
Lazy Self-Adjusting Bounded-Degree Networks
for the Matching Model

Evgeniy Feder∗, Ichha Rathod†, Punit Shyamsukha† Robert Sama‡ Vitaly Aksenov∗, Iosif Salem‡, Stefan Schmid§
∗Computer Technologies, ITMO University, Russia

†Department of Computer Science and Engineering, Indian Institute of Technology Delhi, India
‡Faculty of Computer Science, University of Vienna, Austria

§TU Berlin, Germany & Faculty of Computer Science, University of Vienna, Austria

Abstract—Self-adjusting networks (SANs) utilize novel optical
switching technologies to support dynamic physical network
topology reconfiguration. SANs rely on online algorithms to
exploit this topological flexibility to reduce the cost of serving
network traffic, leveraging locality in the demand. While prior
work has shown the potential of SANs, the theoretical guarantees
rely on a simplified cost model in which traversing and adjusting
a single link has uniform cost.

We initiate the study of online algorithms for SANs in a more
realistic cost model, the Matching Model (MM), in which the
network topology is given by the union of a constant number of
bipartite matchings (realized by optical switches), and in which
changing an entire matching incurs a fixed cost α. The cost of
routing is given by the number of hops packets need to traverse.

Our main result is a lazy topology adjustment method for
designing efficient online SAN algorithms in the MM. We design
and analyze online SAN algorithms for line, tree, and bounded
degree networks in the MM, with cost O(

√
α) times the cost

of reference algorithms in the uniform cost model. We report
on empirical results considering publicly available datacenter
network traces, that verify the theoretical bounds.

Index Terms—self-adjusting networks, matching model, online
algorithms

I. INTRODUCTION

Data center network traffic is currently growing explosively,
roughly doubling each year while the capacity of packet
switches doubles only roughly every two years [1], [2]. To
tackle this mismatch, the networking community is currently
making major efforts to innovate data center networks and
their traffic handling, among other approaches.

Optical switches (but also other networking hardware [3])
allow reconfiguring the physical network topology, thus giving
a wide range of flexibility in network topology design. Har-
nessing this flexibility to design more efficient (data center)
networks is a research direction that has attracted recent
attention from both network theoreticians and practitioners.
The goal is to design self-adjusting networks (SANs), i.e.,
networks that automatically adapt their topology depending
on changes in the demand, to reduce routing costs. Such
adaptations bear potential, as the traffic demand patterns in
data center networks are skewed [4].
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In this work, we study SANs from an algorithmic point
of view. SAN algorithms dictate how the network topology
should change when there are shifts in the traffic demand,
and especially, in the set of large “elephant flows” [3], [4].
In particular, in this paper we consider a model where the
network needs to serve routing requests which arrive over time,
in an online manner. Existing SAN algorithms are based on a
uniform cost model where both traversing and changing a link
have unit cost [5], [6]. This is a useful basic model that enabled
the first algorithmic results. In practice, however, switching
hardware usually allows to reconfigure the topology on a per-
matching granularity, and changing a matching in a demand-
aware manner is more costly than traversing a link (e.g., in
terms of time) [3], [7].

The Matching Model (MM) proposed in [7] addresses this
discrepancy, by assuming that traversing a single link has unit
cost and changing the whole topology G to a new one G′

comes at a fixed cost. Any topology can be defined as a union
of matchings over the set of nodes and the MM assumes that
rearranging the edges (links) of a single matching comes at a
fixed cost (e.g., time), say α. Thus the total cost for adjusting
the whole topology to a new one is the product of α and the
number of matchings needed to construct the topology. In this
paper we focus on scalable topologies where the maximum
degree ∆ is a constant and thus the topology reconfiguration
cost in the MM is O(α), as the number of matchings needed is
constant as well. This model better fits systems and hardware
properties and early work has shown its relevance [1], [8], [9].
However, so far, we lack algorithmic and analytical techniques
for this model.

This paper presents a first analysis of the Matching Model
and describes efficient online algorithms for this model. Con-
cretely, we study online algorithms that start from an initial
topology and upon each request, they first serve the request and
then decide whether to adjust the topology, where adjustment
would incur a fixed cost O(α). As the sequence of routing
requests is unknown a priori, we compare our SAN algorithms
with the performance of state-of-the-art algorithms in the
uniform cost model (lower bounds are known only in some
cases [5] and relate to the entropy of the request sequence).

Note that adjusting the topology upon every request in
the MM is inefficient for α ∈ ω(1), as this could incur a



multiplicative factor of α in the cost of serving sequences of
routing requests, even for trivial cases. For example, consider
a line network and any sequence for which the source is
always the same node and the destinations are arbitrary:
((s, d1), (s, d2), . . .). In the uniform cost model, fixing the
source s at one edge of the line network and, upon every
request (s, di), moving the destination di such that it becomes
adjacent to s (move to front) is asymptotically optimal [10].
But the same approach in the MM is α times more costly.

In this paper, we present our results for the MM in three
steps; we start with line topologies, then we move to tree
topologies, and we finally reach our main goal, which is
bounded-degree networks. Our main contribution is a method
for designing efficient online SAN algorithms in the MM,
when compared to reference SANs in the uniform cost model.
We cache a constant amount of topology adjustments and then
lazily apply them by switching to a topology that is a result of
all cached adjustments when it is most beneficial to pay the
cost α of topology reconfiguration.

Our method of lazy topology reconfiguration transforms
a self-adjusting algorithm from the uniform-cost model to
one in the MM. We show that in the three bounded-degree
topology families we studied, the SANs in the MM cost
O(
√
α) times the algorithm cost in the uniform cost model,

which is a clear improvement from the naive α factor that
we mentioned earlier. We start by demonstrating our method
in line topologies, where we show that it achieves static
optimality in the MM. As an intermediate step, we present
LAZYSPLAYNET, an online SAN in the MM, with cost
O(
√
α) times the cost of SPLAYNET [5], a state-of-the-art

SAN for tree networks in the uniform cost model. Our main
algorithmic result is LAZYRENET, an online SAN in the MM,
with costO(

√
α) times the cost of RENET, a statically-optimal

self-adjusting bounded-degree network in the uniform cost
model. As RENET is a hybrid network, combining a static and
a dynamic topology, our paper contributes to understanding
both pure and hybrid networks in the MM.

We complement our theoretical analysis by testing our
algorithms over publicly available data sets of data center net-
work traces (e.g. from Facebook’s data centers). Our findings
confirm our theoretical results, in a number of datasets with
varying skewness in the demand. We also explore connections
of our results to self-adjusting data structures where requests
originate from a single node, and operations describe search
rather than routing tasks. In particular, we prove an O(1)
competitive ratio for search in a line topology.

Paper organization. In Section II, we present related work.
In Section III, we introduce basic definitions such as Self-
Adjusting Network (SAN) algorithms and static optimality,
and then we define two models, the Standard Model (SM) and
the Matching Model (MM). In sections IV and V, we present
our algorithms and analyses for search and routing sequences
in the MM, for line and binary tree networks, respectively.
In Section VI, we present and analyze LAZYRENET. In Sec-
tion VII, we present experimental analysis of our algorithms
and their evaluation, before concluding the paper.

II. RELATED WORK

An overview of the challenges and subdomains of self-
adjusting networks was presented in [11], while the first thor-
ough study that appeared was about SPLAYNET [5]. Demand-
aware networks of bounded degree were first studied by Avin
et al. [12]. Given the communication pattern and a bound
on the node degree they design a static network topology
that minimizes the expected path length. Below, we refer
to two common optimality conditions: static and dynamic
optimality. An online self-adjusting algorithm is statically-
optimal if it performs as well as a static topology with
perfect knowledge of the request sequence. An self-adjusting
algorithm is dynamically-optimal if it is constant-competitive.
Moreover, the MM was introduced in [7]. In the following,
we present related work for the uniform-cost.

The majority of related work for bounded-degree SANs
appears mostly in connection to the uniform-cost model. As
advocated in [5], [11], many useful tools from self-adjusting
data structures can be used in the design of self-adjusting
networks. In the context of our paper, we mention related
work for bounded-degree networks, and specifically for line
and tree-based topologies as well as for more general bounded-
degree SANs.

Designing SANs for line topologies has been proven a
hard task as shown in [13]. In the static case it reduces to
the Minimum Linear Arrangement problem, which is NP-
hard [14]. In the online case, [13] showed a Ω(log n) lower
bound on the competitive ratio. Meanwhile, there is a rich
literature on search requests on a line topology, representing
an (unsearchable) linked list data structure. In a uniform cost
model the move-to-front algorithm of Sleator and Tarjan is
2-competitive [10], whereas Albers and Janke gave a recent
overview of existing constant-competitive deterministic and
randomized online algorithms [15]. In short, the move-to-front
rule, moves the accessed element to the front of the line (list).
A notable case is the paid-exchange model (P d), where each
swap of two adjacent items incurs a cost d. Albers et al.
presented a deterministic 4.56-competitive algorithm in [16].

Tree-based SANs were introduced in SplayNet [5], a
networks-equivalent idea of the statically-optimal splay trees
[17]. Splay-trees include three tree rotations (zig, zig-zig, zig-
zag, cf. Figure 2) that adjust a tree upon an access request.
[5] also introduces a set of lower bounds for specific cases,
but general lower bounds in the uniform-cost model are yet
to be studied. To our knowledge, [18] is the only distributed
bounded-degree SAN in the literature ( [19] also present a
distributed version of their SAN, but the maximum degree is
not bounded and in expectation is Θ(log n)). Avin et al. [20]
present dynamically-optimal single-source tree networks, in a
restricted model, in which the topology is always a tree which
can be adjusted only by swapping neighboring nodes. For such
networks, they prove a working-set lower bound and present
deterministic and randomized algorithms with complexity that
matches the lower bound.

Avin and Schmid presented RENETs in [6], which is a



statically optimal bounded-degree SAN in the uniform cost
model, under a sparsity restriction on the communication
sequences. Their topology is a union of ego-views, i.e., low-
degree stars or splay trees rooted at each node and including all
recently communicated nodes. All nodes are connected via a
static control network, which includes the network coordinator
and exists for relaying control messages (e.g. adding a new
route or deleting all edges when the network grows to a limit).
Thus, a RENET is a hybrid network combining static and
dynamic links, in contrast to the SANs we mentioned in this
section. We elaborate on RENETs in Section VI.

III. DEFINITIONS AND MODELS

We define notions regarding the topologies, models, and op-
timality conditions, to be used in our algorithms and analyses.

Basic topologies. We model a network as a set of n
computational nodes with connections among them, forming
an undirected graph G = (V,E), where n = |V |, G belongs
to G and G is a family of undirected graphs which models the
allowed network topologies. Throughout the paper we will
use the terms network and graph interchangeably. Connected
topology is a family of graphs, in which there exists a route
between all pairs of nodes. Line topology is a connected
topology, where two nodes (head and tail) have degree one,
and all other nodes have degree two. Tree topology is a
connected topology, that does not contain any cycles. That
is, each node but one (root) has a parent. If each node has no
more than two children the topology is named as Binary tree
topology. We present the RENET topology in Section VI.

Self-Adjusting Networks (SANs). We define SAN algo-
rithms and some related notions. Let σ = (σ1, σ2, . . . , σm) =
((u1, v1), (u2, v2), . . . , (um, vm)), where ui, vi ∈ V , be a
sequence of routing requests to forward a packet from node
ui to vi. If we assume that our topology has a distinguished
node S, e.g., head for Lists and root for Trees, then instead
of routing requests we perform search requests from node S
when ui = S for all i and the notation of these requests
will be σ = (σ1, σ2, . . . , σm), where σi ∈ V (single-source
networks).

The main goal of our work is to manipulate a dynamic
graph, so as to optimize the total cost for processing all
requests. We can solve this task in two manners: 1) statically,
i.e., the graph does not change during the execution, or 2) dy-
namically, i.e., the graph can change during the processing of
requests.

Definition 1. A static optimization task is a task in which
given all requests in advance we have to build a network
with topology Gstatic ∈ G that does not change during or in
between the requests. Such a graph Gstatic needs to optimize
the total cost function sumCost(static, Gstatic, σ) =

∑m
i=1 li,

where li is the path length in edges to process request σi.

Definition 2. In a dynamic optimization task, we assume that
we can change the network after each request. We are provided
with an arbitrary initial network (before the first request ar-
rives), which we denote by G0 ∈ G. Our task is to build an al-

gorithm A that adjusts the network at any time instant Gi, i =
0, 1, . . . ,m, and minimizes the total cost, which is calculated
as sumCost(A, G0, σ) =

∑m
i=1 (routingCost(Gi−1, σi) +

adjustmentCost(Gi−1, Gi)), where routingCost(Gi−1, σi)
is the path length in edges of Gi−1 to process request σi
and cost(Gi−1, Gi) is the adjustment cost to reconfigure the
network from step i− 1, Gi−1 ∈ G, to step i, Gi ∈ G.

An algorithm that performs requests and adjusts the net-
work at each step from Gi−1 ∈ G to Gi ∈ G is called
Self-Adjusting Network algorithm. SAN algorithms aim to
exploit temporal locality by changing the topology to reduce
the distance between frequently communicating nodes, while
balancing the reconfiguration costs. In this work we assume
that all changes to the network topology are controlled by a
coordinator C. The coordinator is connected to all nodes in V
and controls a structure of the network, as it is the case for
the controller node(s) in an SDN control plane. We neglect
the communication cost with the coordinator.

Models. We introduce the Standard Model (uniform-cost)
and the newly proposed Matching Model [7]. Let algorithm
A be a SAN algorithm. We define each model by specifying
the cost of each operation.

Definition 3 (Standard Model (SM)). In the SM the cost of
traversing or adjusting a single edge (link) is equal to 1. Thus,
routingCost(Gi−1, σi) is the length of the route in Gi−1
and adjustmentCost(Gi−1, Gi) is the number of edges that
change between Gi−1 and Gi (single edge addition or deletion
costs 1).

In this work, we focus on the recently introduced Matching
Model (MM) [7]. The motivation for this model comes from
the physical properties of a next-generation dynamic networks
based on optical switches [3]. Each physical node has a
constant number ∆ of physical sockets — a sender and
a receiver. A socket represents a possible connection with
another node.

Theorem 1 (Vizing’s theorem [21]). Edge coloring of the
graph is a color function C : E → {1, . . . ,∆}, where incident
edges have different color values. Every undirected graph with
bounded degree ∆ can be provided with edge coloring using
at most ∆ + 1 different colours.

Let ∆ be the maximum degree of any graph from G. Thus,
by Vizing’s theorem, at each step i the edges of graph Gi can
be edge colored using at most ∆ + 1 colors. Thus, our graph
Gi can be represented by ∆ + 1 matchings.

In the MM, the coordinator C can perform the following
command: ask all nodes simultaneously to change the edges
of the matching with the chosen color at fixed cost α. Since
Gi has constant number of matchings (more precisely, ∆ + 1)
by Vizing theorem, the network can be changed from Gi to
any Gi+1 ∈ G by paying the cost α · (∆ + 1) = O(α) (∆ is
constant for bounded-degree networks, which are the focus of
this work).



Definition 4 (Matching Model (MM)). In the MM, the routing
cost is defined as in the SM and the adjustment cost per
request, adjustmentCost(Gi−1, Gi), is cσi · α, where cσi
is the number of matchings that the SAN algorithm changed
between Gi−1 and Gi on i-th request.

We remark that for bounded degree networks cσi is a
constant. Moreover, the adjustment cost of O(α) counts both
the computation of the new topology Gi by the coordinator C
and the physical reconfiguration cost. Although [7] presents
a more elaborate model, Definition 4 abstracts further details
that are not pertinent to this paper.

Optimality of SAN algorithms. Two desirable optimality
properties of online SAN algorithms are static and dynamic
optimality [11]. Let sumCost(static, G, σ) be the cost of the
algorithm that computes a fixed network topology that mini-
mizes the cost of serving a given sequence of communication
requests, when no adjustments are allowed (Definition 1). A
SAN algorithm A is called statically optimal if for every
sequence of requests σ and for every starting configuration
G0, sumCost(A, G0, σ) = O(sumCost(static, Gstatic, σ)),
where Gstatic is the offline (optimal) static topology. Similarly,
a SAN algorithm A is called dynamically optimal if for
every sequence of requests σ and for every starting configu-
ration G0, sumCost(A, G0, σ) = O(sumCost(OPT,G0, σ)),
where OPT is optimal online algorithm with perfect knowl-
edge over σ. We relax the notion of static optimality by
calling a SAN algorithm c-statically optimal if for each
sequence of requests σ and for each starting configuration G0,
sumCost(A, G0, σ) ≤ c · sumCost(static, Gstatic, σ), where
static is the algorithm that computes an optimal fixed topology
that minimizes the cost of serving σ.

IV. LAZY LINE NETWORKS

We first expose our lazy topology adjustment method in
line network topologies. We start with single-source commu-
nication sequences (search requests). In the Standard Model
(SM) we are provided with a dynamically optimal Move-To-
Front (MTF) algorithm [10]. We note that in the Matching
Model (MM) the “move-to-front” operation costs α. Thus,
we amortize this cost increase by not adjusting the network at
each search request, but when a threshold of routing cost has
been reached. The following straightforward optimization of
the MTF algorithm for the MM gives an improved theoretical
bound:
• maintain a counter for each node, being zero at initial-

ization,
• on each request for a node, we increase the node’s counter

by one,
• If the counter becomes α, we perform a move-to-front

operation on this node (thus the network adjustment cost
will be amortized over α operations).

We refer to this algorithm as “Lazy Move-To-Front”. It
is not surprising that “Lazy MTF” is statically optimal in
the MM: “Lazy MTF” is exactly the deterministic version
of the randomized COUNTER algorithm in P d from [22,

Section 3.3] which is shown to be constant competitive (hence
also statically optimal). Here we present a simple proof of
this optimality condition under an additional assumption: the
number of performed requests should be quite large.

To prove our claim we use the following lemmas from the
original paper on Move-To-Front [10]. Let φT (x) be the MTF
potential function of element x at request T ∈ {1, . . . ,m},
which (as in [10]) is the number of inversions with element
x in the MTF list with respect to the optimal list (OPT). An
inversion is a pair (x, y) of items such that x occurs before
y in the MTF list and it occurs after y in list of OPT. Also
cost(x) is the distance of x from the list front.

Lemma 1 ( [10]). Let pT (x) be the position of element σT =
x in the MTF list at time T and j be the position of element
σT in the OPT list. Then, j ≥ pT (x)− φT (x).

Lemma 2 ( [10]). cost(σT )+∆φT (x) = 2(pT (x)−φT (x))−1

We re-prove these lemmas in the proof of the following
theorem and in the context of the MM.

Theorem 2. The “Lazy Move-To-Front” algorithm is statically
optimal in the Matching Model if |σ| ≥ α · n(n+1)

2 .

Proof. We prove this theorem using a standard amortization
argument. For that we introduce a potential function for the
Lazy MTF after T requests: ΦT =

∑
α ·φT (x), where φT (x)

is the MTF potential function of element x, which is the
number of inversions with element x in MTF list with respect
to the statically optimal list (OPT). For simplicity we assume
without loss of generality that Move-To-Front and OPT start
with the same list, so, the initial potential is zero. (Note, that
if this potential is not zero we can amortize its value across all
requests, since their number exceeds the maximal potential.)

Our potential function changes only on the α-th request
per element. So, we split the requests to a fixed element
x into blocks of length α. Now, we want to compare the
total cost of requests in each block in OPT and Lazy MTF list.

i) The cost of α operations on x in the list of OPT is
straightforward. It is equal to α · j, where j is the position
of x in OPT list.
ii) Consider α requests to the element x. Let pTi(x) be the
position of x in Lazy MTF after the Ti-th request where i is
the index of the request to x and Ti is the index of the request
in σ. Thus, the total cost of the first α−1 requests that access

x is equal to
α−1∑
i=1

pTi(x).

Let us perform the α-th access to x. We briefly revise the
proof of Lemma 2 and use the same amortization idea here.

The change in the MTF potential due to moving x to the
front is equal to the sum of two contributions (you can see
these contributions in Figure 1): 1) x no longer contributes
anything to the potential, as it no longer has any elements in
front of it, so, we have a decrease of the potential by φTα(x);
2) all pTα(x) − 1 elements that were in front of x now have
an additional element in front of them, x itself, and thus their
potential might be increased by one. The total number of these
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Fig. 1: Illustration for Lemmas 1 and 2. u increases φTα(x)
by 1 and v does not affect φTα(x) (the number of nodes like
v is at most (pTα(x)− 1− φTα(x))). After we move to front
φTα+1(x) = 0, x starts increasing φTα+1(v) and does not
affect node u.

elements is pTα(x) − 1 − φTα(x), because all nodes, which
did not affect on φTα(x) before, are affected now. So, a total
change of MTF potential of x is at most −φTα(x)+(pTα(x)−
1−φTα(x)) = pTα(x)− 1− 2 ·φTα(x). Moreover we have to
pay (∆ + 1) · α for the network adjustment where ∆ = 2.

By that, we measure how the potential changes after the
move-to-front adjustment. The amortized cost of the α-th
operation is equal to: pTα(x) + ∆Φ + 3α = pTα(x) + α ·
(pTα(x)− 1− 2 · φTα(x)) + 3α.

Then the total cost of all α operations in a block equals:
α−1∑
i=0

pTi(x) + pTα(x) + ∆Φ + 3 · α =

= pT0(x) + pT1(x) + ...+ pTα(x)−
− α · φTα(x) + α · (pTα(x)− 1− φTα(x)) + 3 · α =

= (pT0(x)− φTα(x)) + (pT1(x)− φTα(x)) + ...+

+ (pTα(x)− φTα(x)) + α · (pTα(x)− φTα(x)− 1) + 3 · α
(1)

At first, we know that pT0
(x) ≤ pT1

(x) ≤ ... ≤ pTα(x)
since the node can only be moved further in the list due to
other move-to-front nodes. Secondly, from Figure 1, we can
see that (pTα(x)−1−φTα(x)) ≤ j−1, so (pTα(x)−φTα(x)) ≤
j. Recall that j is the position of x in OPT. By these
two statements we can conclude that (pTi(x) − φTα(x)) ≤
(pTα(x) − φTα(x)) ≤ j. By making a substitution into
equation (1) we get

(1) ≤ j+j+ ...+j+α ·(j−1)+3 ·α ≤ α ·(2 ·j+2) < 4 ·α ·j.

So, the total cost is strictly less than four times the cost of
OPT list, which concludes (ii).

In the statement of the theorem we have a restriction on the
number of requests σ. If |σ| ≥ α · n(n+1)

2 we do not have to
think about requests in the “tail” of σ (i.e., the requests which
belong to a non-finished block, for which a MTF operation
does not occur by the end of the sequence). It is due to the fact
that sumCost(Lazy MTF, G0, σ) = ω(αn2) and all requests
from the tail, which are not going to be amortized by move-
to-front, can be amortized over all |σ| requests: at each node
we can set counter to α− 1 and the potential is O(αn2).

V. LAZY TREE NETWORKS

We now turn to apply our lazy topology reconfiguration
method in tree networks. We first expose the design principles

of our method (Section V-A) and then apply it to splay
trees [17] and SplayNet [5]. In Sections V-B and V-C we
present and analyze LAZYSPLAYTREE and LAZYSPLAYNET,
respectively. We show that our lazy algorithms in the Matching
Model (MM) incur a cost of O(min(

√
α, log n)) times the cost

of the original algorithms in the Standard Model (SM), which
we show to be tight.

A. Lazy topology reconfiguration

Consider a self-adjusting algorithm ALG over a graph
(which can be a search data structure or a network topology) in
the SM, which we want to adapt in the MM. We will denote
the adapted version of ALG in MM by LazyALG. If we
simply run ALG in the MM (LazyALG = ALG), then we get
that costMM (LazyALG,G0, σ) = α · costSM (ALG,G0, σ),
where G0 is the initial graph, σ is a sequence of (search or
routing) requests, and costX(A,G0, σ) is the cost of algorithm
A in model X ∈ {SM,MM} with initial topology G0 and
sequence σ. To improve the factor of α, we simply perform
adjustments less often, by introducing our lazy topology
reconfiguration method.

We design LazyALG, given ALG, as follows. Let us divide
the list of requests σ into epochs. During one epoch the
graph maintained by LazyALG remains unmodified and the
graph maintained by ALG adjusts exactly as in the SM. An
epoch continues until the total cost of operations in LazyALG
exceeds α. After that LazyALG synchronizes (copies) its
graph with the graph maintained by ALG, resets the epoch
cost counter to zero, and moves to a new epoch.

In SANs, LazyALG adjusts the physical network topology,
while ALG is a local computation running at the network
coordinator, emulating the network. In our context, we are
interested in the cost of routing and network reconfiguration,
thus local computations as the ones done by the coordinator
running ALG are ignored in the cost calculation.

We aim to calculate the ratio sumCostMM (LazyALG,G0,σ)
sumCostMM (static,Gstatic,σ)

,
where static is the statically optimal algorithm, i.e. the
algorithm that has the perfect knowledge of σ, but can
only compute a static graph and perform no adjustments
(the cost notation does not require G0 in this case).
This ratio measures how close LazyALG is to static op-
timality; in case the ratio is a constant LazyALG is
statically optimal. Let us multiply and divide this cost
ratio by sumCostSM (ALG,G0, σ). By that we obtain:
sumCostMM (LazyALG,G0,σ)

sumCostSM (ALG,G0,σ)
· sumCostSM (ALG,G0,σ)
sumCostMM (static,Gstatic,σ)

We know that sumCostSM (ALG,G0,σ)
sumCostSM (static,Gstatic,σ)

is equal
to some value cALG, if ALG is statically optimal
in the SM, and also that sumCostMM (static, σ) =
sumCostSM (static, Gstatic, σ), since static outputs a fixed
graph. Thus, the cost ratio equals sumCostMM (LazyALG,G0,σ)

sumCostSM (ALG,G0,σ)
·

cALG. Recall that cSplayTree = O(1) as splay trees are
statically optimal, but we are not aware of cSPLAYNET.

Let us split now the numerator and the denominator of
the ratio (without cALG) into epochs. Let i be the index
of an epoch and m be the number of epochs. Suppose that



Gi is the graph right after the i-th epoch and σ(i) be the
requests performed during i-th epoch. By using the inequality
a1+a2+...+am
b1+b2+...+bm

≤ c·b1+c·b2+...+c·bm
b1+b2+...+bm

= c, where c = max
i=1...m

ai
bi

,
we get that:

sumCostMM (LazyALG,G0,σ)
sumCostSM (ALG,G0,σ)

=
m∑
i=1

sumCostMM (LazyALG,Gi−1,σ
(i))

m∑
i=1

sumCostSM (ALG,Gi−1,σ(i))
≤

max
i=1...m

sumCostMM (LazyALG,Gi−1,σ
(i))

sumCostSM (ALG,Gi−1,σ(i))

Thus, we focus on finding a lower bound for
sumCostSM (ALG, Gi−1, σ

(i)) and an upper bound for
sumCostMM (LazyALG,Gi−1, σ(i)) for each epoch. In
the following, we consider and bound only the ratios of the
epochs, not the whole execution.

B. Search requests

We start with LAZYSPLAYTREE, which is the outcome
of applying our lazy topology reconfiguration method to
the splay tree algorithm. LAZYSPLAYTREE achieves a
O(min(

√
α, log n))-ratio with respect to splay tree in the SM.

If α is regarded as a constant, then LAZYSPLAYTREE is
statically optimal in the MM.

Lemma 3. The LAZYSPLAYTREE algorithm is a O(
√
α)-

statically optimal algorithm.

Proof. At first, we introduce all the necessary notions. Let
TST and TLST be the trees maintained by the splay tree
(ST) and LAZYSPLAYTREE (LST) algorithms, respectively.
Let us divide the requests into epochs σ(i). Let σ(i)

j be the j-
th request in the i-th epoch. Let sSTij and sLSTij be the cost of
the corresponding request σ(i)

j in TST and TLST respectively.
Now, we give an intuition (and overview) on how the proof

works. We consider two cases. Suppose that each request in
TLST takes less than

√
α, thus, we did at least

√
α requests

in total during the epoch. This means that the total cost in ST
is at least

√
α per epoch while the total cost of the operations

in the epoch in LST ≈ α, thus the ratio is approximately
√
α.

Now, in the second case at least one operation in LST takes
more than

√
α. In ST we also visited the corresponding node

by visiting more than
√
α nodes on the path. This means that,

in total, the operations of the epoch in ST spends more than√
α. But since the total cost of the operations in the epoch

in LST is approximately α, the ratio is approximately
√
α.

Below we prove the theorem more formally.
By the definition of the epochs, we have for any epoch i. it

holds that
∑|σ(i)|−1
j=1 sSTij < α and

∑|σ(i)|
j=1 sSTij ≥ α. At the end

of the epoch, i.e., after the |si|-th request, by our lazy topology
reconfiguration method we synchronize the data structures and
make TLST to be exactly as TST structure. Without loss of
generality we consider an epoch i. We have two cases.

Case 1. If sLSTij ≤
√
α for all j then during the epoch we

perform more than
√
α operations: each operation costs less

than
√
α and we end the epoch when the total cost exceeds

α. Then sumCostMM (LST,Gi−1, σ
(i)) ≤ α +

√
α + 4 · α

because the cost of the last operation does not exceed
√
α

and we perform an adjustment on ∆ + 1 = 4 matchings, and
sumCostSM (ST,Gi−1, σ

(i)) ≥
√
α since we do more than√

α operations of cost at least one. So, our complexity of
static optimality cannot exceed α+

√
α+4·α√
α

= O(
√
α).

Case 2. If there exists j for which sLSTij ≥
√
α (if there

are several of them we take the one with the maximal cost)
we should consider two cases: sSTij ≥

√
α and sSTij <

√
α.

The second case is possible when before the request j in our
epoch we have performed splay operations, which decreased
the depth of requested node v. This is the only explanation
why the change of the depth happens since at the beginning
of the epoch the trees ST and LST were the same.

To begin with, we want to prove that
∑j
k=1 s

ST
ik ≥ sLSTij ,

i.e., the total cost of the requests on the splay tree from
the start of the epoch is greater than one operation in
LAZYSPLAYTREE.

Let us name the rotation operations during the splay: zig,
zig-zig and zig-zag, as splay-steps. At first, we need to
understand why and how the depth of our node can change
during the epoch. Consider Figure 2. We can see that one
splay-step can change the depth of all nodes in the tree.

Look at all splay-step operations that affected the depth of
node v. Let this set be SS, ∆d be the difference between
the depth of node v in TST and TLST , ∆ds and cs be the
differences in depth before and after splay operation s and the
total cost of finding the route and the adjustment in the current
lazy topology reconfiguration method s, i.e., the node’s depth.

∆d =
∑
s∈SS ∆ds ≤

by Figure 2

∑
s∈SS cs ≤

∑j−1
k=0 s

ST
ik

dLSTv = ∆d+ dSTv ≤
∑j−1
k=1 s

ST
ik + dSTv =

∑j
k=1 s

ST
ik

It means that
j∑

k=1

sSTij ≥ dLSTv = sLSTij ≥
√
α. Let

us substitute this into static optimal complexity estimation
during the epoch: sumCostMM (LST,Gi−1,σ

(i))

sumCostSM (ST,Gi−1,σ(i))
≤ α+sLSTij +4·α

j∑
k=0

sSTik

=

5·α
j∑
k=0

sSTik

+
sLSTij

j∑
k=0

sSTik

≤ 5 ·
√
α+O(1) = O(

√
α)

In Lemma 3 we proved that LAZYSPLAYTREE is O(
√
α)-

statically optimal. But what should we do, if α is too big (for
example, Ω(n))? We modify our algorithm for α > log2 n:
we use a static balanced tree of height log n instead of
LAZYSPLAYTREE. Then we show that our analysis is tight.

Theorem 3. LAZYSPLAYTREE is a O(min(
√
α, log n))-

statically optimal algorithm in the MM.

Proof. In Lemma 3 we proved that LAZYSPLAYTREE is
O(
√
a)-statically optimal (Lemma 3). And if α > log2 n we

use the static balanced tree algorithm which gives us O(log n)-
static optimality.

Theorem 4. The complexity bound of LAZYSPLAYTREE
is tight, i.e. can achieve at most O(min(

√
α, log n))-static

optimality.



A B

C
x

y x

y
A

B C

zig

-1

0 +1

+1

A B

zig-zig

C

D
x

y

z

A

B

C D

x

y

z-2

-1

+1 +2

+2

0

A

B

x

y

A

C

D

x

y

z

B C D

zig-zag z

+1 -1 -1 +1

0 +1

+1

Fig. 2: Change of depth in zig, zig-zig and zig-zag cases. In the zig case cost for adjustment and routing cost are 3 and 1
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Proof. Since, we provided an algorithm with
O(min(

√
α, log n)) static optimality ratio, we want to

prove that it is in fact the best ratio for our lazy topology
reconfiguration method. For that we need to find a pattern of
requests, that will always achieve O(

√
α) ratio.

The worst case for LAZYSPLAYTREE is when we access
one element for the whole epoch. Let us consider the number
of operations in tree TST . Let d be the depth of the accessed
node. In LAZYSPLAYTREE we will perform dαd e requests. In
a splay tree the first request costs d, while the next requests
cost one since we splayed the node to the root. So, the cost
is equal to C(d) = d+ dα−dd e.

Note, that simply C(d) ≥ d + α
d − 1 which by AM-GM

(arithmetic mean-geometric mean) inequality exceeds 2 ·
√
α−

1. The last inequality is satisfied with d =
√
α.

So, consider the following requests. We access a node at
depth

√
α. This gives us, that sumCostSM (ST,Gi−1, σ

(i)) =
C(
√
α) = O(

√
α) and sumCostMM (LST,Gi−1, σ

(i)) ≤ 5 ·
α+
√
α. It means, that in the worst case we achieve O(

√
α)-

static optimality.
But the tree is not obliged to have a node at depth

√
α. For

example, when a = n4 the height of the tree obviously does
not exceed n ≤

√
α = n2. In this case, we are trying to get

another bound that depends only on n.
We repeat our pattern to request one node the whole epoch.

For that we take a node at level log n. Thus, α
C(d) ≥

α
logn+ α

logn

which in turn does not exceed logn
2 since

√
α ≥ log n.

It means that the static optimality ratio lies between logn
2 <

c <
√
α. So, the lower bound for the c-static optimality of

LAZYSPLAYTREE is O(min(
√
α, log n)).

Remark 1. Theorem 3 can be applied to any self-adjusting
tree. The proof is split into two parts. In the first part if all
the depth of the requested nodes are less than

√
α we have

nothing to change. However, in the second case we have to
prove the fact that if we access a node of the tree that is
on depth D at the start of the epoch, the original tree (not
the lazy one) has to make at least D operations during the
epoch before the access. However, it is obviously true, since
our structure is a tree and we have to “visit” all the nodes
that are above the target node.

C. Routing requests

In the previous subsection, we applied our lazy topology
reconfiguration method to the splay tree algorithm. Here, we

show how to extend it to SplayNet algorithm and obtain a
SAN for the MM. The key difference in our analysis is that we
consider the distance of the route between two nodes, instead
of the depth from the root, as we did in the previous section.

Lemma 4. For any starting tree G0 and any list of re-
quests σ, sumCost(LAZYSPLAYNET, G0, σ) = O(

√
α ·

sumCost(SplayNet, G0, σ)).

Proof. The proof is similar to the proof of Lemma 3 with one
change: the cost of the request becomes the length of the path
between two nodes.

We briefly overview the proof. We recommend to become
familiar with the proof of Lemma 3 since it follows exactly
the same steps. We consider two cases:

a) Case 1: All requests in LAZYSPLAYNET cost not
more than

√
α. It means that we will do more than

√
α requests

in SplayNet. So, our complexity of optimality cannot be more
than α+

√
α+4·α√
α

= O(
√
α).

b) Case 2: We get a request that costs more than
√
α in

LAZYSPLAYNET and, again, we want to prove that the sum of
costs of the requests in SplayNet exceeds

√
α. At first, we say

that in one lazy topology reconfiguration method the maximum
difference of lengths between nodes in a tree cannot not be
more than the cost to perform the lazy topology reconfigura-
tion method. However, in each lazy topology reconfiguration
method we change no more than three links.

Then, let us sum all the costs of operations that affect the
distance between the requested nodes. We get

∑j
k=1 s

SN
ik ≥

lLSNst = sLSTij ≥
√
α and we use this property next:

sumCostMM (LSN,Gi−1,σ
(i))

sumCostSM (SN,Gi−1,σ(i))
≤ α+sLSNij +4·α

j∑
k=0

sSNik

= 5·α
j∑
k=0

sSNik

+

sLSNij

j∑
k=0

sSNik

≤ 5 ·
√
α+O(1) = O(

√
α).

In Lemma V-C we proved that LAZYSPLAYNET is O(
√
α)-

statically optimal. But what should we do, if our α is too
large (for example, Θ(n4))? We modify our algorithm when
α > log2 n: we use the static balanced tree of height log n
instead of Self-Adjusting algorithm.

Theorem 5. For any starting tree G0 and any list of requests
σ, sumCost(LAZYSPLAYNET, G0, σ) = O(min(

√
α, log n) ·

sumCost(SplayNet, G0, σ))



Algorithm 1: LAZYRENET

Input: A set of nodes & σ, a sequence of m comm. requests
Output: GT

LAZYRENET, physical topologies for T = 1, . . . ,m
and totalCost the cost of serving σ

Macros:
GT

RENET: RENET topology at time T (cached)
GT

LAZYRENET: LAZYRENET topology at time T (physical)
1 G0

LAZYRENET ← G0
RENET; /* initial topology */

2 epochCost← 0;
3 totalCost← 0;
4 for time T = 1, 2, . . . ,m do
5 serve request σT = (sT , dT ) in GT−1

LAZYRENET;
6 GT

RENET ← RENET(GT−1
RENET, σT ); /* new cached */

7 totalCost← totalCost + routingCost(GT−1
LAZYRENET, σT );

8 epochCost←epochCost+routingCost(GT−1
LAZYRENET, σT );

9 if epochCost ≥ α then
/* sync physical to cached */

10 GT
LAZYRENET ← GT

RENET;
11 epochCost← 0;
12 totalCost← totalCost + α;
13 else
14 GT

LAZYRENET ← GT−1
LAZYRENET ; /* not adjust */

Proof. In Lemma 3 we proved that LAZYSPLAYNET is
O(
√
a)-statically optimal (Lemma 3). And if α > log2 n static

balanced tree algorithm is O(log n)-statically optimal.

To prove the lower bound for the lazy algorithm we do
exactly as the proof of Theorem 4: for each epoch, we ask for
a pair with distance

√
α before the epoch and then repeat this

request
√
α− 1 times. Thus, we obtain the following.

Theorem 6. LAZYSPLAYNET cannot achieve better complex-
ity than O(min(

√
α, log n))-static optimality.

VI. BOUNDED DEGREE NETWORKS IN MM

We now turn to study LAZYRENET in the Matching Model
(MM), which is the product of applying lazy topology ad-
justment to RENET [6]. As in Section V, we show that the
LAZYRENET complexity is asymptotically bounded by

√
α

times the complexity of RENET.
a) RENETs recap: A RENET [6] is designed as a union

of ego (i.e. individual) views of each node. The ego view of
a node is either a star centered at a node and connected to
recently communicated nodes (if they are less than the degree
bound ∆) or a splay tree including these nodes, otherwise. We
give an overview of RENETs below.

A RENET is a SAN with node degree bounded by ∆
that we can define as Gt = (V,Ecoord ∪ Et). The subgraph
(V,Ecoord) is used for contacting the network coordinator C
and is static throughout the algorithm’s execution (we assume
it has diameter c). The subgraph (V,Et) is the dynamic part
of the network and is subject to change at any time t.

Initially, E0 is empty. Upon a request σT = (sT , dT ), T ∈
{1, . . . ,m}, if a route does not exist, sT asks C to add a route.
If both sT and dT are small nodes, i.e. if they have less than ∆
edges, then C adds a direct edge between sT and dT . A node
u becomes large when its degree becomes equal to ∆. In that

instant, the coordinator deletes all direct links of u, creates
a splay-tree (ego-tree) including all of u’s former neighbors,
and connects u to the splay-tree root. Communication from u
to any node v in the ego-tree of u is done by following the
route dictated by binary search and it is followed by splaying
v to the root of the ego-tree. If a small node v is a part of an
ego-tree, e.g. of u, when it becomes large, we pick a small
hepler node, add it in both ego-trees of u and v and use it as a
relay in when u and v communicate. If ET becomes full (e.g.
when there are no small nodes to pick or when |ET | reaches
a threshold), the coordinator deletes all nodes in ET (reset).

b) Complexity proof: If α, the reconfiguration cost in
MM, is greater than log2 n, then for every epoch T we
use the static arbitrary binary search tree, GT , which gives
us O(log n) complexity of static-optimality. Thus, for the
rest of the section we consider α to be less than log2 n.
We summarize LAZYRENET in Algorithm 1. Equivalently
to LAZYSPLAYNET, we maintain RENET logically in the
coordinator and LAZYRENET as the physical network. The
proof of Theorem 7 bases on the static nature of RENET
between resets and reduces to similar arguments to the proof
of Theorem 3, as splay trees are building blocks of RENET.

Theorem 7. For every initial graph G0 and list of communi-
cation requests σ, sumCost(LAZYRENET, G0, σ) = O(

√
α ·

sumCost(RENET, G0, σ)).

VII. EXPERIMENTAL EVALUATION

In this section, we show how different values of α affect
performance, i.e., the total number of steps, of our algorithms
in order to serve communication requests. We compare our
algorithms to the ones in the standard model (SM): LAZYS-
PLAYNET to SPLAYNET, and LAZYRENET to RENET. Our
empirical results confirm our theoretical results, but also show
that in practice, the performance can often be better.

Setup and data: The code for the algorithms was written
in Java and Python and we have provided public access in
the following repositories: RENET [23], LAZYRENET [24],
SPLAYNET and LAZYSPLAYNET [25].

For our experiments, we took requests sampled uniformly
at random from four datasets in [4]: Facebook datacenter
workload [26], a high performance computing (HPC) work-
load [27], a workload on ProjectToR [3], and a synthetic
pFabric (pFab) [28] workload. For each scenario with a fixed
number of k nodes, we processed each raw sample of requests
by (i) selecting the first k nodes that appear in the raw sample,
(ii) deleting all requests that contain the remaining nodes, and
(iii) keeping as many requests as the target size of the request
sequence (106 in Section VII-A and 104 in Section VII-B).

A. LAZYSPLAYNET network

We run LAZYSPLAYNET and SPLAYNET on four datasets.
We restrict all datasets to 106 requests on: Facebook with 104

nodes, HPC with 500 nodes, ProjectToR with 121 nodes, and
pFab with 144 nodes (the latter three datasets are small).

Figure 3 shows for each workload how α affects the ratio
of the cost of LAZYSPLAYNET and the cost of SPLAYNET
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Fig. 3: Total cost of LAZYSPLAYNET in comparison to
standard SPLAYNET in SM.
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Fig. 4: Total cost of operations per different sizes of the
network and α on Facebook dataset.

in the SM. For all workloads except for pFab, the plot seems
to reflect the square root of α which was predicted by our
Theorem 2. The results for pFab are a little bit different. This
happens due to the fact that the requests fit very well on
the tree and, thus, almost all requests cost O(1). Therefore,
there are O(α) requests between the synchronization and this
synchronization can be amortized over the previous requests.

In Figure 4 we show how the average cost of an operation
of LAZYSPLAYNET depends on the size of the network on
the Facebook dataset, for different values of α. We chose
this real-world dataset, because it is large and representative
of datacenter traffic. As expected the plot looks similar to a
logarithmic function.

B. LAZYRENET network

We run LAZYRENET and RENET on four datasets. Due to
the high computational complexity of the RENET algorithm
we were only able to run it on smaller datasets than in the
previous subsection. We restrict them to 104 requests on:
Facebook with 100 nodes, HPC with 20 nodes, ProjectToR
with 88 nodes, and pFab with 96 nodes (node quantities were
reduced due to the longer running time of RENET).
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Fig. 5: Total cost of LAZYRENET in comparison to standard
RENET in SM.

Figure 5 shows for each workload how α affects the ratio
of the cost of LAZYRENET and the cost of RENET in SM.
By our Theorem 7, we know that the ratio of LAZYRENET
and RENET does not exceed O(

√
α). However, in practice, as

can be seen on the plot, we get almost constant ratio which
differs from SPLAYNET. This difference can be explained by
the significantly increased flexibility that RENETs provide in
contrast to the tree topology of SPLAYNET, which allows the
network to better fit to the demand. The difference in the
performance of each dataset is partly explained by the different
degree of locality in these datasets [4, Fig. 2]. Specifically,
the Facebook dataset has the highest temporal locality and the
best performance. As part of future work, we aim to further
investigate this behaviour in a larger scale.

VIII. CONCLUSION AND FUTURE WORK

We initiated the study of online algorithms for recon-
figurable networks in the more realistic matching model.
In particular, we presented a lazy topology reconfiguration
method for designing self-adjusting networks in the Matching
Model (MM), using reference algorithms in the Standard
(uniform-cost) Model (SM). We showed the we can use a lazy
version of the move-to-front rule in line topologies to achieve
static optimality. We further presented LAZYSPLAYNET and
LAZYRENET, which are obtained by applying our lazy topol-
ogy reconfiguration method to SPLAYNET and RENET. We
showed that the cost of LAZYSPLAYNET and LAZYRENET in
MM is asymptotically bounded by O(min(

√
α, log n)) times

the cost of SPLAYNET and RENET in the SM. Our theoretical
results are accompanied by experiments on real-world data
from datacenter network traces, confirming that the theoretical
bounds are respected, while LAZYRENET performed better in
practice. We believe that our work opens new opportunities to
further improve the

√
α factor and design future self-adjusting

networks in the more realistic Matching Model. The authors
have provided public access to their code and data (see Section
VII).
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