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Abstract—We consider a variant of the online caching problem
where the items exhibit dependencies among each other: an item
can reside in the cache only if all its dependent items are also in
the cache. The dependency relations can form any directed acyclic
graph. These requirements arise in systems such as CacheFlow
(SOSR 2016) that cache forwarding rules for packet classification
in IP-based communication networks.

First, we present an optimal randomized online caching
algorithm which accounts for dependencies among the items.
Our randomized algorithm is O(log k)-competitive, where k is
the size of the cache, meaning that our algorithm never incurs
the cost of O(log k) times higher than even an optimal algorithm
that knows the future input sequence.

Second, we consider the bypassing model, where requests
can be served at a fixed price without fetching the item and
its dependencies into the cache — a variant of caching with
dependencies introduced by Bienkowski et al. at SPAA 2017.
For this setting, we give an O(

√
k · log k)-competitive algorithm,

which significantly improves the best known competitiveness. We
conduct a small case study, to find out that our algorithm incurs
on average 2x lower cost.

I. INTRODUCTION

Performance of most computer systems today rely on how
well the caching algorithms manage their caches to avoid
cache misses. Existing caching algorithms treat cached items
as independent, however in some applications, items exhibit
dependencies (modeled with a directed acyclic graph) among
each other: an item can reside in the cache only if all its
dependent items are also in the cache.

For example, dependency-aware caching has applications
in communication networks, in IP packet classification [1] in
network routers and switches (see Section I-A), where the goal
is to cache the set of heavy hitter rules. We elaborate on the
setting later in this section. In this paper, we present an algo-
rithm with provable performance guaranties, thus proposing
a rigorous, carefully analyzed alternative to the CacheFlow
system [2].

Designing caching algorithms poses interesting challenges
that can be overcome with a principled approach. In particular,
as shifts in the traffic patterns (and hence also in the heavy
hitter rules) may not be predictable, which calls for algorithms
that operate in an online manner and adjust the cache in
reaction to the traffic they see. A well-established method
to deal with uncertainty of the future is the framework of
online algorithms and competitive analysis [3], and the classic
caching algorithms were often designed and analyzed for this
setting [3, Ch. 3, 4] [4, Ch. 3]. Ideally, these online algorithms
achieve a good competitive ratio: intuitively, without knowing
the future demand, their performance is almost as good as a
clairvoyant optimal offline algorithm.

To design algorithms that efficiently manage a cache in pres-
ence of dependencies, we generalize the well-known caching
problem [5] to respect dependencies. The dependencies can
form an arbitrary directed acyclic graph, see Figure 1 for an
illustration. The objective of the algorithm is to minimize the
number of fetches.
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Fig. 1. Example directed acyclic graph of dependencies among items. An
arrow from u to v means that if u is in the cache then also v must be in
the cache. The size of the cache is k = 8, the items 9, 10 and 11 are not in
the cache while the grayed items 1, 2, . . . , 8 are in the cache. If a request to
9 would arrive, we must choose what item to evict while keeping a feasible
cache (8 or 7 are the only choices here) before we fetch 9.

Introducing dependencies among the cached items unravels
algorithm design challenges unseen in the classic caching
problem. Consider the situation when a cache miss occurs,
and we need to choose a single item to evict. Then, we cannot
freely pick any item from the cache to evict, as other items in
the cache may depend on them. Hence, simply using a classic
dependency-unaware algorithm such as Random Mark [6]
leads to infeasible solutions, as other items may depend on
the item chosen to be evicted. Furthermore, how to decide
which item to evict? If we have two items that could be
evicted, should we base the decision upon the number of
descendants of these items? If we favor to evict an item with
more descendants, then we would have more flexibility to
choose items for future evictions. These questions become
even more challenging when items can have multiple parents,
and the dependency graph is not a tree.

The main contribution of our paper is an optimal random-
ized online Bucketing for the dependency-aware caching. Our
analysis shows that our generalized algorithm is O(log k)-
competitive, where k is the size of the cache. We dive
deeper into the analysis of our randomized algorithm with a
parameterized analysis of the competitive ratio, revealing how
the topology of the dependency graph influences the resulting
competitive ratio, linking its competitiveness to the maximum
independent set in the dependency graph.



As an additional contribution, we generalize our randomized
algorithm to the setting with bypassing [7], [8], where requests
can be served for a fixed price without fetching to the cache.
In the context of packet classification, bypassing delegates
classification of a packet to the centralized controller, similarly
to the design introduced in CacheFlow [2]. This variant of
caching with dependencies and bypassing was introduced by
Bienkowski et al. at SPAA 2017, where the authors gave
an O(k · h(T ))-competitive [9] where h(T ) is the height
of the dependency graph T . By generalizing our Bucketing
procedure, we design an algorithm that is O(

√
k · log k)-

competitive. Our result hence significantly improves the best
known competitiveness, reaching the sublinear dependency on
the cache size k.

A. Motivation: Packet Classification

Packet classification is a fundamental task in communication
networks [1]. For example, each packet incoming to a router
is matched against a set of predefined rules (e.g. does the
packet match an IP range?) to determine how the router should
handle the packet (e.g. send via a port); a packet may match
multiple rules, and among them, the router uses the highest
priority rule. The router then handles the packet according to
the action associated with the rule.

The number of rules a router needs to store is growing
rapidly for several reasons [10]. This introduces significant
memory requirements, requiring more and more expensive
and power-hungry hardware [11]. To address this problem,
a natural approach, studied in systems such as CacheFlow [2]
and TreeCaching by Bienkowski et al. at SPAA 2017 [9], is
to store only a small subset of the rules at the router and
the rest in a cheaper but potentially slower memory, e.g., at a
(software-defined) network controller, essentially a two-level
caching hierarchy. However, we cannot blindly use existing
caching algorithms due to dependencies that arise among the
rules with overlapping patterns. Precisely, to assure that the
router correctly forwards packets with its cached subset of
rules, if two rules overlap, the higher priority rule must be
present in the cache when the lower priority rule is present.

The structure of the dependency graph depends on how
general the packet forwarding rules are. In case of prefix rule
matching for a single field (destination IP), the dependency
graph is a tree [9]. However, in multi-field matching, com-
monly used in OpenFlow [12], the dependency can have a
more general form of a DAG, even if the IP fields are matched
by the longest prefix rule. Also, even for single-field matching,
the wildcard rule can result in DAG dependencies [2].

For more background and details on such network archi-
tectures in general and on the technical setup of caching
classification rules, we refer to prior works [2], [13], [9], [14].

B. Related Work

Due to their wide applications, algorithms for caching (often
also called paging) were studied for decades, and here we
overview the results from the perspective of competitive anal-
ysis. The seminal paper of Sleator and Tarjan [5] originated the

concept of competitive analysis of online algorithms. In their
paper, an upper bound of k-competitiveness was established
for a family of marking algorithms that included commonly
studied Least Recently Used and FIFO algorithms, and it
was shown that no deterministic algorithm can be better than
k-competitive. Randomization helps: Fiat et al. [6] showed
that an algorithm RandomMark is 2Hk-competitive and no
randomized algorithm can be better than Hk-competitive.
Two algorithms [15], [16] match this lower bound, hence
competitiveness of online caching is fully understood in this
model. Some existing work on caching uses similar termi-
nology to dependencies, but the models differ substantially
from ours. First, dependency-aware caching was studied from
the practical perspective in the context of parallel processing
systems [17], but the dependencies are required only at the
fetch time, and can immediately be evicted afterward. Second,
online caching was considered under a restriction called access
graph [18], a request at time t can be followed only by a subset
of requests at t + 1, consistently with a given access graph.
In their work, the cache state is unrestricted, and in contrast,
in our model we restrict feasible cache configurations rather
than feasible input sequences.

Our paper is the most related to work of Bienkowski et
al. [9], where they introduce online tree caching, a caching
variant that can be viewed as online dependency-aware caching
with the dependency graphs restricted to binary trees. In their
model the requests can be bypassed [7], [8]: the request for
item not present in the cache can be served from the slow
memory, incurring a fixed cost. The algorithm presented in
their paper attains the competitive ratio of O(k ·h(T )), where
h(T ) is the height of the dependency tree.

In the context of packet classification in communication
networks, an algorithm CacheFlow [2] was proposed to deal
with dependencies among the rules. The algorithm splits
the packet classification rules to minimize overlap, and uses
the estimated past rule popularity statistics to determine the
best cache configuration. Empirical evaluations of CacheFlow
demonstrate the applicability of the approach in the context
of packet classification. Other worth-mentioning attempts to
improve caching forwarding rules tried to avoid involving
the controller by using cooperation between switches [13] or
optimizing rules storage with dynamic compression algorithms
[19], [20] for more restricted scenarios.

C. Contributions

First, we consider the dependency-aware caching problem
in the most natural setting without bypassing, where after
requesting an item, it must be placed in the cache along
with its dependencies. For this setting, we develop optimal
deterministic and randomized algorithms. The optimal deter-
ministic algorithm, Recursive LRU is k-competitive, and the
randomized algorithm Bucketing is 2Hk-competitive, where
Hk is the k-th Harmonic number. Further, we characterize
how the competitive ratio depends on the topology of the
dependency graph. Our randomized algorithm is 2Hmin{k,ℓ}-
competitive, where ℓ is the size of the maximum independent



set in the transitive closure of the dependency graph, k is the
size of the cache, and Hk is the k-th Harmonic number.

We complement this result by showing that no randomized
algorithm can be better than Hmin{k,ℓ}-competitive. Hence,
our algorithm is asymptotically optimal from the competitive
standpoint. We highlight that the lower bound holds even
for the simplest dependency structure of the tree, hence the
algorithm is optimal for the simplest case of prefix rule
matching (cf. Section I-A).

Next, we consider a related variant of dependency-aware
caching where requests can be bypassed [7], [8], meaning that
for a fixed cost an algorithm could avoid potentially costly
fetch of the requested item and its dependencies. This setting
was already studied in the literature in the context of caching
packet classification rules [1]: Bienkowski et al. [9] proposed
an O(k·h(T ))-competitive algorithm, where h(T ) is the height
of the dependency tree (their algorithm restrict dependencies to
trees). We significantly improve upon this result by developing
a (6

√
k ·Hmin{k,ℓ})-competitive algorithm, a ratio that is

independent of the height of the dependency graph. We note
that in contrast to this result, the competitive ratio of our
algorithm can only improve when we account for properties
of the dependency graph.

Finally, we perform an empirical case study comparing
the TreeCaching algorithm of Bienkowski et al. [9] with our
randomized algorithm, finding that it on average performs 2x
better in terms of the average cost per request.

II. PRELIMINARIES

A. Model

We introduce the online dependency-aware caching prob-
lem, defined as follows. Our task is to manage a two level
memory hierarchy, consisting of a slow memory which stores
the universe U of n items, and a fast memory which stores at
most k items, where k ≥ 1 is a parameter.

At the beginning we are given a set of dependencies among
the items, given as an arbitrary directed acyclic graph (DAG)
G = (U , E), which restricts the set of feasible caches. For
each item x, the set of its dependencies are the items reachable
from x in G, excluding the item x itself. At any time, an item
can be present in the cache only if all its dependencies are
in the cache. We assume that each item has at most k − 1
dependencies. If G has no edges, the problem is equivalent to
the classic online caching problem [21].

In the online manner, we receive a sequence σ of requests to
the items. If a requested item is not in the cache, we must fetch
this item into the cache alongside with any of its dependency
that may not be in the cache. As the size of the cache is limited,
we may need to evict other items to fetch the requested item
and its dependencies. The goal of the algorithm is to minimize
the number of fetches.

B. Notation

Let x and y be two items of the universe U . We say that y
is a descendant of x (or x is an ancestor of y) if there exists
a directed path from x to y in G. By T (x) we denote the set

of all descendants of x. In other words, T (x) is the set that
contains x and all its dependencies.

For the rest of the paper, we fix a total order τ among
the items such that τ is consistent with an arbitrary reversed
topological order of the items in G. For example, the numbers
in the items of Figure 1 are a reversed topological order and
the order ≤ on the item’s associated numbers is a valid order
τ between the items.

For any directed acyclic graph D, we define its maximum
independent set as follows. First, we take the transitive closure
DT of D. Then, we take the symmetric closure DS of DT . We
say that the maximum independent set of D is the maximum
independent set of DS .

III. DEPENDENCY-AWARE CACHING WITHOUT BYPASSING

In this section, we study the problem of online caching with
dependencies in the randomized setting. We present a random-
ized algorithm Bucketing and prove that its expected com-
petitive ratio is always below 2Hmin{k,ℓ}. In Appendix III-C
we show an asymptotically tight lower bound which proves
Bucketing is the best possible.

A. The Randomized Algorithm Bucketing
In this section we present our randomized algorithm called

Bucketing. The design of the algorithm relies on the notion
of bucket define hereafter.

Definition 1. A bucket is a subset of items with the following
properties:

– it is not empty
– all its items are cached
– evicting its item with maximum τ (called maximum item)

leaves a feasible cache

We say that a bucket is frozen if it used to be a bucket but
does not match the definition anymore.

Having a bucket ensures that one of its items — the
one with maximum τ — is ready for eviction. Hence,
our algorithm Bucketing uses buckets as its only eviction
interface; its main tasks then are to maintain a pool of buckets
and choose a bucket when an eviction is needed. Here follows
a description of the algorithm.

Bucketing operates in phases. The first phase starts with the
first request σ1. At the start of a phase, Bucketing generates
a new pool of buckets. To do so, it iterates over each maximal
cached item x (i.e. cached item without cached ancestor) and
inserts T (x) as a bucket in the pool (see an illustration in
Figure 2). Bucketing now has a non-empty pool of buckets.

Whenever a request arrives, Bucketing starts by removing
the requested item and its dependencies from all buckets. To
satisfy the request, multiple items might be missing: in order to
fetch them, Bucketing considers the missing items one by one
in increasing τ . When it considers a missing item to fetch, the
cache may however be full. In that case, Bucketing chooses
one bucket uniformly at random in the pool and evicts its
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Fig. 2. Example of buckets formed at the beginning of a phase. We have
three buckets, depicted by dashed sets, with maximum items (i.e. candidates
for eviction) 6, 8 and 7. The item 1 is in two buckets.

maximum item out of the cache (and also remove the evicted
item from all buckets). Bucketing then fetches the considered
item.

At some point, it may happen that some subset of items in
our pool is no longer a bucket. The reason may be that the
subset has become empty, or that its maximum item cannot
be evicted due to dependency relations. In that situation, we
say that the bucket is frozen. Whatever the reason that caused
it, if a bucket froze then Bucketing immediately removes that
bucket from the pool. Finally, a new phase begins when the
pool becomes empty.

Above we gave an almost complete presentation of Bucket-
ing. There are however still edge cases that need to be properly
addressed for correctness, for instance what to do if a new
phase starts in the middle of serving a request. For a complete
description we refer to the pseudo-code in algorithm 1.

If G has no edges, our problem is equivalent to classic
caching. In that case, it is worth noting that our algorithm
Bucketing is then equivalent to the well-known, optimal
random-mark algorithm by Fiat et al [6]. In a sense, a bucket
in our algorithm directly generalizes an unmarked nodes in
the random-mark algorithm.

B. Proof for the competitiveness of Bucketing
In this section, we prove that Bucketing holds an expected

competitive ratio of Hmin{k,ℓ} against the oblivious adversary.

1) Upper Bound for the Bucketing Algorithm: In this
subsection, we derive an upper bound on the expected cost
(number of fetches) of Bucketing during any phase. Fix any
input sequence σ and directed acyclic graph G. In the next
paragraph we make our analysis framework more precise.

In order to better synchronize our analysis with the actions
of Bucketing, we will use a more fine-grained yet equivalent
request sequence than σ. We call this sequence στ and con-
struct it as follows. Iterate over the requests of σ and replace
each x by T (x) sorted in increasing τ . We refer to the items of
στ as pseudo-requests. As Bucketing considers the items to
fetch in the same order as in στ , the following correspondence
holds: to any instant when Bucketing considers a given
item w corresponds a unique pseudo-request w ∈ στ . We

Algorithm 1: Randomized algorithm Bucketing
1 procedure ResetBuckets():
2 Γ := ∅
3 foreach cached item x with no cached ancestor do
4 Γ := Γ ∪ {T (x)}
5 return Γ
6 ▷ Fetch w, evict an item beforehand if necessary
7 procedure EvictAndFetch(w, Γ):
8 if w not in the cache then
9 if the cache is full then

10 choose B ∈ Γ uniformly at random, let
y ∈ B with maximum τ

11 Remove y from all buckets
12 Remove all frozen buckets from Γ
13 Evict y from the cache
14 Fetch w into the cache
15 return Γ
16 ▷ Main Algorithm
17 algorithm Bucketing:
18 Γ← ResetBuckets()
19 when a new request v arrives do
20 for w in T (v) ordered in increasing τ do
21 Remove the items of T (v) from all buckets
22 Remove all frozen buckets from Γ
23 if Γ = ∅ then
24 Γ← ResetBuckets()
25 Remove the items of T (v) from all

buckets
26 Remove all frozen buckets from Γ
27 Γ← EvictAndFetch(w,Γ)
28 Serve the request to v

can therefore without ambiguity refer to specific actions that
Bucketing performed after receiving a given pseudo-request
w ∈ στ , such as an eviction or a fetch.

We partition the sequence στ into subsequences separated
by bucket regeneration events (as defined above). We call
those subsequences phases and will upper-bound the cost of
Bucketing on each of them.

Let P be a phase, and let m be the number of buckets that
Bucketing generated at the beginning of P . We further break
P into subsequences called fragments. The fragments make up
a partition of P so that the number buckets in the pool stays
the same during each fragment. In other words, the fragments
are separated by freeze events. If two or more buckets freeze
at the same time (i.e., due to the same pseudo-request), we
order these freeze events arbitrarily. Hence, we can without
ambiguity name each fragment after the number of buckets
that are already frozen as it begins: we call the fragments
F0, F1 . . . Fm−1.

Let i ∈ [0,m − 1] and b ∈ [1,m], we define Xb
i as the

random variable equal to the number of items that were evicted
during Fi in the b-th bucket to freeze. Xi =

∑m
b=1 X

b
i is the

total number of evicted items during Fi. The following lemma



then holds.

Lemma 2. ∀i ∈ [0,m− 1], ∀b ∈ [i+ 1,m] it holds

E[Xb
i ] =

E[Xi]

m− i

Proof. We first show that, during any fragment i, each non-
frozen bucket experiences the same number of evictions in
expectation. To this end, we label the successive pseudo-
requests in fragment Fi with integer numbers t = 1, 2, 3, . . ..
We define the following random variables: for any t, let E(t)
be 1 if the fragment Fi has a t-th pseudo-request and if that t-th
pseudo-request leads to an eviction, and 0 otherwise. We also
define random variables Xb

i (t) which equals 1 if an eviction
occurs in the b-th bucket when pseudo-request t arrives, and
0 otherwise. (Notice that Xb

i (t) equals 0 if the fragment Fi

does not have a t-th pseudo-request.)
Then it holds

E[Xb
i (t)] = E[Xb

i (t)|E(t) = 1] · P[E(t) = 1]

+E[Xb
i (t)|E(t) = 0] · P[E(t) = 0]

=
1

m− i
· P[E(t) = 1] + 0

Hence, the expected value of Xb
i (t) does not depend on the

index b. Therefore, for all b, b′ ∈ [i + 1,m], it holds that
E[Xb

i (t)] = E[Xb′

i (t)].
Notice that for all b ∈ [i+ 1,m] it holds Xb

i =
∑

t X
b
i (t).

Hence, each non-frozen bucket indeed in expectation experi-
ences the same number of evictions. More formally, for all
b, b′ ∈ [i+ 1,m], we have E[Xb

i ] = E[Xb′

i ].
Finally, we prove the claim of the lemma. We have that

Xb
i = 0 for all b ∈ [1, i] since the buckets it refers to are

frozen when fragment Fi begins. Hence, it holds E[Xi] =
m∑

b=i+1

E[Xb
i ], and ∀b ∈ [i+1,m] we have E[Xb

i ] =
E[Xi]
m−i .

Let x ∈ U be an item that was fetched during phase P . We
say that this fetch is clean if x was not in the cache at the
beginning of P , otherwise it is stale. Let C be the number of
clean fetches during P and S be the number of stale fetches
during P . The total cost during phase P is then C + S.

We characterize the phase in more details. Let i ∈ [0,m−
1], Ci and Si are respectively the number of clean and stale
fetches during fragment Fi. Zooming more, let b ∈ [1,m], Sb

i

is the number of stale fetches during fragment i in the b-th
bucket to freeze — we say that a stale fetch is in a given
bucket if the fetched item was previously evicted because that
bucket was randomly chosen to perform the eviction. Finally,
Sb =

∑m−1
i=0 Sb

i is the total number of stale fetches in the b-th
bucket to freeze throughout the phase P .

Lemma 3. Let b ∈ [1,m], it holds that E[Sb] ≤
b−1∑
i=0

E[Ci+Si]
m−i .

Proof. For a stale fetch to occur, the fetched item in question
must have been evicted previously in the phase. Hence, for
a given bucket and across the whole phase, the number of

stale fetches is no greater than the number of evictions; more
formally, ∀b ∈ [1,m] it holds

Sb ≤
m−1∑
i=0

Xb
i .

Past fragment Fb−1, bucket b becomes frozen and will expe-
rience no more evictions for the rest of the phase; it therefore
holds that ∀i ∈ [b,m − 1], Xb

i = 0. Using this remark and
Lemma 2, we get

E[Sb] ≤
b−1∑
i=0

E[Xb
i ] =

b−1∑
i=0

E[Xi]

m− i
. (1)

Moreover, after any eviction directly occurs a fetch: during
any period of time, the number of evictions therefore is no
larger than the number of fetches. Taking fragments as periods
of time and noticing that any fetch is either clean or stale, it
therefore holds that ∀i ∈ [0,m− 1], Xi ≤ Ci + Si. From this
inequality we directly derive

b−1∑
i=0

E[Xi]

m− i
≤

b−1∑
i=0

E[Ci + Si]

m− i
, (2)

which proves the claim combined with (1).

Lemma 4. For any b ∈ [1,m] it holds that

E[Sb] ≤ E[C]

m− b+ 1

Proof. By induction on b, we prove the following inequality:

b−1∑
i=0

E[Ci + Si]

m− i
≤ 1

m− b+ 1

b−1∑
i=0

E[Ci]−
b−1∑
j=1

m−1∑
i=b

E[Sj
i ]


(3)

which directly proves the claim along with using Lemma 3.
Inequality (3) clearly holds for b = 1 since S0 = 0. Let b ∈
[1,m], we suppose that the claim holds for b. Then,



b∑
i=0

E[Ci + Si]

m− i
=

b−1∑
i=0

E[Ci + Si]

m− i
+

E[Cb] + E[Sb]

m− b

=

b−1∑
i=0

E[Ci + Si]

m− i

+

E[Cb] + E[Sb] +
b−1∑
j=1

E[Sj
b ]−

m−1∑
i=b+1

E[Sb
i ]

m− b

≤
b−1∑
i=0

E[Ci + Si]

m− i

+

E[Cb] +
b−1∑
i=0

E[Ci+Si]
m−i +

b−1∑
j=1

E[Sj
b ]−

m−1∑
i=b+1

E[Sb
i ]

m− b

=
m− b+ 1

m− b
·

(
b−1∑
i=0

E[Ci + Si]

m− i

)

+

E[Cb] +
b−1∑
j=1

E[Sj
b ]−

m−1∑
i=b+1

E[Sb
i ]

m− b

≤

b−1∑
i=0

E[Ci]−
b−1∑
j=1

m−1∑
i=b

E[Sj
i ]

m− b

+

E[Cb] +
b−1∑
j=1

E[Sj
b ]−

m−1∑
i=b+1

E[Sb
i ]

m− b

=
1

m− b
·

 b∑
i=0

E[Ci]−
b∑

j=1

m−1∑
i=b+1

E[Sj
i ]


We used the identity Sb = Sb +

∑b−1
j=1 S

j
b −

∑m−1
i=b+1 S

b
i in

line 2, Lemma 2 in line 3 and the induction hypothesis in
line 5. The induction holds hence the claim is true for all
b ∈ [1,m].

Theorem 5. In each phase, Bucketing fetches in expectation
no more than Hmin{k,ℓ} · C items, where C is the number
of clean fetches in the phase, ℓ is the size of the maximum
independent set in the transitive closure of the dependency
graph and k is the size of the cache.

Proof. We first examine the number of stale fetches in the
last bucket to freeze. Until it freezes, they are no fetches in
it (otherwise it would have frozen earlier); but when it finally
freezes, the phase is over and no more fetches will occur.
Hence, there are no stale fetches in the last bucket to freeze,
i.e., Sm = 0. Summing the inequalities from Lemma 4 for all
buckets b ∈ [1,m−1] and taking into account the last bucket’s
specificity gives us the following

E[S] ≤

(
m−1∑
b=1

1

m− b+ 1

)
· E[C].

Adding the expected total number of clean fetches on both
members, noticing that C does not depend on the random
choices of Bucketing (i.e. that E[C] = C) and that the initial
number of buckets m is smaller than both k and ℓ ends the
proof.

2) A Lower Bound for any Algorithm in a Phase: Let
OPT be an optimal algorithm for the input sequence σ.
Similarly like Fiat et al. [6], we can prove that OPT has
an (amortized) cost at least C in every phase. Only one
technicality prevents us from directly applying their proof; it
arises when the phase ends while Bucketing have not yet
fetched all the dependencies of the next request. Then, there
is no guarantee that OPT must have paid to fetch those items
during the current phase. Intuitively, the lower-bound however
still applies since those items will be paid by OPT during the
next phase anyway.

One method to present a rigorous proof is to compare
with a specific optimal offline algorithm OPTτ that performs
the same evictions and fetches as OPT for each request,
but in a specific order: for each request, all the evictions
happen first and then the fetches happen following the τ order.
OPTτ pays the same cost as OPT and it is feasible. More
importantly, OPTτ is synchronized with Bucketing which
allows to directly apply the proof from Fiat et al.

3) Bounding the Competitive Ratio: The following theorem
ends the analysis of our randomized algorithm Bucketing.

Theorem 6. The algorithm Bucketing is 2Hmin{k,ℓ}-
competitive against the oblivious adversary, where ℓ is the
size of the maximum independent set in the transitive closure
of the dependency graph and k is the size of the cache.

Proof. Directly from the above upper and lower-bounds.

This result is tight with the lower bound that we present in
the next subsection.

C. A Lower Bound for Dependency-Aware Caching without
Bypassing

In this section we give a lower bound for the competitive
ratio of any randomized online algorithm for caching with
dependencies. The competitive ratio depends on the topology
of the graph, namely the maximum independent set (for the
definition of the maximum independent set in directed graphs
we refer to Section II-B). This lower bound asymptotically
matches the upper bound given in Section 1.

Theorem 7. No randomized online algorithm can achieve a
competitive ratio better than Hmin{k,ℓ} against the oblivious
adversary, where k is the size of the cache and ℓ is the size
of the maximum independent set of the dependency graph.

We defer the proof of this theorem to the full version of
the paper due to page restrictions, and we sketch it below. We
consider a dependency graph consisting of ℓ−1 isolated items
and a single chain of length k − ℓ+ 2. Then, we construct a
probability distribution for requesting the maximum nodes in
the graph, similarly to the lower bound of Hk for caching by



Motwani and Raghavan [22]. To bound the competitive ratio,
we consider the k-phase partition of this input sequence, argue
that in each phase any deterministic algorithm pays Hmin{k,ℓ},
whereas an optimal algorithm pays 1. We derive the bound for
randomized algorithms with the Yao’s principle [23].

D. Deterministic Algorithm Recursive LRU

To finish the section on the model variant without bypassing,
we present a simple optimal deterministic algorithm. This
completes the picture for this model: both our randomized
and deterministic results are tight.

We define a natural deterministic algorithm for online
dependency-aware caching, recursive LRU, which invokes the
classic LRU algorithm for all dependencies of the requested
item. Precisely, we split the algorithm’s logic into two loops.
The first loop updates the timestamps top-to-bottom to assure
that the evictions will take place in the correct order. The sec-
ond loop fetches dependencies bottom-to-top, to assure that at
each intermediate cache state all items have their dependencies
in the cache, consistently with the model definition.

We claim that this algorithm is k-competitive. The lower
bounds for the classic online caching imply lower bounds for
the more general dependency-aware caching problem, hence
the lower bound of k given by Sleator and Tarjan [5] implies
that DET is optimal.

Theorem 8. DET is k-competitive.

We defer the proof of this theorem to the full version of the
paper due to page restrictions.

We note this simple design of recursively applying a known
algorithm for the classic variant works for the deterministic
case only, but does not lead to optimal competitiveness for
the randomized algorithm.

IV. DEPENDENCY-AWARE CACHING WITH BYPASSING

In this section, we consider a model of dependency-aware
caching with bypassing, a similar setting to the classic caching
with bypassing [7], [8]. When a request arrives, an algorithm
may choose to either (1) serve it from the cache by fetching the
requested item and its missing dependencies, or (2) to bypass
it for a cost of 1. The first option, serving a request from the
cache, may be more costly if the number of the dependencies
are large, however the subsequent requests to the same item are
free (until the cache changes). The second option, bypassing
a request, always cost 1 per bypassed request, but does not
require to fetch the dependencies of the requested item.

Introducing bypassing unravels new challenges to design a
competitive online algorithm. Whether it is more beneficial to
fetch or to bypass a request depends on the future requests.
Hence, bypassing brings uncertainty to the online algorithm
while it clearly benefits an offline algorithm.

In this section, we show how to use the randomized eviction
procedure of the last section to take advantage of bypassing
capabilities while providing strong worst case guaranties. We
present the algorithm BucketingBypass and prove it attains
a competitive ratio of 6

√
k ·Hmin{k,ℓ} against the oblivious

adversary, where k is the size of the cache, ℓ is the size of
the maximum independent set in the transitive closure of the
dependency graph and Hk is the k-th Harmonic number.

A. The Randomized Algorithm Bucketing with Bypassing

1) Presentation of the algorithm BucketingBypass: We
present our randomized algorithm BucketingBypass that
deals with the case when bypassing is allowed. Just like
Bucketing, BucketingBypass operates in phases. The first
phase starts with the first request σ1. At the start of a phase,
BucketingBypass initializes a pool of buckets exactly like
Bucketing.

Whenever a request arrives, say to an item v, we distinguish
between multiple cases. If v is already in the cache, Bucket-
ingBypass does the same as the algorithm Bucketing without
bypassing: it removes T (v) from all buckets and serves the
request. Otherwise, in case v is not in the cache, Bucketing-
Bypass selects a item w successor of v positioned just above
the cache frontier; it chooses the one item with minimum τ to
avoid ambiguity. BucketingBypass then lists the items that
are both successor of w and in a bucket — let S be the set of
those items. If S contains strictly more than

√
k/Hmin{k,ℓ}

items then BucketingBypass removes the
√

k/Hmin{k,ℓ}
ones with minimum τ from the buckets. It bypasses v and
waits for the next request. Otherwise, if S contains fewer
than

√
k/Hmin{k,ℓ} items then BucketingBypass removes

those items from the buckets, applies the eviction procedure
of Bucketing if the cache is full and finally fetches w into the
cache. If w = v then BucketingBypass serves the request
to v, else it bypasses it. The algorithm uses the procedures
ResetBuckets and EvictAndFetch defined in Algorithm 1. For
more details, the pseudocode of BucketingBypass can be
found in Algorithm 2.

2) Upper-bound on the cost of BucketingBypass: In the
rest of this section, we bound the competitive ratio of Buck-
etingBypass. Like in the previous analysis without bypass-
ing allowed, we define phases as sequences of consecutive
requests between two calls to the function ResetBuckets().

Lemma 9. For each phase, BucketingBypass pays at most
2Hmin{k,ℓ} · C +

√
k ·Hmin{k,ℓ} in expectation, where C is

the number of clean requests during the considered phase.

Proof. Let P be a phase. We partition the requests of P into
two subsequences Pf and Pb depending on how Bucketing-
Bypass handles them. A request goes in Pb if the algorithm
handles it with lines 11 to 13, it goes in Pf otherwise. We now
prove the two following inequalities which directly imply the
claim:

(1) BucketingBypass pays at most
√
k ·Hmin{k,ℓ} for the

requests in Pb.
(2) BucketingBypass pays at most 2Hmin{k,ℓ} · E[C] for

the requests in Pf

We first prove the subclaim (1). At the start of the phase the
buckets together contain k items, this number decreases until it
hits zero at the end of the phase. Each time a request of Pf is
issued, BucketingBypass removes

√
k/Hmin{k.l} items from



Algorithm 2: BucketingBypass algorithm with by-
passing

1 algorithm BucketingBypass:
2 Γ← ResetBuckets()
3 when a new request v arrives do
4 if v is in the cache then
5 Remove the items of T (v) from all buckets
6 remove all frozen buckets from Γ
7 serve v
8 else
9 Let w be the uncached item of T (v) with

minimum τ
10 Let S be the set of items that are

simultaneously in T (w) and in some
bucket

11 if |S| >
√

k/Hmin{k,ℓ} then
12 Remove the

√
k/Hmin{k,ℓ} items of S

with minimum τ from all buckets in Γ
13 Remove all frozen buckets from Γ
14 bypass v
15 else
16 Remove the items of T (w) from all

buckets
17 Remove all frozen buckets from Γ
18 if Γ = ∅ then
19 Γ← ResetBuckets()
20 Remove the items of T (w) from all

buckets
21 Remove all frozen buckets from Γ
22 Γ← EvictAndFetch(w,Γ)
23 If w = v then serve request v else

bypass it

the buckets. Hence, Pb contains at most k/
√
k/Hmin{k.l} =√

k ·Hmin{k.l} requests. Since BucketingBypass pays 1 for
each request in Pb, it pays at most

√
k ·Hmin{k.l}.

In order to prove subclaim (2), we construct an alternative
request sequence to Pf and run Bucketing on it. We show
that Bucketing does the same changes of internal variables
and pays at least half the cost of BucketingBypass on Pf

dealing with that alternative request sequence.
Let v be a request of Pf . If v is in the cache when requested,
then BucketingBypass behaves like Bucketing and pays 0.
Otherwise, if v is not in the cache then everything behaves
as if w was the requested item in a framework without
the possibility to bypass and fetching costs where doubled.
Finally, the interferences of the requests in Pb (that only shrink
buckets) can be modeled by inserting in Pf fake requests of
cached items. We then apply Theorem 5 and the subclaim
follows.

B. A Lower Bound for Any Offline Algorithm and Bounding
the Ratio

Let OPT be an optimal offline algorithm for the request
sequence σ. Based on OPT, we define another offline
algorithm OPTτ as follows. Let σi be a request. If OPT
bypasses σi then OPTτ bypasses it. Otherwise, if OPT does
not bypass σi, OPTτ fetches and evicts the same items as
OPT but in a specific order. First, OPTτ performs all the
evictions that OPT does. Then, OPTτ performs all the fetches
that OPT does sorted in increasing τ . OPTτ maintains a
feasible cache and pays the same cost as OPT, OPTτ is an
optimal offline algorithm.

Similarly to the previous section, we compare the cost of
BucketingBypass to the cost of OPTτ . The following claim
holds.

Lemma 10. Let P be a phase, C is the number of clean fetches
made by BucketingBypass during P . Let dI and dF be the
number of items in OPTτ ’s cache not in BucketingBypass’s
cache at the beginning and at the end of the phase. It holds:

OPTτ (P ) ≥ 1

2
·
√

Hmin{k,ℓ}

k
· (C − dI + dF ).

We defer the proof of this claim to the full version of the
paper due to page restrictions.

The derived amortized lower bound on OPTτ (P ) is pro-
portional to the number of clean requests C. However, the
upper bound on BucketingBypass (P ) in Theorem 9 features
an additive term which does not depend on C. As a last step
before the final result, we give a second lower bound on OPTτ

(P ) in case C is zero.

Lemma 11. Let P be a phase. Let ΦI and ΦF be 1 if
BucketingBypass’s and OPTτ ’s caches are not the same,
respectively at the beginning and at the end of the phase. It
holds:

OPTτ (P ) ≥ 1

2
· (1BucketingBypass(P )>0 − ΦI +ΦF ).

We defer the proof of this claim to the full version of the
paper due to page restrictions.

Theorem 12. The algorithm BucketingBypass is
6
√

k ·Hmin{k,ℓ}-competitive against the oblivious adversary,
where ℓ is the size of the maximum independent set in the
transitive closure of the dependency graph and k is the size
of the cache.

Proof. If BucketingBypass pays 0 in a phase then the
claimed competitive ratio holds. Otherwise, we derive the
claimed competitive ratio using the two amortized costs of



(a) Zipf distribution of requests among nodes (b) Exponential distribution of requests among nodes

Fig. 3. Comparison of the BucketingBypass and TreeCaching algorithms in terms of cost per request for various cache sizes k and a binary tree with height
h(T ) = 10 and 1023 nodes. The left subfigure plot uses Zipf distribution parameterized by a = 4 and the right subfigure one uses geometric distribution
parameterized by p = 10

210
.

OPTτ found in Lemmas 10 and 11. It finally holds:

BucketingBypass(P )

OPTτ (P )

≤
2Hm · C +

√
k ·Hmin{k,ℓ}

1/2 ·max{
√

Hmin{k,ℓ}
k · C,1BucketingBypass(P )>0}

≤ 6
√
k ·Hmin{k,ℓ}

V. EVALUATIONS

While the main objective of this paper is to develop a
rigorously analyzed online algorithm with formal bounds on its
performance, we additionally perform preliminary empirical
evaluations of the performance of our BucketingBypass al-
gorithm. The code of the evaluations is publicly available [24].

As a baseline, we compare with the algorithm TreeCaching
of Bienkowski et al. [9]. Out of the two possible baselines,
CacheFlow [2] and TreeCaching [9], the latter is closer in
spirit to our solution, as both our system and TreeCaching
optimize the same objective. Notably, CacheFlow design does
not account for the cost of changing the cache, but rather it
may periodically exchange entire cache, whereas striking the
perfect balance between the cost and the benefits of cache
exchanges is a fundamental design principle of our algorithm.

Recall that our algorithm attains the competitive ratio of
6
√
k ·Hk, whereas TreeCaching attains the competitive ratio

of O(h(T ) · k), where h(T ) is the height of the tree. The
analytical upper bounds favor our algorithm, with an improve-
ment in terms of both parameters h(T ) and k, but the bounds
concern the worst case, and in this section we compare these
algorithms empirically.

To evaluate the algorithms, we use the following method-
ology. We construct a balanced binary tree with a height
h(T ). To generate the requests, we conduct two experiments
with different request distributions. The first experiment uses
a Zipf distribution, a common distribution applied in this
context [11], and the second experiment uses an exponential
distribution, modelling highly skewed request pattern. We
apply each distribution to the item heights: the height of each
requested item is independently drawn from the distribution,
resulting in higher probabilities for items at lower levels of the
tree and lower probabilities for items at higher levels. Then,

each for each level, an item from that level is chosen uniformly
at random. This method may generate requests to items that
can never fit in the cache, as they have more descendants
than k. We prune these requests from our request sequence
using rejection sampling.

For the first experiment, we use the Zipf distribution. The
probability of an item with depth 1 ≤ i ≤ h(T ) being
requested, where i = 1 corresponds to the top item of the tree,
is given by Pr(i) = 1

2i−1

(h(T )−i+1)−a

ζ(a) , where ζ represents the
Riemann Zeta function, and we use the parameter value a = 4.
For the second experiment, we use the geometric distribution.
Requesting an item with index 1 ≤ i ≤ 2h(T ) − 1 has the
following probability Pr(i) = (1 − p)i−1p, where we use
p = 10

210 .
We generate a random sequence of requests with a fixed

length 5000 for both distributions. Then, we calculate the total
cost of the BucketingBypass and TreeCaching algorithms on
such sequence, for various cache sizes k. We repeat each
sequence 10 times and take an average cost, and then we
determine the average cost per request for both algorithms.

In Figure 3, we present the results of our evaluations of
the mean cost per request between the BucketingBypass and
TreeCaching algorithms. The BucketingBypass algorithm
consistently induces significantly lower costs compared to the
TreeCaching algorithm across all inspected cache sizes k. Our
algorithm incurs on average 2x lower cost per requests than
TreeCaching.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposed several competitive caching algorithms
that are aware of dependencies among items. We leave inter-
esting avenues open for future studies. Most notably, it will
be interesting to study dependency aspects in more general
variants of caching, such as weighted caching [25], [26], [27]
or file caching [28], [29].

The authors have provided public access to their code and/or
data at https://github.com/foo/dependency-aware-caching.
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Menasché, “Data plane cooperative caching with dependencies,” IEEE
Trans. Netw. Serv. Manag., vol. 19, no. 3, pp. 2092–2106, 2022.

[14] V. Addanki, M. Pacut, A. Pourdamghani, G. Rétvári, S. Schmid, and
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