling.

There also emerge further several works [10, 33, 45]–[49]
on demand-aware reconfigurable datacenter networks. Schmid
et al. [10, 33, 45]–[47] focus on designing topologies towards
better network-wide performances, and Salman et al. [48] and
Wang et al. [49] focus on learning the topology, whereas Xia
et al. [50] adapt between Clos and approximate random graph
topologies. They focus on unicast flows and are all orthogonal
to this work. We refer to [11] for a recent survey.
Reconfigurable wide area networks: Wide area networks
have also benefited from programmable physical layers, by
e.g. leveraging reconfigurable optical add/drop multiplexers
(ROADMs). Various networking research directions have been
investigated, such as scheduling and completion times [51]–
[53], robustness [54], abstractions [55], connectivity as a
service [56], and variable bandwidth links [57, 58]. Herein
benefits of multicast were recently studied by Luo et al. [59],
in the context of bulk transfers.

VII. CONCLUSION

This paper studied the multicast scheduling problem in
datacenter networks that are capable of high-bandwidth cir-
cuit switching and fast reconfigurations at runtime. We first
discussed the unexploited potential of splittable multicast and
analyzed the algorithmic complexity of splittable multicast
matching. We proposed a scheduler, SplitCast, which relies

on simple single-hop segregated routing and minimizes the
flow times by leveraging the potential of splittable multicast,
preemptive scheduling, and circuit switch reconfiguration.
SplitCast employs a simple but fast algorithm that jointly op-
timizes both the flows and the circuit configuration schedules.
Our extensive simulations on real-world topologies show that
SplitCast significantly reduces the flow time and improves the
throughput over the prior solutions.

We understand our work as a first step and believe that
it opens several interesting avenues for future research. For
example, it would be interesting to account for more specific
application-level objectives, e.g., flow deadlines.

Acknowledgements. We would like to thank Xiaoye Steven
Sun for his support regarding prior work [22, 23]. We would
like to thank the reviewers for their comments, especially for
pointing us to the work of Sundararajan et al. [28]. This project
has received funding from the European Research Council
(ERC) under the European Unions Horizon 2020 research
and innovation programme (grant agreement No. 864228,
AdjustNet: Self-Adjusting Networks). This work was also
supported by the 111 Project (B14039) and the project PCL
Future Greater-Bay Area Network Facilities for Large-scale
Experiments and Applications (PCL2018KP001).

REFERENCES

[1] W. M. Mellette, R. McGuinness, A. Roy et al., “Rotornet: A scalable,
low-complexity, optical datacenter network,” in SIGCOMM, 2017, pp.
267–280.

[2] W. M. Mellette, R. Das, Y. Guo et al., “Expanding across time to deliver
bandwidth efficiency and low latency,” in NSDI, 2020.

[3] Q. Cheng, M. Bahadori, M. Glick et al., “Recent advances in optical
technologies for data centers: a review,” Optica, vol. 5, no. 11, pp. 1354–
1370, 2018.

[4] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
Towards optimal-performance datacenters,” in CoNEXT, 2016.

[5] C. Guo, G. Lu, D. Li et al., “BCube: a high performance, server-
centric network architecture for modular data centers,” ACM SIGCOMM
Computer Communication Review, vol. 39, no. 4, pp. 63–74, 2009.

[6] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in NSDI, 2012.

[7] D. Wu, W. Wang et al., “Say no to rack boundaries: Towards a
reconfigurable pod-centric dcn architecture,” in SOSR, 2019.

[8] D. Wu, X. Sun, Y. Xia et al., “Hyperoptics: A high throughput and low
latency multicast architecture for datacenters,” in HotCloud, 2016.

[9] M. Ghobadi, R. Mahajan, A. Phanishayee et al., “Projector: Agile
reconfigurable data center interconnect,” in SIGCOMM, 2016, pp. 216–
229.

[10] K.-T. Foerster, M. Pacut, and S. Schmid, “On the complexity of non-
segregated routing in reconfigurable data center architectures,” ACM
SIGCOMM Computer Communication Review, vol. 49, no. 2, pp. 2–
8, 2019.

[11] K.-T. Foerster and S. Schmid, “Survey of reconfigurable data center net-
works: Enablers, algorithms, complexity,” ACM SIGACT News, vol. 50,
no. 2, pp. 62–79, Jul. 2019.

[12] M. Shahbaz, L. Suresh, J. Rexford et al., “Elmo: Source-routed multicast
for cloud services,” in SIGCOMM, 2019.

[13] X. S. Sun, Y. Xia, S. Dzinamarira et al., “Republic: Data multicast meets
hybrid rack-level interconnections in data center,” in ICNP, 2018.

[14] L. Mai, C. Hong, and P. Costa, “Optimizing network performance in
distributed machine learning,” in HotCloud, 2015.

[15] “Deploying secure multicast market data services for financial ser-
vices environments,” https : / / www. juniper . net / documentation / en
US/release-independent/nce/information-products/pathway-pages/nce/
nce-161-deploying-secure-multicast-for-finserv.html, accessed: 2019-
07-31.

9

[16] “Trading floor architecture,” https://www.cisco.com/c/en/us/td/docs/
solutions/Verticals/Trading Floor Architecture-E.html, accessed: 2019-
07-31.

[17] VMWARE, “Nsx network virtualization & security software,” https://
www.vmware.com/products/nsx.html, accessed: 2019-07-31.

[18] GOOGLE, “Cloud pub/sub,” https: / /cloud.google.com/pubsub/, ac-
cessed: 2019-07-31.

[19] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[20] S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded mapreduce,”
in 53rd Annual Allerton Conference on Communication, Control, and
Computing, 2015.

[21] “Cloud networking: Ip broadcasting and multicasting
in amazon ec2,” https : / / blogs . oracle . com / ravello /
cloud-networking-ip-broadcasting-multicasting-amazon-ec2, accessed:
2019-07-31.

[22] Y. Xia, T. E. Ng, and X. S. Sun, “Blast: Accelerating high-performance
data analytics applications by optical multicast,” in INFOCOM, 2015.

[23] X. S. Sun and T. E. Ng, “When creek meets river: Exploiting high-
bandwidth circuit switch in scheduling multicast data,” in ICNP, 2017.

[24] J. Bao, D. Dong, B. Zhao et al., “Flycast: Free-space optics accelerating
multicast communications in physical layer,” ACM SIGCOMM Com-
puter Communication Review, vol. 45, no. 4, pp. 97–98, 2015.

[25] H. Wang, Y. Xia, K. Bergman et al., “Rethinking the physical layer
of data center networks of the next decade: Using optics to enable
efficient*-cast connectivity,” ACM SIGCOMM Computer Communica-
tion Review, vol. 43, no. 3, pp. 52–58, 2013.

[26] L. Chen, K. Chen, Z. Zhu et al., “Enabling wide-spread communications
on optical fabric with megaswitch,” in NSDI, 2017.

[27] L. Lovász and M. D. Plummer, Matching theory. American Mathe-
matical Soc., 2009, vol. 367.

[28] J. K. Sundararajan, S. Deb, and M. Médard, “Extending the birkhoff-von
neumann switching strategy for multicast - on the use of optical splitting
in switches,” IEEE Journal on Selected Areas in Communications,
vol. 25, no. S-6, pp. 36–50, 2007.

[29] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathemat-
ics, vol. 17, pp. 449–467, 1965.

[30] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[31] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Springer Science & Business Media, 2003, vol. 24.

[32] M. Zaharia, M. Chowdhury et al., “Spark: Cluster computing with
working sets,” in HotCloud, 2010.

[33] T. Fenz, K.-T. Foerster, S. Schmid, and A. Villedieu, “Efficient non-
segregated routing for reconfigurable demand-aware networks,” in IFIP
Networking, 2019.

[34] M. Noormohammadpour, C. S. Raghavendra, S. Kandula, and S. Rao,
“Quickcast: Fast and efficient inter-datacenter transfers using forwarding
tree cohorts,” in INFOCOM, 2018.

[35] D. R. Ports, J. Li, V. Liu et al., “Designing distributed systems using
approximate synchrony in data center networks,” in NSDI, 2015.

[36] “Apache spark,” http://spark.apache.org/.

[37] “Tensorflow,” https://www.tensorflow.org/.
[38] “Apache tez,” https://tez.apache.org/.
[39] Y. Vigfusson, H. Abu-Libdeh, M. Balakrishnan et al., “Dr. multicast:

Rx for data center communication scalability,” in EuroSys, 2010.
[40] X. Li and M. J. Freedman, “Scaling ip multicast on datacenter topolo-

gies,” in CoNEXT, 2013.
[41] J. Bao, D. Dong, B. Zhao et al., “Flycast: Free-space optics accelerating

multicast communications in physical layer,” ACM SIGCOMM Com-
puter Communication Review, vol. 45, no. 4, pp. 97–98, 2015.

[42] X. Zhou, Z. Zhang, Y. Zhu et al., “Mirror mirror on the ceiling:
Flexible wireless links for data centers,” ACM SIGCOMM Computer
Communication Review, vol. 42, no. 4, pp. 443–454, 2012.

[43] Y.-J. Yu, C.-C. Chuang, H.-P. Lin, and A.-C. Pang, “Efficient multicast
delivery for wireless data center networks,” in The 38th Annual IEEE
Conference on Local Computer Networks, 2013.

[44] C. Shepard, A. Javed, and L. Zhong, “Control channel design for many-
antenna mu-mimo,” in MobiCom, 2015.

[45] C. Avin and S. Schmid, “Renets: Toward statically optimal self-adjusting
networks,” arXiv preprint arXiv:1904.03263, 2019.

[46] C. Avin, I. Salem, and S. Schmid, “Working set theorems for routing in
self-adjusting skip list networks,” in INFOCOM, 2020.

[47] K.-T. Foerster, M. Ghobadi, and S. Schmid, “Characterizing the algorith-
mic complexity of reconfigurable data center architectures,” in ANCS,
2018.

[48] S. Salman, C. Streiffer, H. Chen, T. Benson, and A. Kadav, “Deepconf:
Automating data center network topologies management with machine
learning,” in NetAI@SIGCOMM, 2018.

[49] M. Wang, Y. Cui, S. Xiao et al., “Neural network meets dcn: Traffic-
driven topology adaptation with deep learning,” Proc. of the ACM on
Measurement and Analysis of Computing Systems, vol. 2, no. 2, 2018.

[50] Y. Xia, X. S. Sun, S. Dzinamarira et al., “A tale of two topologies:
Exploring convertible data center network architectures with flat-tree,”
in SIGCOMM, 2017.

[51] X. Jin, Y. Li, D. Wei et al., “Optimizing bulk transfers with software-
defined optical WAN,” in SIGCOMM, 2016.

[52] S. Jia, X. Jin et al., “Competitive analysis for online scheduling in
software-defined optical WAN,” in INFOCOM, 2017.

[53] M. Dinitz and B. Moseley, “Scheduling for weighted flow and comple-
tion times in reconfigurable networks,” in INFOCOM, 2020.

[54] J. Gossels, G. Choudhury, and J. Rexford, IEEE/OSA Journal of Optical
Communications and Networking, vol. 11, no. 8, pp. 478–490, 2019.

[55] K.-T. Foerster, L. Luo, and M. Ghobadi, “Optflow: A flow-based
abstraction for programmable topologies,” in SOSR, 2020.

[56] R. Durairajan, P. Barford, J. Sommers, and W. Willinger, “Greyfiber: A
system for providing flexible access to wide-area connectivity,” arXiv
preprint arXiv:1807.05242, 2018.

[57] R. Singh, M. Ghobadi, K.-T. Foerster et al., “Run, walk, crawl: Towards
dynamic link capacities,” in HotNets, 2017.

[58] ——, “RADWAN: rate adaptive wide area network,” in SIGCOMM,
2018.

[59] L. Luo, K.-T. Foerster, S. Schmid, and H. Yu, “Dartree: deadline-aware
multicast transfers in reconfigurable wide-area networks,” in IEEE/ACM
IWQoS, 2019.

10

