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Abstract—Modern communication networks support local fast
re-routing (FRR) to quickly react to link failures. However,
configuring such FRR mechanisms is challenging as the rules
have to be defined ahead of time, without knowledge of the
failures, and can depend only on local decisions made by the
nodes incident to a failed link. Designing failover protection
against multiple link failures is particularly difficult. We present
a novel synthesis approach which addresses this challenge by
generating FRR rules in an automated and provably correct
manner. Our network model assumes that each node maintains
a prioritised list of backup links (a.k.a. skipping forwarding)—
an FRR method that allows for a memory-efficient deployment.
We study the theoretical properties of the model and implement a
synthesis method in our tool SYPER that aims to provide perfect
resilience: if there are up to k link failures, we can always route
traffic between any two nodes as long as they are still connected
in the underlying physical network. To this end, SYPER focuses on
the synthesis of efficient forwarding rules using the BDD (binary
decision diagram) methodology and our empirical evaluation
shows that SYPER is feasible, and can synthesize robust network
configuration in realistic settings.

Index Terms—Fast Re-Routing, Data Plane, Resilience, Formal
Methods, Binary Decision Diagrams

I. INTRODUCTION

Link failures are common in ISP networks [1], cloud
provider WANs [2], and datacenters [3]. Accordingly many
modern communication networks feature local fast re-routing
(FRR) mechanisms to quickly react to link failures and
reestablish connectivity. In a nutshell, FRR mechanisms typi-
cally rely on conditional forwarding rules on the routers which
only apply if one or multiple incident links fails.

However, configuring such FRR mechanisms is challenging
as the conditional rules have to be defined ahead of time,
without the knowledge of the failures, and can only depend
on the status of local link failures. Protecting networks against
multiple failures is hence particularly difficult: an additional
link failure along a backup path may lead to a forwarding
loop if each node in the network is only incident to at most
one of the failed links, and unaware of the other. Over the
last decade, significant research efforts went into the design
of FRR algorithms for multiple link failures [4]–[17]. While
many of the solutions provide strong resilience guarantees,
they were designed manually for specific network models.

We initiate the study of a general and automated approach to
verify and synthesize fast rerouting mechanisms. In particular,
we explore a formal approach and present a model of the FRR
problem as well as an efficient synthesis algorithm based on
binary decision diagrams (BDDs) [18], [19].

Our focus is on an efficient “skipping” routing which
enables small forwarding tables [14] and can be implemented
e.g. in the OpenFlow [20] framework. Here the conditional
failover rules at each node are given as a prioritized list of out-
edges for each in-edge. A packet is forwarded on the first non-
failed edge. This representation is particularly efficient since it
requires only a linear amount of space. Our goal is to provide
rules achieving perfect resilience for k failures, meaning that
packet delivery is guaranteed if the source and destination
nodes are connected in the underlying network topology for
up to k link failures.

a) Main contribution: Our main contribution is SYPER
(standing for SYnthesis of PERfect Resiliency), a general
framework and a software tool which synthesizes FRR
schemes providing perfect resiliency under multiple failures
whenever this is possible. To this end, we present a formal
model and an efficient encoding of the FRR problem. Further-
more, we prove several theoretical results of the model that are
later used to optimize performance of our BDD reformulation
of the problem. BDD is a data structure introduced by Lee [18]
for efficient storage and manipulation with Boolean functions.
In our work, we exploit BDDs to synthesize and verify all
possible routings for a given network topology resilient to
multiple failures. Synthesizing all possible routings supports
operator preferences in a proven and efficient way. We also
show, how our tool can be used to disprove several conjectures
e.g., claiming that the primary path (without failures) must
follow some of the shortest paths to the destination. This
may be of independent interest and also shows the usefulness
of our tool. Our experiments demonstrate that the proposed
method can be applied on realistic network topologies from
the Topology Zoo dataset [21].

b) Organization of the paper: We provide a formal
definition of our routing synthesis problem in Section II.
In Section III we prove theorems that can be later used
to optimize our solution while Section IV provides further
insights on the problem by investigating different conjectures.
Section V details our BDD formulation and describes the
application of our optimizations. The tool SYPER is evaluated
in Section VI. Finally, we review related work in Section VII
and conclude in Section VIII.

II. PROBLEM FORMULATION

We shall first formally define the problem of synthesizing
FFR routings and introduce the necessary notation. We repre-
sent a network as an undirected multigraph.
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(a) Network topology.

in-edge node out-edges
lbv1 v1 e0, e1
e1 v1 e0, e1
lbv2 v2 e2, e1
e1 v2 e2, e1
e2 v2 e1, e2
lbv3 v3 e3, e2
e2 v3 e3, e2

(b) Routing table with a prioritized
list of out-edges.

Fig. 1: A simple network example.

Definition 1. A network is an undirected multigraph G =
(V,E, r) where V a finite set of nodes, E a finite set of
undirected edges, and r : E → {{x, y} | x, y ∈ V } a function
assigning to each edge a set of endpoint nodes.

Let G = (V,E, r) be a fixed undirected multigraph rep-
resenting a communication network interconnecting a set of
nodes (routers) via edges (links). For technical reasons, we
assume in the rest of the paper that for every node v ∈ V there
is always a loop-back edge called lbv such that r(lbv) = {v}.
Figure 1a shows a simple example. Unless needed, we shall
not draw the loop-back edges in our examples and we use the
terms link and edge interchangeably.

A finite path in a network is a sequence of edges
(e0, e1, ..., en) such that there are nodes v0, v1, ..., vn+1 where
r(ei) = {vi, vi+1} for all 0 ≤ i ≤ n. The path then connects
the node v0 to vn+1.

A node u ∈ V is reachable from v ∈ V if there is a
path connecting v to u. In the rest of this paper, we only
consider connected networks, i.e. networks where every node
is reachable (by at least one path) from every other node.

In our model we assume that edges in the network can fail.
A failure scenario is represented as a set of failed edges.

Definition 2 (Failure Scenario). A failure scenario F is any
subset of E, i.e., F ⊆ E.

To handle different failure scenarios, we provide a priori-
tized list of out-edges for a given in-edge and a node. This
method is efficient and already introduced in literature [14].
The skipping routing defines a prioritized list in terms of an
order in which edges should be tried in case of failures.

Definition 3 (Skipping Routing). A skipping routing in G is
a partial function R : E × V ⇀ E∗ such that if R(e, v) =
(e1, e2, . . . , eℓ) then v ∈ r(e) ∩ r(e1) ∩ . . . ∩ r(eℓ), i.e. all
edges in the prioritized list as well as the incoming edge are
connected to the node v.

An example of a routing is given in Table 1b. The intuition
is that, for a given a failure scenario F , if R(e, v) =
(e1, e2, . . . , eℓ) then any packet arriving on the edge e to the
node v will be routed via the first available edge ei ̸∈ F
where all the edges with higher priority are failed, meaning

that e1, . . . , ei−1 ∈ F . If e1, . . . , eℓ ∈ F then the packet is
dropped. This is formalized by the notion of a next hop.

Definition 4 (Next Hop). Let F be a failure scenario and R
a routing. We define the next-hop via the routing R under the
failure scenario F as a partial function hopFR : E × V ⇀
E × V such that

hopFR(e, v) =


(ei, vi) if R(e, v) = (e1, . . . , ek) and

e1, . . . , ei−1 ∈ F and
ei /∈ F where r(ei) = {v, vi}

undefined otherwise .

A packet is delivered to a given destination node via a
sequence of hops (that can be recursively applied).

Definition 5 (Packet Delivery). A node s delivers to a node
d via the routing R under the failure scenario F if there is
an n ∈ N such that d ∈ r((hopFR)

n(lbs, s)) where lbs is the
loop-back edge such that r(lbs) = {s}.

Consider the routing R described by Table 1b for the
network depicted in Figure 1a. The goal is to reach the
destination v0 from any other node in the network. Let e3 be
the only failed edge (F = {e3}). If the packet starts at v2, it is
forwarded to v3 using e2 because hopFR(lbv2 , v2) = (e2, v3).
Next, the packet comes back to v2 because the default (first
priority) edge e3 is down and thus hopFR(e2, v3) = (e2, v2).
After two more hops where hopFR(e2, v2) = (e1, v1) and
hopFR(e1, v1) = (e0, v0)), the packet is delivered to v0.

Our goal is now to synthesise (all) skipping routings that de-
liver packets to a given destination node under failure scenarios
with up to k failed links. This is formalized as follows where
for a network G = (V,E, r) we let GF = (V,E ∖ F, r|E∖F )
be a network with all failed edges in F removed.

Definition 6 (Perfect Resilience [14], [22]). Let d ∈ V be
a destination node. A routing R is perfectly k-resilient, if s
delivers to d for all source nodes s and all failure scenarios
F where |F | ≤ k whenever there is a path between s and d in
GF . A routing is perfectly resilient if it is perfectly k-resilient
for all k.

III. THEORETICAL FOUNDATIONS FOR OPTIMIZATION

Our overall aim is to present an approach for automatic
generation of resilient failover tables. We shall first formulate a
number of results that are later on used to significantly speedup
the performance of our method by reducing the size of the
searchable state space.

The first observation is that certain edges can be declared
as blacklisted, meaning that they never need to be considered
in any routing table as following these edges cannot help with
delivering a packet to the destination node.

Definition 7 (Blacklisted Edge). Let G be a network and d
a destination node. An edge e ∈ E where r(e) = {v, v′} is
blacklisted at a node v for the destination d, if every path from
v′ to d contains the node v.
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Fig. 2: Blacklisted edges at v3 for the destination is v0.

Figure 2 illustrates an example of blacklisted edges. If the
destination node is v0 then at node v3 both e4 and e5 are
blacklisted and we shall show that we can w.l.o.g. require that
R(e2, v3) and R(e3, v3) do not contain e4 nor e5.

Definition 8 (Blacklisted-free Routing). Let G be a network
and d a destination node. A routing R is a blacklisted-free
routing if for every e ∈ E and every v ∈ V where R(e, v) =
(e1, . . . , eℓ), the skipping sequence e1, . . . , eℓ does not contain
any blacklisted edge at the node v for the destination d.

The following theorem states that excluding blacklisted
edges does not change the solvability of the routing problem.
This allows us to limit the number of possible routings that
need to be explored.

Theorem 1 (No Blacklisted Edges). If there is a perfectly
k-resilient routing then there is also a perfectly k-resilient
blacklisted-free routing.

Sketch. Let G be a network and d a destination node. Let R
be a perfectly k-resilient routing for the destination node d.
We show that if for some edge e and a node v the skipping
sequence of backup edges (e1, . . . , eℓ) = R(e, v) contains
blacklisted edges, we can change the routing R(e, v) so that it
remains perfectly k-resilient but does not include blacklisted
edges anymore. By repeating this argument, we can construct
a perfectly k-resilient blacklisted-free routing.

Let R(e, v) = (e1, . . . , eℓ) and let ei, 1 ≤ i ≤ ℓ, be the
first blacklisted edge in the list. Let us consider the sequence
of hops (with no failed edges) starting at (ei, v

′) such that
r(ei) = {v, v′}. Because ei is blacklisted then clearly in
the routing sequence there must be a next hop of the form
(e′, v), i.e. the path towards the destination d enters the node
v again. Let us consider the first hop (e′, v) on this path to
the destination d where R(e′, v) = (e′1, . . . , e

′
m) and where

e′1 is not blacklisted. Such a hop must exist as R delivers the
packet to the destination d and this is not possible by only
forwarding via the blacklisted edges. We modify R such that

R(e, v) := (e1, e2, . . . , ei−1, e
′
1, e

′
2, . . . , e

′
m)

which guarantees that the first i edges in the list are not
blacklisted. We continue this process until R(e, v) does not
contain any blacklisted edges or until the beginning of the
sequence of edges consists of only non-blacklisted edges
where at least one of them repeats twice (this must eventually
happen as there are only finitely many edges). In the latter
case we truncate the backup edges at the first repeated non-
blacklisted edge. Let us call this modified routing R′.
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(a) Original network G with destination v0.
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(b) Networks G2 and G1 with destinations v0 and v3, resp.

Fig. 3: Decomposition at node v3.

Let F be a failure scenario such that |F | ≤ k. We shall now
argue that if R delivers to d from every node in the network,
so does R′. Clearly, if e1, . . . , ei−1 ̸∈ F , then the modification
at the entry R(e, v) does not change any of the routings and
the claim holds. Let us so analyze the case where all the edges
e1, . . . , ei−1 fail (belong to F ). In this case, when following
the original routing R, the next hop when arriving to v via the
edge e will be to the node v′ via the blacklisted edge ei. Let
us follow this routing sequence, until we encounter the next
hop (e′, v), i.e. enter the node v again. During this sequence,
we assume that no edges are failed; if on the contrary some
edges e′′1 , . . . , e

′′
n after and including the blacklisted edge ei

are failed, we can instead consider the failure scenario F ′ =
F \ {e′′1 , . . . , e′′n} and because |F ′| ≤ |F | ≤ k, we know that
R will still deliver the packet to d also under such F ′. After
the packet made the hop (e′, v), we know that none of the
edges e′1, . . . , e

′
m are blacklisted and because R can deliver

the packet to the destination d via the first non-failed edge e′j
on this list, so can do the routing R′ that will take the edge
e′j directly without going through the blacklisted edges.

Theorem 1 is the foundation that enables us to decompose
the routing problem to the destination node d for a network
G into two subproblems. Such a decomposition is attractive
since solving two smaller problems separately is more efficient
than solving the combined network and it can be moreover
parallelized. Figure 3 depicts an illustrative example. Let us
pick a node vc ∈ V and let Vc be the set of all nodes v ∈
V \ {vc} such that every path from v to the destination d
contains the node vc. If Vc is nonempty, we can divide the
graph G into G1 induced by the nodes Vc ∪ {vc} and G2

induced by the nodes V \ Vc. The solution for the graph G
can now be obtained from the solutions to G1 and G2 due to
the following corollary.

Corollary 1 (Decomposition). There is a perfectly k-resilient
routing in G for the destination d if and only if there are
perfectly k-resilient routings for G1 with the destination vc
and G2 with the destination d.

Proof (sketch). By noticing that every routing of a packet from
a node in G1 to the destination d must visit the node vc and



that every routing from a node in G2 to d can avoid to enter
G1 (due to blacklisted edges and Theorem 1).

The next theorem argues that perfectly k-resilient routings
should never, as the first priority, send a packet back to the
node from where it arrived. Not limiting the possible solutions
by this constraint can lead to the exploration of routings where
a packet unnecessarily reverts its direction without any reason.

Theorem 2 (No Send-back Edges as First Priority). Let G
be a network and d a destination node. If there is a perfectly
k-resilient routing R for G then there is also a perfectly k-
resilient routing R′ such that for every e ∈ E and v ∈ V if
R′(e, v) = (e1, . . . , eℓ) then e1 ̸= e.

Proof. Let R be a perfectly k-resilient routing and we modify
it into R′ as follows. Let R(e, v) = (e, . . .) for some
edge e and some node v and let r(e) = {v, v′}. Now let
R′(e, v) := ϵ (empty list of prioritised edges) and if v ̸= d
then whenever R(e′, v′) = (e1, . . . , ej , e, . . .) for some edge
e′ such that ei ̸= e for all i, 1 ≤ i ≤ j, we let R′(e′, v′) :=
(e1, . . . , ej , e

′
1, . . . , e

′
m) where R(e, v′) = (e′1, . . . , e

′
m). By

repeating this for every e and v such that R(e, v) = (e, . . .),
we obtain a routing R′ that does not contain any send-back
edges as the first priority. The routing in R′ still delivers
to the destination d whenever R does. This is because if
we forward the packet on e to the node v, meaning that
the edge e is not failed, v will send it immediately back
to v′ along the edge e (which is not failed even in the
opposite direction) and the routing will continue according
to the priorities given in R(e, v′). In R′ we simply replace
this unnecessary excursion to the node v by directly following
the priorities in R(e, v′).

Finally, we present a theorem proving that sending a packet
back on the edge where it arrived from should only be used
as the very last priority.

Theorem 3 (No Send-back Edges Unless Last Priority). Let
G be a network and d a destination node. If there is a perfectly
k-resilient routing R for G then there is also a perfectly k-
resilient routing R′ where for every e ∈ E and v ∈ V if
R(e, v) = (e1, . . . , eℓ) then ei ̸= e for all i, 1 ≤ i < ℓ.

Proof (sketch). Notice that if a packet arrives to the node v
via the edge e then e cannot be failed and if e appears in the
priority list of R(e, v) then none of the edges after e can ever
be used for forwarding.

IV. FURTHER INSIGHTS FOR OPTIMIZATIONS

When designing a routing, one may assume that it is safe
to choose as the primary path to the destination one of the
shortest paths. A similar conjecture is that for every k there
exists a perfectly k-resilient routing. In this section, we shall
formulate some of these conjectures and prove/disprove them
for certain k values. These insights are also used to improve
the performance of our tool.

Conjecture 1 (Existence of Perfectly k-resilient Routing). For
any network G and any destination node d, there is a perfectly
k-resilient routing.

Conjecture 1 does not hold for all values of k. There is
a network with 12 nodes and 22 edges that does not allow
for perfect 14-resilience [22]. A smaller counterexample with
6 nodes and 9 edges that is not perfectly 3-resilient is given
in [14]. Using our tool, we found a similar counterexample
with only 8 edges. The problem for k = 2 is open, even though
for circular routing (more strict routing policy than ours) there
exists a counterexample. We reviewed this counterexample
using our tool and observed that there actually does exist a
perfect 2-resilient routing (using our routing model).

We shall now prove the claim for k = 1 (perfect 1-resilience
is also known to hold for a more powerful routing model
that does not require a prioritized list of edges but where the
next-hop may instead depend on the actual failed link [22]).
Moreover, we shall prove even a stronger claim that this
routing can follow as the primary hop some (a priori fixed)
shortest path edge, unless the packet arrives in the opposite
direction of the shortest path edge. Thanks to this theorem, we
can efficiently fix most of the default edges and thus greatly
reduce the number of routing entries to be synthesized.

Theorem 4 (Existence of Perfectly 1-Resilient Routing). Let
G be a network and let d be a destination node. Let for every
node v ∈ V fix an arbitrary edge ev where r(ev) = {v, v′}
such that ev is on some shortest path from v to d. Then there
exists a perfectly 1-resilient routing R for the destination d
that moreover satisfies for every e ∈ E and every v ∈ V
where R(e, v) = (e1, . . . , eℓ) that e1 = ev unless e = ev .

Proof. By fixing the edges ev for each node v, we also fix a
unique shortest path from each node v0 ∈ V to the destination
d as the following sequence of edges ev0 , ev1 , ev2 , . . . where
r(evi) = {vi, vi+1} for all i. Clearly, such a shortest path
eventually reaches the destination d. All such shortest paths
for all nodes form a tree with d as the root. We now introduce
some notation necessary for describing the 1-resilient routing
R we want to construct for the network and the destination d.

Let v ∈ V . By pre(v) we denote the set of all nodes
that reach the node v by following their shortest paths to the
destination d. Clearly v ∈ pre(v) and pre(d) = V . Similarly,
by post(v) we denote the set of all nodes that are on the
shortest path from v to d. Both v and d belong to post(v).

We say that a node v ∈ V is of level ℓ, if there is an
edge e where r(e) = {v, v′} such that the shortest path from
v′ to d intersects post(v) in at most ℓ nodes. The minimum
(lowest) level of a node v is denoted by mlevel(v) and the
corresponding edge e is called its mlevel edge. For example,
a node v has minimum level 1 if there is an edge e where
r(e) = {v, v′} such that the shortest paths from v and v′ to d
only share the destination d.

Let v ∈ V be a node. An edge e where r(e) = {v, v′} and
e ̸= ev is called backup edge for v if either

• mlevel(v) = minv′′∈pre(v) mlevel(v′′) and e is its mlevel



edge, or
• e = ev′ is the shortest path edge for some

v′ ∈ pre(v) such that minv′′∈pre(v) mlevel(v′′) =
minv′′∈pre(v′) mlevel(v′′).

In other words, the backup edge for v is either its mlevel edge
in case v has the smallest mlevel among all nodes in pre(v),
or the backup edge is some shortest path edge for some node
v′ ∈ pre(v) such that some smallest mlevel node from pre(v)
is also in pre(v′).

We now construct a perfectly 1-resilient routing R that from
every node v as the first priority always follows the shortest
path edge ev , unless we arrived to v via the edge ev itself
(getting further away from d) in which case we select as the
first priority edge the one that bring us to a node from pre(v)
with the lowest mlevel. If there are several nodes with the
same mlevel, we pick any of them (e.g. in alphabetical order).

Let R be a routing such that for every edge e ∈ E and
every node v ∈ V ∖ {d}

• if e ̸= ev then R(e, v) = (ev, e
′) where e′ is the backup

edge for v, or
• R(ev, v) = (e′) where e′ is the backup edge for v.
We must argue now that R is perfectly 1-resilient routing.

Let F be a single edge failure scenario such that F = {e}. If
e is not any of the shortest path edges then clearly every node
in V still delivers the packet to the destination d by following
the shortest path edges. Let us assume so that e = ev is a
shortest path edge for some node v. Clearly, any node that is
not in pre(v) still delivers to d even if ev fails. If the node v
is not anymore connected to d (after ev failed) then none of
the nodes from pre(v) is connected to d neither and we do
not have to deliver the packet to d from these nodes.

We must so analyze the remaining case where ev fails and
the node v has an alternative path to d. We want to argue that
every node from pre(v) delivers to d following the routing R
defined above. Clearly, every node from pre(v) follows the
shortest path route that brings the packet to the node v and
where the next hop via the edge ev is not available. Because
from v there is an alternative path to d and because the distance
of all nodes from pre(v) to the destination d is at least k =
|post(v)|−1, the alternative path from v to d must eventually
leave the nodes from pre(v). Let v′′ ̸∈ pre(v) be first such a
node on this alternative path that is reached from some node
v′ ∈ pre(v). Clearly, by following the shortest path from v′′

to d, we will not use the failed edge ev (otherwise v′′ would
belong to pre(v)). This means that mlevel(v′) < |post(v)|.
The routing R will by definition follow a (possibly different)
path to d by exiting pre(v) from a node with the minimum
level over all nodes in pre(v) which must be clearly less or
equal to mlevel(v′). This implies that this path followed by
the routing R cannot contain the failed edge ev and hence
delivers to d. This completes the proof.

Theorem 4 proved for k = 1 may lead us to the following
conjecture that tries to generalize this result to higher k and
claims that a routing can always follow any chosen shortest
path as its primary path.

v0

v1
v2

v3

v4

e0
e1

e2

e3 e4 e5

(a) Network (shortest paths
denoted by red arrows).

in-edge node pref. list
lbv1 v1 e0, e3
e3 v1 e0, e3
lbv2 v2 e1, e4
e4 v2 e1, e4
lbv3 v3 e2, e5
e5 v3 e2, e5
lbv4 v4 e3, e4, e5
e3 v4 e4, e5, e3
e4 v4 e5, e3, e4
e5 v4 e3, e4, e5

(b) Perfectly 2-resilient routing.

Fig. 4: A counterexample for Conjecture 2.

Conjecture 2. Let G be a network and d a destination node.
Let us for every node v ∈ V fix an arbitrary edge ev where
r(ev) = {v, v′} such that ev is on some shortest path from v
to d. If there is a perfectly k-resilient routing R for G then
there is also a perfectly k-resilient routing R′ where for every
e ∈ E and v ∈ V if R′(e, v) = (e1, . . . , eℓ) then e1 = ev
unless e = ev .

Surprisingly, this conjecture does not hold already for
k = 2. We discovered this using our tool (described in the
next section) by brute-forcing all connected simple graphs
with up to 7 nodes or 9 edges. Figure 4 depicts the smallest
counterexample found by our tool. The destination node is
v0 and the selected shortest path edges for v1, v2, v3, v4 are
e0, e1, e2, e4, respectively. Let us inject a packet to the node
v4. Then we arrive to v2 trough e4 (because of the chosen
shortest path). Suppose now that the link e1 is down, so
we return to v4 using e4 and without loss of generality let
R(e4, v4) = (e3, . . .) (in case that the first edge is e5 the
example works in the same way due to its symmetry). If the
second failed edge is now e0, we return to v4 using e3. Since
we have to make the next hop to v2 via e4 (due to the shortest
path requirement), we enter an infinite forwarding loop.

On the other hand, there exists a perfectly 2-resilient routing
as shown in Table 4b, which however does not satisfy the
conditions of Conjecture 2 because at the node v4 it cycles
through all three out-edges (depending on the in-edge) and
does not necessarily follow the edge e4 that was selected as
the default one for v4.

Conjecture 2 seems to fail because we follow the shortest
path even when we already deviated from the default decisions
during the forwarding. Hence we formulate Conjecture 3 that
tries to avoid this pitfall.

Conjecture 3. Let G be a network and d a destination node.
Let us for every node v ∈ V fix an arbitrary edge ev where
r(ev) = {v, v′} such that ev is on some shortest path from v
to d. If there is a perfectly k-resilient routing R for G then
there is also a perfectly k-resilient routing R′ where for every
e ∈ E and v ∈ V if R′(e, v) = (e1, . . . , eℓ) then e1 ̸= e, and
if the edge e = {v, v′′} is on some shortest path from v′′ to d
or v = v′′ then e1 = ev .



Conje-
cture k = 1 k = 2 k = 3

1 true
by Theorem 4

holds up to
5 nodes or 6 edges false [14]

2 true
by Theorem 4

false
see Figure 4 false [14]

3 true
by Theorem 4

false
see Figure 5 false [14]

TABLE I: Summary (loop-back edges are not counted).

Unfortunately, Conjecture 3 also has a counterexample for
k = 2 as depicted in Figure 5. This does not falsify Con-
jecture 1 for k = 2 as Table 5b shows a perfectly 2-resilient
routing (that we independently verified by an automatic brute-
force search). In this routing the node v8 on the loop-back
edge clearly does not follow the shortest path edge e8.

To understand the counterexample, Table 5c shows the
possible options for the routing satisfying the conditions of
Conjecture 3 with up to two failed links. The edges in bold
are enforced (there are no alternatives for them) and the entries
with question mark are not relevant for our contradiction.
Clearly, the first priority edges are fixed by the condition of
the conjecture. Moreover, the priority list for R(e1, v1) must
be (e0, e2, e1) otherwise a packet starting from v2 would get
into a loop if the edges e0 and e3 fail. The same reasoning
can be used for R(e2, v1), R(e7, v5), R(e6, v5). We have
two options for the first priority edge of R(e10, v4) and
R(e10, v8) but we can consider only one of them because of
the routing rules in the two subgraphs are symmetric. Finally,
the first priority edge for R(e3, v4) must be e10 otherwise
a packet starting from v3 gets into a loop if e0 is failed; the
same reasoning applies for R(e4, v4), R(e8, v8) and R(e9, v8).
Table 5c reflects all these decisions. In the failure scenario
F = {e0, e6} all nodes are still connected to v0 but a packet
starting on the loop-back edge at v2 now enters an infinite
loop, contradicting Conjecture 3. For k = 3 our tool found
even a smaller counterexample to Conjecture 3 with only 5
nodes and 7 edges.

A summary of the state-of-the-art is in Table I. It indicates
that Conjecture 1 for k = 2 has no counterexample with less
than 5 nodes or 6 edges and it remains an open problem. Even
if some of the conjectures do not hold, for a concrete network,
we can try to apply them anyway and if a resilient routing
is found, this solves the synthesis problem. Our experiments
show that this is indeed the case in most cases.

V. BDD FORMULATION OF ROUTING SYNTHESIS

At the heart of our tool SYPER lies a BDD formulation of
the routing synthesis problem. We compactly represent multi-
ple possible routings using binary decision diagrams (BDDs),
a data structure introduced by Lee [18] that efficiently stores
Boolean functions as rooted directed acyclic graphs (DAGs).
Later Bryant [19] developed a reduced ordered version of
BDDs with fixed variable ordering supporting isomorphic
combinations for a more compact representation. Besides the
basic logical operators, universal and existential quantifiers are

v0

v1

v2 v3

v4

v5

v6 v7

v8

e0 e5

e1 e2

e3

e4

e7 e6

e9
e8e10

(a) Network topology (shortest paths denoted by red arrows).

in-edge node pref. list
lbv1 v1 e0, e2, e1
e1 v1 e0, e2, e1
e2 v1 e0, e1, e2
lbv2 v2 e1, e3
e1 v2 e3, e1
e3 v2 e1, e3
lbv3 v3 e4, e2
e2 v3 e4, e2
e4 v3 e2, e4
lbv4 v4 e3, e4, e10
e3 v4 e4, e10
e4 v4 e10, e3, e4
e10 v4 e3, e4, e10

in-edge node pref. list
lbv5 v5 e5, e6, e7
e6 v5 e5, e7, e6
e7 v5 e5, e6, e7
lbv6 v6 e7, e9
e7 v6 e9, e7
e9 v6 e7, e9
lbv7 v7 e8, e6
e6 v7 e8, e6
e8 v7 e6, e8
lbv8 v8 e9, e8, e10
e8 v8 e10, e9, e8
e9 v8 e8, e10
e10 v8 e9, e8, e10

(b) Perfectly 2-resilient routing.

in-edge node pref. list
e1 v1 e0, e2, e1
e2 v1 e0, e1, e2
e7 v5 e5, e6, e7
e6 v5 e5, e7, e6
e1 v2 e3, e1
e3 v2 e1, e3
e2 v3 e4, e2
e4 v3 e2, e4
e7 v6 e9, e7

in-edge node pref. list
e9 v6 e7, e9
e6 v7 e8, e6
e8 v7 e6, e8
e10 v4 e3, ?, ?
e3 v4 e10, ?, ?
e4 v4 e10, ?, ?
e10 v8 e8, ?, ?
e8 v8 e10, ?, ?
e9 v8 e10, ?, ?

(c) Partial routing for establishing a contradiction.

Fig. 5: Counterexample for Conjecture 3.

also supported. Moreover, all these operations are polynomial
in the size of the underlying BDDs. We shall now give the
details of our BDD encoding (for more technical details on the
correspondence of our formulation with BDDs, see e.g. [23]).

Any finite set S can be encoded using n = ⌈log(|S|)⌉
Boolean variables. Let us pick a fixed enumeration of the
elements: s0, s1, ..., s|S|−1 and let the Boolean variables be
x = (x0, x1, ..., xn). Any truth assignment µ to x may be
seen as a binary representation of a natural number n(µ) ∈ N
representing the n(µ)’th element of S. Let s(µ) be the short
representation of sn(µ). By x(s) we denote the Boolean
encoding of s ∈ S.

For a better understanding, recall our example from Fig-
ure 1a. It has four nodes (v0, v1, v2, v3) that can be encoded
using two Boolean variables where e.g. the assignment (1, 1)
refers to the node v3. The 8 edges in our example, including
the loop-back ones, can be similarly encoded using three
Boolean variables.



A. Synthesis of perfectly 1-resilient routings

We first present the Boolean formulae used for synthesising
perfectly 1-resilient routings and discuss the general case later
on. We introduce the state Boolean function expressing that
a given edge belongs to a given node.

state(v, e) =
∨
v∈V

∨
e∈E

v∈r(e)

(v(v) ∧ e(e))

Similarly, we encode all additionally introduced loop-back
edges as the loopback Boolean function.

loopback(e) =
∨
v∈V

e(lbv)

Using these formulae we can express the valid possible rout-
ing entries (prioritized list) for every possible e in-edge and
v node where v ∈ r(e). For 1-resilient routings, we consider
only the default out-edge (represented by the variables ed) and
one backup out-edge (represented by eb).

Vv,e(ed, eb) = state(v(v), ed) ∧ state(v(v), eb) (1)

∧¬loopback(ed) ∧ ¬loopback(eb)

Encoding of valid transitions. The basic building block
of packet routing is the valid transition (next hop) from an
(ein, v) state to (eout, v

′) under a given F = {f} failure
scenario. The Boolean formula T describes all valid transitions
of a packet where ein, v, eout, v′ encode the in-edge, the
current node, the chosen out-edge and the next node. We
consider maximum one failed edge encoded by f. The failure
scenario without failed links (∅ ⊆ E) is represented by
assigning a lbd loop-back edge to f where d is the destination
node. The edv,e, ebv,e variables define the default and backup
edges in the routing. Predefined and fixed routing entries can
be substituted into the formula.

T (ein, v, eout, v′, f, [edv,e, ebv,e :
e∈E

v∈r(e)]) = (2)∧
e∈E∧v∈r(e)

Vv,e(edv,e, ebv,e)∧

state(v, ein) ∧ state(v, eout) ∧ state(v′, eout) ∧
eout ̸= f ∧∧

e∈E

∧
v∈r(e)

(ein(e) ∧ v(v) ∧ edv,e ̸= f =⇒ eout = edv,e)∧
e∈E

∧
v∈r(e)

(ein(e) ∧ v(v) ∧ edv,e = f =⇒ eout = ebv,e)

In the second line, we make sure that the provided routing
entries are valid and in the next two lines we require that the
transition step is aligned with the network topology and the
current failure scenario. In the last two lines, we enforce the
use of the appropriate routing entries.

Encoding of delivery. Let d ∈ V be the destination we
want to reach. A packet arriving to the v ∈ V node from
the ein ∈ E input edge is delivered (in one step) to d ∈ V
trough the eout ∈ E under the {f} ⊆ E failure scenario
iff they form a valid transition as described before. In short,

a packet in the (ein, v) state is delivered. By the nature of
packet forwarding, every packet at the (e′in, v

′) state is also
delivered to d if it transitions to (ein, v). Using the introduced
notation, all delivery within graph G can be described using
a Boolean formula by calculating the fixed point D starting
from D0(ein, v, f, [edv,e, ebv,e : e∈E

v∈r(e)]) = (v = d) where d is
the Boolean encoding of d destination node:

Dn+1(ein, v, f, [edv,e, ebv,e :
e∈E

v∈r(e)]) = (3)

Dn(ein, v, f, [edv,e, ebv,e :
e∈E

v∈r(e)]) ∨(
∃v′, eout : T (ein, v, eout, v′, f, [edv,e, ebv,e :

e∈E
v∈r(e)])

∧ Dn(eout, v′, f, [edv,e, ebv,e :
e∈E

v∈r(e)])
)

Clearly the sets Dn are increasing and the minimum fixed
point of Equation 3 is obtained after some finite number of
iterations N , where DN+1 = DN = D.

Encoding of perfectly 1-resilient routings. The previously
introduced Boolean function D describes all possible delivery
scenario. We are only interested in routings that deliver from
every possible (lbv, v) state where v ∈ V \ {d} under every
{f} ⊆ E failure scenario. This can be formulated as follows:

P([edv,e, ebv,e :
e∈E

v∈r(e)]) = ∀f : ∀(lbv, v) : ∃eout : (4)

γ(v(v), f(f), d) =⇒
D(lbv, v, eout, f, [edv,e, ebv,e :

e∈E
v∈r(e)])

where γ(v1, e, v2) : V × E × V −→ {true, false} is true iff
there is a path between v1 and v2 not containing e. Now the
Boolean function P represents exactly all perfectly 1-resilient
routings that from every node deliver a packet to its destination
whenever they are connected in the given failure scenario.

B. Synthesis of perfectly k-resilient routings

The previously described method can be further extended to
handle {f1, ...fk} ⊆ E multi-failure scenarios by introducing
multiple eb1ein,v, ..., ebkein,v variables for additional backup edges
and f1, ..., fk variables for the failures. Furthermore, Equation 1
must require that these new backup edges are compatible with
the network topology and that they are not loop-back edges.
Equation 2 must ensure that the eout out-edge is not equal to
any of the failures and that edges with a higher priority are
all failed. The fixed-point calculation described in Equation 3
remains the same. Finally, the γ function in Equation 4 must
be generalized to multiple failed edges.

C. Application of our optimisations

Our results from Sections III and IV can be applied to speed-
ing up the BDD computations showcasing their practicality.
Our strategies can be divided into two main categories.

Preprocessing strategies are different ways of providing
predefined rules as defined in Conjecture 2 and 3, thus
reducing the number of variables in the BDD computation.
Preprocessing strategies are used before the BDD computation
described in Section V. Besides the use of our conjectures, if
there is only one option for a given routing entry then we pick



that one instead of letting the BDD figure it out. Thanks to
these methods, we can reduce the number of edein,v and ebein,v
variables while the BDD computation remains unchanged.

Runtime strategies are different ways of constraining the
BDD computation to increase its efficiency. More concretely,
we leverage Theorem 1, Theorem 3, and Corollary 1. Runtime
strategies are applied during the BDD computation by slightly
modifying the method described in Section V. When applying
Theorem 1, Equation 1 must also require that the chosen
ed, eb edges are not blacklisted. Theorem 3 also modifies
Equation 1 by requiring that only the (last) backup edge
can encode the e edge if we have other options for higher
priorities. Corollary 1 decomposes the network into multiple
smaller graphs that are solved separately and the routings later
combined together. Besides relying on our theoretical results,
we can also check for solutions after every step of the fixed-
point calculation described in Equation 3 and perform an early
exit once P([edv,e, ebv,e :

e∈E
v∈r(e)]) contains at least one solution.

VI. PERFORMANCE EVALUATION

We implemented our solution using the CUDD [24]
backend of the Omega [25] Python library. For the evalu-
ation, we use the Topology Zoo dataset [21] to measure the
performance on realistic networks. We consider all the 243
connected graphs with up to 700 nodes. The measurements
are run on Intel Xeon Gold 6209U (2.10GHz) CPUs with a
128GB memory limit and 20 minute timeout. A reproducibility
package is available at [26]. In the performance plots, the x-
axis contains the network topologies sorted (independently for
each method) by the respective running times (on y-axis).

Perfectly 1-resilient routings. We use Theorem 4 to select
the default (first priority) routing entries for each topology
in the preprocessing phase and then measure the effect of
the optimizations discussed earlier. The results are shown in
Figure 6. As expected, exiting at the first solution is faster
than finding all perfectly 1-resilient routings. Theorems 1 and
3 show a similar performance gain when applied separately.
Corollary 1 yields better results than Theorem 1 since the
decomposition also eliminates blacklisted edges besides creat-
ing smaller subtasks. Combining all our optimizations yields
considerably better performance than using them individually.
All together, we are able to generate the BDDs describing
all resilient routings for 221 topologies out of 243 within the
given resource limits. This number increases to 232 when the
computation is halted after the first resilient routing is found.

Perfectly 2-resilient routings. We use Conjecture 3 to
constrain the default routing entries for the networks. Note
that this does not guarantee that we always find a 2-resilient
routing if it exists (see Section IV). Besides having fewer
default entries fixed ahead of time, the method has to find both
the first and second backup entries too. The results are depicted
in Figure 7. Although one can observe the increased resource
demands, combining our runtime strategies still terminates for
124 topologies, where 107 of them yield a solution. This
number increases to 136 with an early exit, providing us
with 120 perfectly 2-resilient routing. Interestingly, Theorem 1

shows a larger impact than Theorem 3 as opposed to the
perfectly 1-resilient case.

Effect of different missing entries. We now use the Oxford
topology from the Topology Zoo to gain insights on the
running time of our tool compared to how many routing entries
are fixed in preprocessing and compared to how many must
by synthesized. First, we fix some perfectly 1-resilient routing
and then randomly remove a given number of default and
backup entries. This method ensures, that the problem always
has a solution. Finally, we measure the time required for the
BDD calculation to fill in the missing entries in order to
synthetise all perfectly 1-resilient routings (by filling in the
missing entries). The runtimes are depicted in Figure 8. One
can observe that missing default entries cause a much steeper
increase. This reinforces the importance of providing well-
chosen fixed default routes as we discussed in Section IV.

VII. RELATED WORK

The design of fast rerouting algorithms has already been
studied intensively. While there exists much interesting work
on how to efficiently react to link failures in the control
plane, e.g. [27], [28], the reaction times provided by these
solutions are significantly higher compared to mechanisms
in the dataplane [5]—the focus of our paper. Dataplane-
based failover mechanisms are implemented in most protocols,
IP [29]–[31], MPLS [13], [32], BGP [33], SDN [34], [35],
segment routing [36], [37] , etc. We refer to the recent survey
by Chiesa et al. [4].

Fast failover algorithms for the dataplane can be categorized
according to whether they require dynamic packet headers
modifications, according to which header fields a router needs
to be able to match, and whether they need randomization. By
rewriting packet headers, it becomes possible to, e.g., carry
failure information in the packets [7], [38], [39] or to employ
graph exploration algorithms [8], [40]. It is also known that
the design of resilient fast failover algorithms is simplified if
the source can be matched [9], [10], [41] and if forwarding
can be randomized per packet [11], [12]. In this paper we
are interested in practical solutions with minimal assumptions
without packet header modifications and random generators.

Feigenbaum et al. [22] initiated the study of perfect re-
silience in networks without header modifications and showed
that it is not always possible to achieve, and presented a
deterministic algorithm which is provably 1-resilient; Dai
et al. [17] later generalized this algorithm for 2-resilience,
however, requiring source matching. For the case of circular
routing, there is an example of a network without any 2-
resilient routing [41], however, this routing model is stricter
than ours. As a result, the problem of perfect 2-resilience
studied in this paper is still open. Foerster et al. [14] es-
tablished a connection between perfect resilience and graph
minors to derive possibility/impossibility results on different
graph classes. Contrary to our paper, none of these approaches
have been implemented.

The state-of-the-art approach to design highly resilient
failover algorithms is based on arc-disjoint arborescence cov-
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ers [10], [11], [41]–[45]. This approach generalizes the widely-
used approaches based on spanning trees [46]. However, while
this approach may work well on graphs which are homoge-
neously k-connected (this is still an open question), it is not
well-suited if directly applied to the general setting considered
in our paper. Yang et al. [6] initiated the study of approaches
beyond spanning trees and acyclic graphs, however, without
providing strong formal connectivity guarantees.

Synthesis and formal approaches for other aspects of net-
working are also widely studied in the literature [47]–[59]. In
particular, SyNET [47] synthesizes correct network configura-
tions and inputs for a stratified Datalog program, supporting
multiple interacting routing protocols such as BGP and OSPF.
In the context of MPLS networks, AalWines [23] supports
an automated what-if verification of the policy-compliance of
routes under multiple failures in MPLS networks. There is also
much work on automated approaches for correctly updating

network configurations. For example, NetComplete [57] assists
operators in modifying existing network-wide configurations
to comply with new routing policies. Notably, the network
update tool AllSynth [60] also uses BDDs. However, we are
not aware of any approach supporting an automated synthesis
of perfectly resilient routings as we do in SYPER.

VIII. CONCLUSION

We presented SYPER, a synthesis approach that generates
perfectly k-resilient FRR rules in an automated and provably
correct manner. In other words, our approach guarantees that
we can always route traffic between two nodes if they are
still connected in the underlying physical network and there
are no more than k link failures. SYPER focuses on an
efficient synthesis of prioritised forwarding rules and leverages
the BDD technology. Our empirical evaluation shows that
SYPER, in combination with the theoretical underpinning
developed in this paper, is feasible and can synthesize robust
network configurations on a large range of real-world network
topologies. As a future work, we plan to increase the solution’s
scalability and consider alternative tools like QSAT solvers.

The authors have provided public access to their code and
experimental data at [26].
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