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Abstract—To meet stringent performance requirements, com-
munication networks are becoming increasingly programmable
and flexible, supporting fast and frequent adjustments. However,
reconfiguring networks in a dependable and transiently consistent
manner is known to be algorithmically challenging. This paper
revisits the fundamental problem of how to update the routes in
a network in a (transiently) loop-free manner, considering both
the Strong Loop-Freedom (SLF) and the Relaxed Loop-Freedom
(RLF) property.

We present two fast algorithms to solve the SLF and RLF
problem variants exactly, to optimality. Our algorithms are
based on a parameterized integer linear program which would
be intractable to solve directly by a classic solver. Our main
technical contribution is a lazy cycle breaking strategy which,
by adding constraints lazily, improves performance dramatically,
and outperforms the state-of-the-art exact algorithms by an order
of magnitude on realistic medium-sized networks. We further
explore approximate algorithms and show that while a relaxation
approach is relatively slow, with a local search approach short
update schedules can be found, outperforming the state-of-the-art
heuristics.

On the theoretical front, we also provide an approximation
lower bound for the update time of the state-of-the-art algorithm
in the literature. As a contribution to the research community,
we made all our code and implementations publicly available.

I. INTRODUCTION

With the popularity of distributed data-centric applications
and AI, communication traffic is growing explosively. As
the performance of these applications critically depends on
the underlying network, the efficient use of communication
resources and network operation is important.

In order to meet these increasingly stringent performance
requirements, over the last years, great efforts have been
made to render communication networks more flexible and
programmable, especially in the context of software-defined
networks (SDNs). These technologies allow updating the
routes taken by network traffic programmatically, and hence in
a fine-grained and fast manner, taking into account the current
traffic demand. For example, in a software-defined network,
a centralized controller can instruct a node (i.e., a switch or
router) to change its forwarding rules determining the routes
taken by packets, from a logically centralized perspective.

However, operating networks in a highly adaptive manner
is still challenging as frequent changes may harm reliability.
In particular, a dependable network must not only ensure a
correct operation before and after an update occurred, but also
during the update. Indeed, even an SDN which is controlled
centrally, remains an asynchronous and distributed system:
updates sent out by a controller simultaneously may take effect

at different nodes in an asynchronous order. For example, if
a controller needs to update a loop-free route r1 to a loop-
free route r2, it needs to update the forwarding tables of all
involved routers. However, once the controller issues updates
to a subset of routers, the order in which these routers apply
the update and effectively change their forwarding tables is not
defined, i.e. some of the routers might in fact update faster than
others. This creates temporary hybrid routes in the network,
where there exist both nodes using the old rules and nodes
using the new rules, and forwarding may transiently induce a
loop.

The problem of how to consistently update a (software-
defined) network has received significant attention in the liter-
ature, and surveys report on hundreds of approaches [1], [2].
In their seminal work, Reitblatt et al. [3] proposed a solution
for this problem involving a 2-Phase Commit Protocol with
packet tagging. In this approach, the controller first informs all
routers of the new route. Then, the controller adds to all packet
headers a version number informing the routers whether the
old or the new route is to be used. This approach guarantees
that packets are routed either entirely on the old route or
entirely on the new route. However, the use of packet tagging
comes with overheads and has notable disadvantages [4].

An alternative solution is to partition the updates into k ≥ 1
batches and schedule them across multiple rounds. In each
round the controller selects a subset of (not yet updated)
routers to update, such that the consistency properties can
be guaranteed independently of the order in which the nodes
apply the update. The controller waits for the nodes to send
an acknowledgement and then continues with the next round.

In this paper we are interested in updating all routers
using a minimal number of rounds k, focusing on the most
fundamental and widely studied loop-freedom property [5].
This property requires that no packet ends up in a loop at
any time, where the literature distinguishes between strong
loop-freedom (SLF) and relaxed loop-freedom (RLF) [6]–
[8]. For SLF, the problem is provably NP-hard, and also no
polynomial-time exact algorithm for RLF is known today [6],
[7]. Accordingly, most existing literature revolves around
approximate algorithms and heuristics [1], [2].

This paper is motivated by the question whether and to
which extent it is possible to solve the loop-free network
update problem exactly.

Our main contributions are two fast algorithms to solve
the SLF and RLF problem variants exactly, that is, optimally:
the resulting schedules are minimal. Our approach relies on



an integer linear program which cannot be solved efficiently
directly. Our main technical contribution is a lazy cycle
breaking technique which, by adding constraints in a lazy
fashion, dramatically improves performance. Specifically, our
empirical evaluation shows that our approach is an order of
magnitude faster than the state-of-the-art exact algorithms on
realistic networks of medium sizes.

We also explore to which extent our approach can be
used to compute approximate solutions using relaxation, i.e.,
by dropping the integrality constraints and using a suitable
rounding. While linear programming can yield good schedules,
we find that a novel local search algorithm is significantly
faster, and our empirical evaluation shows that the resulting
schedules are slightly shorter than the ones computed by the
state-of-the-art algorithms.

We report on extensive experiments and also provide new
theoretical insights on existing algorithms. In particular, we
provide a tight approximation lower bound for the update time
of the state-of-the-art algorithm for RLF.

As a contribution to the research community, all our code
and experimental artefacts are made publicly available together
with this paper [9].

II. MODEL

We consider the standard model and terminology in the
literature [1], [2]. We are given n nodes (i.e., routers or
switches) V := {1, . . . , n}. Packets are initially sent from the
source s := 1 to the destination d := n along the directed path
s = 1, 2, . . . , n−1, n = d. This route should be replaced with
a new route given by σ(1) = s, σ(2), . . . , σ(n−1), σ(n) = d,
where σ is a permutation of {1, 2, . . . , n}.

The nodes are updated across an asynchronous network. In
the first round, the controller chooses a subset V1 ⊆ V of the
nodes, and instructs these nodes to update their forwarding
tables according to σ. However, the order in which the nodes
from V1 will apply the update is not determined and all orders
are considered possible. It can therefore happen that at some
point in time some nodes from V1 use their old forwarding
table while others applied the update already and use the new
policy. Eventually, all nodes from V1 have acknowledged the
update to the controller, and it can schedule the next round.

In general, when scheduling round t ≥ 2, the controller
knows that the nodes from V<t := ∪t−1

j=1Vj updated, and
it chooses a new subset Vt of V \ V<t to update in the
current round. Again, the nodes from Vt can update in any
order. Eventually, the controller updates all nodes, and its
solution/schedule consists of the subsets V1, V2, . . . , Vk it has
chosen. Note that V is partitioned by these subsets and that k
is the total number of rounds.

In general, the controller is required to update the routers
while at the same time ensuring that certain guarantees are
met. We consider both problem variants considered in the
literature, Strong and Relaxed Loop Freedom. The following
definitions prepare and introduce these notions:

Definition 1 (Full Graph). For an update problem with n
nodes and new path/permutation σ, let G := (V,E) where1

V := [1;n] be the directed graph given by the edges E :=
{(i, i+1) : i ∈ [1;n−1]}∪{(i, σ(σ−1(i)+1)) : i ∈ [1;n−1]}.
Here, σ−1 is the inverse permutation of σ, such that σ−1(i)
is the index of i in the new path σ, and σ(σ−1(i)+ 1)) is the
next node after i in the route given by σ. Hence, the graph G,
which we call the Full Graph, contains both the edges of the
old and of the new path.

Definition 2 (Update Graph). Assume that the nodes from
V ′ ⊆ V have already updated. This corresponds to the Update
Graph GV ′ := (V,EV ′) given by:

EV ′ := {(i, σ(σ−1(i)+1)) : i ∈ V ′}∪{(i, i+1) : i ∈ V \V ′}

i.e. the already updated nodes can only use their new edge,
whereas the other nodes can only use their old edge.

We are now ready to introduce the two relevant consistency
properties:

Definition 3 (Strong and Relaxed Loop Freedom (SLF
and RLF)). For an update problem with n nodes and new
path/permutation σ, let V1, . . . , Vk be a partitioning of V . In
each round t the nodes Vt will be scheduled for update. Recall
the notation V<t := ∪t−1

j=1Vj .
We say that the schedule fulfills the Strong Loop Free-

dom (SLF) property iff, for all t ≥ 1 and subsets V ′ ⊆ Vt,
the updated subgraph GV<t∪V ′ is cycle-free. This means that,
independently of the precise order in which the nodes from
Vt update (recall the assumption that all orders are possible),
there will never be any loop in the current update graph.

We say that the schedule fulfills the Relaxed Loop Free-
dom (RLF) property iff, for all t ≥ 1 and subsets V ′ ⊆ Vt, the
updated subgraph GV<t∪V ′ does not have any cycles reachable
from the source node s = 1. This means that, independently
of the precise order in which the nodes from Vt update (recall
the assumption that all orders are possible), there will never be
any loop reachable from s in the current update graph. Relaxed
Loop Freedom is usually an acceptable choice in practice,
because cycles which are not reachable by any packets do
not create routing issues.

For both variants one can formulate the following optimiza-
tion problem:

Definition 4 (SLF/RLF Optimization Problem). Find a sched-
ule V1, . . . , Vk with a minimum number of rounds k and which
fulfills the SLF/RLF consistency guarantee.

s = 1 2 3 5 d = 64

Fig. 1: Example SLF vs. RLF.

1For the rest of the paper, we denote by [1;n] the set {1, 2, . . . , n}.



Example We consider the instance described by Figure 1.
Per convention, the solid edges describe the old route, whereas
the dashed edges describe the new route. In this case, the
permutation corresponding to the new route is given by
(1, 5, 4, 3, 2, 6). If a valid SLF solution updates node i ∈
{3, 4, 5} in round t, then node i − 1 is required to have
been updated in round t′ ≤ t − 1, for otherwise there is a
potential cycle i − 1 → i → i − 1. An optimal schedule
is: V1 = {1, 2}, V2 := {3}, V3 := {4}, V4 := {5}. However,
if we consider the same instance for the RLF variant of the
problem, there exists the shorter schedule which updates {1, 2}
in the first round, {3, 4} in the second round {5} in the last
round. Indeed, any cycle created during the second round is
unreachable from the source, because all packets travel along
the route 1, 5, 6 independently of these subsequent updates.
Then, in the third round, 5 can be safely updated.

An easy extension of the above example shows that SLF can
require Ω(n) rounds. However, for the RLF variant, one can
show that any instance can be solved using O(log n) rounds.
This bound is achieved by the Peacock algorithm [7], [8],
which is presented in Section IV-C.

III. EXACT ALGORITHMS

While there already exist Integer Linear Programs (ILP)
which model the optimization problem from Definition 4, such
as the one used in [8], our modeling approach will be slightly
different. Instead of modeling the optimization problem di-
rectly, we model the decision variant of the problem: For a
given instance of the loop-free update problem, using either
SLF or RLF, and an integer T ≥ 1, is there a valid SLF/RLF
schedule using ≤ T rounds?

A. Strong Loop Freedom

Let G = ([1;n], E) be the full graph induced by an instance
(n, σ) of the SLF problem, i.e. E := {(i, i + 1) : i ∈ [1;n −
1]}∪{(i, σ(σ−1(i)+1)) : i ∈ [1;n−1]}. Call these edges old
and new edges, respectively. W.l.o.g. we assume that the sets
Eold and Enew of old and new edges are disjoint (and partition
E).

Our LP relaxation will impose the SLF property. To write
the corresponding conditions compactly some notation is re-
quired. Let C be the set of the cycles of G and consider some
fixed cycle C ∈ C. Identify a cycle with the vertices it contains,
i.e. C ⊆ [1;n]. We define the sets Cold and Cnew depending
on whether the outgoing edge of a vertex i ∈ C is old or not.
Note that Cold and Cnew thereby partition C.

Lemma 1. Let T ≥ 1 be a natural number. Define the
variables xti, yti for all t ∈ {0, . . . , T} and i ∈ [1;n].
Consider the polytope LP (T ) given by the following set of

constraints:

y0i = 1, ∀i ∈ [1;n− 1] (1)
yTi = 0, ∀i ∈ [1;n− 1] (2)

xti + yt−1,i = 1, ∀t ∈ [1;T ], i ∈ [1;n− 1] (3)
yt−1,i − yti ≥ 0, ∀t ∈ [1;T ], i ∈ [1;n− 1] (4)∑

i∈Cold

xti +
∑

y∈Cnew

yti ≥ 1, ∀t ∈ [1;T ],∀C ∈ C (5)

Then, the constraints can be satisfied by integral variables iff
there is a schedule with at most T rounds for the correspond-
ing instance (n, σ) of the SLF problem.

Proof. Intuitively, xti = 1 signifies that a new edge leaving
from i is in the update graph at time t, and yti = 1 signifies
that an old edge leaving from i is in the update graph at time
t. In the following we formalize this intuition.

First, note that 0 ≤ yti, xti ≤ 1 for any t, i, and hence any
integral solution is binary. Assume an integral feasible point
(x, y) is given. For any i ∈ [1;n− 1], conditions (1), (2) and
(4) imply there is a unique ti ∈ [1;T ] for which yti,i = 0 and
yti−1,i = 1. Schedule each i in round ti and define Vt to be
the set of nodes which are updated in round t. We claim that
conditions (3) and (1) ensure that this schedule does not violate
the SLF consistency guarantee. Assume on the contrary that
for some t and V ′ ⊆ Vt the update graph GV<t∪V ′ contains a
cycle C. Fix C and consider a vertex i ∈ C on this cycle. As
Cold and Cnew partition C, we make a case distinction. Clearly,
if i ∈ Cold, then ti ≥ t by definition of ti and thus yt−1,i = 1.
Condition (3) implies xti = 0. If i ∈ Cnew, then ti ≤ t and
thus yt,i = 0. We have shown that condition (5) is violated
for the cycle C, which is a contradiction.

Now assume a valid solution for the given SLF problem
instance is given, which schedules the nodes from Vt in round
t ∈ [1;T ]. Let ti ∈ [1;T ] be the round in which node i is
updated; define yti = 1 for t < ti and yti = 0 for t ≥ ti.
Define x according to condition (3). Conditions (1) to (4) are
clearly satisfied. Assume condition (5) is violated for some
cycle C. Let V ′ := {i ∈ Vt : i ∈ Cnew} and consider the
update graph G′ := GV<t∪V ′ . If i ∈ Cold, we have xti = 0,
hence yt−1,i = 1, ti ≥ t and the old edge (i, i + 1) exists
in G′. If i ∈ Cnew ∩ Vt, by definition of V ′ the new edge
(i, σ(σ−1(i) + 1)) going out from i is in G′. Else, if i ∈
Cnew \ Vt: because yti = 0, it follows that ti < t. Hence,
i ∈ V<t and the new edge (i, σ(σ−1(i)+1)) going out from i
is in G′. We have shown that the cycle C exists in G′, which
is a contradiction.

To solve the optimization SLF problem, we can apply
Lemma 1 for all T ∈ [1;n] and return the smallest T for
which the polytope LP (T ) is integrally feasible. Obviously,
the search procedure for finding such a point cannot be done in
polynomial-time. However, a particular algorithmic technique
helps the runtime be very good in practical terms. Classic ILP
solvers like Gurobi [10] require writing the constraints down
explicitly, and this is not tractable for larger n because the
number of cycles C ∈ C increases dramatically. Hence, we



initially add no cycle constraints at all, and then search for a
feasible integral point inside this relaxed version of LP (T ).
If no such point exists, then adding further cycle constraints
would obviously keep the polytope empty, and therefore T
needs to be increased. If instead a feasible solution x, y is
found, we use the Floyd-Warshall algorithm to find the shortest
cycle (w.r.t. weights xti and yti). If this cycle has length ≥ 1,
the algorithm can stop, because then all cycles in the full
graph G fulfill the cycle constraint. If instead the cycle is
too short we proceed by adding the corresponding constraint
in Gurobi and then re-solve the integer linear program with
the new constraint. This technique we call lazy cycle-breaking.

Hence, while solving our ILP directly would be slower than
the state-of-the-art algorithms, we will see that our lazy cycle-
breaking technique will dramatically improve performance,
outperforming the state-of-the-art by an order of magnitude.

B. Relaxed Loop Freedom
Our modeling for the RLF problem closely resembles the

one from the previous section for the SLF problem. In fact,
we only need to adapt the cycle constraints of the polytope
LP (T ). Recall that for the relaxed problem cycles are allowed
in the update graph as long as they are not reachable from the
source node s. To write these constraints properly, we use the
following:

Definition 5. Let (n, σ) be an instance of the RLF problem
and G := (V,E) the full graph associated to this instance. Let
S be a set such that:

S := (P, v) ∈ S
iff P := (v1 := s, v2, . . . , vk) is a tuple of k ≥ 1 distinct
nodes, such that the path P exists in G, (vk, v) ∈ E and
v = vi for some 1 ≤ i ≤ k. This means that the S-tuple
(v1 = s, . . . , vk, v) forms a path from s to some node vk,
together with an edge from vk to an already visited v node
closing a cycle (reachable from s). We call such a sequence
of edges a path-cycle structure.

For S := (P, v) ∈ S and corresponding S-tuple
(v1 := s, . . . , vk, v), let Sold and Snew be the vertices from
{v1, . . . , vk} which use their old and, respectively, their new
outgoing edge to form the corresponding path-cycle structure.
Similarly to how the old and new edges partition E (i.e. an
edge is either old or new), Sold and Snew partition the vertices
{v1, . . . , vk} appearing in the path-cycle structure.

Lemma 2. Let T ≥ 1 be a natural number. We define the
variables xti, yti for all t ∈ {0, . . . , T} and i ∈ [1;n].
Consider the polytope LP (T ) given by the following set of
constraints:

y0i = 1, ∀i ∈ [1;n] (6)
yTi = 0, ∀i ∈ [1;n] (7)

xti + yt−1,i = 1, ∀t ∈ [1;T ], i ∈ [1;n] (8)
yt−1,i − yti ≥ 0, ∀t ∈ [1;T ], i ∈ [1;n] (9)∑

i∈Sold

xti +
∑

y∈Snew

yti ≥ 1, ∀t ∈ [1;T ],∀S ∈ S (10)

Then, the constraints can be satisfied by integral variables iff
there is a schedule with at most T rounds for the correspond-
ing instance (n, σ) of the RLF problem.

Proof. The proof is analogue to the proof of Lemma 1. It
is easy to check that the new cycle breaking constraints (10)
model the RLF property.

To find a feasible integral point (or show that no such
point exists) in polynomial-time, we can again use the Floyd-
Warshall algorithm. Unlike in the SLF case, where Floyd-
Warshall is used to find the shortest cycle, here it is used
to find the shortest path-cycle structure. To do that, it suffices
to compute for all nodes i the length li of the shortest cycle
Ci containing i, and the length l′i of the shortest path from
the source s to the node i (with regards to the distances given
by xti for old edges and yti for new edges). If, for all nodes
i, it holds that li + l′i ≥ 1, then the cycle breaking constraints
are fulfilled. Otherwise, if for some i it holds that li + l′i < 1,
then we can easily extract the set S ∈ S which violates the
corresponding constraint.

For the implementation, we proceed as in the SLF case by
using lazy cycle-breaking. Initially, no path-cycle constraints
are added. If there exists no feasible integral point the number
of rounds T is increased. Else, Floyd-Warshall is used to find
the shortest path cycle structure S. If the cost of S is smaller
than 1 we add the corresponding constraint and retry searching
for a feasible point. Otherwise the algorithm terminates.

IV. POLYNOMIAL-TIME HEURISTICS

While the algorithms from the previous section solve the
SLF/RLF update problems optimally, they require solving
integer linear programs and their theoretical worst-case com-
plexity is not in polynomial-time. In this section we explore
even faster, polynomial-time algorithms that solve the update
problems close to optimally in practice.

A. LP-based Heuristics

This section applies to both the SLF and RLF variants of
the loop-free update problem. We consider, for any integer
T ∈ [1;n], the polytope LP (T ) from either Lemma 1
or 2. Instead of solving these problems integrally like in the
previous section, we instead instruct Gurobi to provide an
optimal fractional solution, which is significantly faster.

Assuming we obtained an optimal feasible (fractional) solu-
tion y∗ of LP (T ) for a minimal T , the next question is how to
round this solution to make it integral in polynomial-time. Let
OPT be the optimal/minimal number of rounds obtained by
an integral solution and note that the (minimal) T fulfills the
inequality T ≤ OPT . Assume y∗ listed as a (T + 1) × n
matrix Y ∗, where the rows match to time/rounds, and the
columns match to vertices. We denote with y∗t the vectors
(y∗ti)i∈[1;n] ∈ Rn. i.e. the rows of Y ∗. Let 2 ≤ k ≤ T ; we
keep as invariant the property that the rows 1, . . . , k − 1 are
integral. Observe that, if k reaches T , then the whole solution
is integral, because the last row of Y ∗ is the zero vector.
We round y∗k by adding the constraints y∗ki = 1 if y∗ki > 0



and yki = 0 if y∗ki = 0. We then search for another feasible
solution (fulfilling the newly added integrality conditions) in
the restricted LP (T ). If such a solution does not exist, T
is increased (without removing any of the previously added
integrality constraints) and we retry finding a feasible solution.

B. Other Heuristics for RLF
In this section we concentrate on the RLF variant of the

loop-free update problem. A general framework allows to
explore additional heuristics for this particularly interesting
problem. It partially uses notions already introduced in [8],
such as node merging, but we also introduce new concepts to
ensure a unified approach.

Definition 6 (Node merging). Let G be the full graph of some
instance (n, σ) of the RLF problem. For any node i ∈ [1;n−1],
let out(i) := σ(σ−1(i) + 1) be the successor of i w.r.t. the
new path. Updating i, i.e. merging i with out(i) in the full
graph, amounts to replacing i and out(i) by a single node,
with incoming rules from both i and out(i) and outgoing rules
just from out(i). Intuitively, merging i with out(i) models the
fact that, once updated, i only delegates incoming packets to
its new successor out(i).

Definition 7 (Update Tree). Let S ⊆ [1;n − 1] be a subset
of already updated nodes for an instance (n, σ) of the RLF
problem with full graph G. We represent this in the full
graph by merging all nodes i ∈ S with their corresponding
successors out(i). Note that if both i and out(i) are merged,
then they will both be merged into out(out(i)). It is easy to
observe that, independently of the order in which the nodes
from S are merged, the same update tree G(S) is obtained.
G(S) is a tree with regards to the remaining old edges (hence
the name), while the remaining new edges form a permutation
over its nodes.

We can visualize the concepts introduced by the previous
two definitions in Figure 2. In the first round, nodes 2 and d
are merged. In the second round, node 3 is merged to node
5, which is in turn merged with node 4, which is in turn
merged with node (2, d). This leads to the update tree on the
bottom, which is in fact the full graph corresponding to the
only instance of the RLF problem with n = 2 nodes. Other
examples of node merging are available in [8]. The following
lemma contains the unifying idea behind Peacock and also
our new algorithm. We include the (straightforward) proof in
a future technical report.

Lemma 3 (Main Lemma). Let G be the full graph of an
instance (n, σ) of the RLF problem. Let P be a path in G
from the source 1 to the destination n. Let Pold and Pnew be
the nodes in P which use their old and, respectively, their new
outgoing edge to form the path P . Let S := [1;n−1]\Pold and
consider the update tree G(S). Then G(S) is the full graph of
an instance (k, τ) of the RLF problem, where k := |Pold|+ 1
and τ is a permutation over the nodes in Pold ∪ {n}

According to Lemma 3, constructing the update tree G(S)
for the particular choice of S := [1;n− 1] \Pold gives another
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2, 3, 4, 5, ds

Fig. 2: Running Peacock on an instance with 6 nodes. From
top to bottom, we see the update trees G(∅), G({2}) and
G({2, 3, 4, 5}). Next to each node we also write out the
indexes of the nodes which have been merged into it.

instance of the RLF problem, to which the original instance
is reduced. In the following section we make implicit use of
this fact to successively reduce the original RLF instance.

C. Local Search

Our local search algorithm proposed in the following builds
upon concepts from the Peacock algorithm. We hence first
revisit Peacock and then present our approach in detail.

In the corresponding full graph G of an instance with n
nodes and permutation σ of the RLF problem, a new edge
e := (i, j) ∈ Enew is called forward iff j > i, i.e. if it jumps
ahead w.r.t. the old path. Otherwise e is called backward. The
node i is called forward or backward node, respectively. We
provide some further definitions:

Definition 8 (Forward Path). A path P from 1 to n in the full
graph G of an instance of the RLF problem is called forward
path if it does not contain any backward edges. Then, P is
made up exclusively of old edges and of (new) forward edges.

Definition 9 (Valid Forward Edge Choice). Identify each
forward edge e := (i, j) (with i < j) of a full graph G with
the interval [i, j]. Let Forw be the set of forward edges of G.
Consider the set of valid forward edge choices given by:

F :={F ⊆ Forw : intervals corresponding to forward edges
in F share no common nodes except endpoints}

We call F ∈ F a valid choice (of forward edges). If there
exists no F ′ ∈ F such that F ⊂ F ′ we call F a maximal
valid choice (of forward edges)

Notice that there exists a forward path PF containing
exactly the forward edges of some subset of forward edges
F ∈ Forw if and only if we have F ∈ F .

Both for the SLF and the RLF problems, it is easy to observe
that one can update any forward nodes in the first round. This
cannot create any cycles. However, for the RLF problem in
particular, a second observation can be made: If a forward



node i with corresponding new edge (i, j), j > i is updated
in the first round, then all nodes i < k < j can be safely
updated in the next/second round, since they are unreachable
from the source (and hence any cycles are non-problematic).
Taking this thought further leads us to the following:

Lemma 4. Let P be a forward path in the full graph G of
an RLF problem instance. Then one can reduce this instance
to the smaller instance G(S), where S := [1;n− 1] \ Pold, in
two rounds. Update the new forward edges in P in the first
round and all other nodes from S in the second round.

In [8], a forward path PF is constructed starting from a
maximal valid choice of forward edges F in the following
way: first, one sorts all forward edges in descending order
of their length; then, one greedily adds forward edges to the
current subset F of forward edges, starting from the longest
one, while keeping the invariant that F is valid (and hence
PF is well defined per Definition 9). It is then shown that:

Lemma 5 (see [8]). The above strategy for constructing the
forward path P := PF ensures that the reduced instance
G(S), where S := [1;n − 1] \ Pold has at most 2n/3 nodes,
where n is the size of the initial instance given by G.

Combining Lemmas 4 and 5 then allows to conclude that
Peacock requires only O(log n) rounds for any RLF problem
instance. An example of Peacock running is shown in Fig-
ure 2, which was also used to understand how node merging
works. The forward path P is given by (1, 2, 6) and thus
S := {2, 3, 4, 5}. We update 2 in the first round and 3, 4, 5
in the second round, as argued by Lemma 4. This leads to
the new RLF problem instance given by G(S), which can be
solved in one round, leading to a total of 3 rounds.

Let us now elaborate on our proposed Local Search ap-
proach. Our idea for an improved algorithm is to choose the set
F more carefully. We will also use a maximal valid such subset
F , as per Definition 9, and then use the induced forward path
PF to reach smaller subinstances. We determine the subset F
using Local Search as shown in Algorithm 1.

Note that, at Line 3, the initial choice of a set F can be
made in multiple ways. Our implementation goes over the
forward edges from left to right and adds them to F as long
as this does not break validity (as defined in Definition 9).
At Line 9, the forward edges that are to be added to ensure
maximality of F ′ can again be chosen in any arbitrary way.
For our implementation, we go left to right and add a forward
edge to F ′ iff this does not break validity.

D. Peacock is not an o(log n) approximation
Lemma 5 implies that Peacock solves any RLF instance in

O(log n) rounds. In fact, it can be shown that this bound is
tight:

Theorem 1 ([8]). There exists an infinite family of graphs Gj ,
such that Gj has |Gj | = 2j nodes for any j ≥ 1, and such that
running the first two rounds of Peacock on Gj produces Gj−1.
In particular, this implies that Pecock requires O(log |Gj |)
rounds to solve the instance given by Gj .

Algorithm 1 Local Search with 1-Neighborhood
if n = 1 then

return 1
F ∈ F some initial maximal valid choice of forward edges
P := PF and corresponding S := [1;n− 1] \ Pold
r(S)← LocalSearch(G(S)) (recursive call)
while true do

for f /∈ F do
F ′ ← {f}
Add all edges from F to F ′ that can be added without
making F ′ invalid
Add other arbitrary forward edges to F ′ if it is not yet
maximally valid.
P ′ := PF ′ with corresponding S′

if LocalSearch(G(S′)) < r(S) then
Improve: change F to F ′, P to PF ′ , S to S′

Break loop if no improvement was found.
return 2 + LocalSearch(G(S))

Note on proof. The original proof given in [8] contains some
mistakes. We fix these mistakes and give a correct proof in a
future technical report.

The fact that Peacock schedules any RLF instance in
O(log n) rounds also implies that Peacock is an O(log n)
approximation. An open question left in [8] was whether this
bound is also tight. We answer this question in the negative:

Theorem 2. For infinitely many n, there are instances of
the RLF problem for which the Peacock algorithm requires
Ω(log n) rounds, but which can be solved optimally using only
constantly many rounds. Hence, Peacock is not an o(log n)
approximation.

Proof sketch (also see Figures 3, 4). Consider the graphs Gj

from the previous theorem. These graphs correspond to in-
stances of the RLF problem, and have n = 2j nodes each.
The Peacock algorithm requires Ω(log n) rounds to schedule
these instances. Also, running the first two rounds of Peacock
on Gj produces Gj−1. Now fix some j (and thus n) and
construct the instance given by the graph G as shown in the
upper part of Figure 3 and described in the following: In the
initial path, the source node s is followed by the nodes of the
graph Gj , then by a node v, then by the nodes of another
graph Dj (corresponding to another/any instance of the RLF
problem), and then by a node w and the destination node
d. The graphs Dj and Gj both have n nodes. Let (s1, d1)
and (s2, d2) be the source-destination pairs of the graphs Gj

and Dj , respectively. The new path starts at s, then goes to
v, then to s1 and through the new edges in Gj eventually
to d1, then to w, to s2 and through the new edges in Dj

eventually to d2, and then finally to d. It is easy to see that
Peacock requires log n rounds to solve this instance, whereas
an optimal solution updates s in the first round and all nodes
inside Gj in the second round. The resulting instance can be
solved in constantly many rounds.
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Fig. 3: Running first two rounds of Peacock on our instance
leads to a situation where j−1 = log n rounds will be required.
Grey full edges correspond to the old path; black or red dashed
edges correspond to the new path. Red elements are updated
in the following shown round.

s Dj
d

Fig. 4: Configuration reached by a RLF solution which up-
dated s in the first round and then all nodes inside Gj in the
second round.

V. EMPIRICAL EVALUATION

In this section, we report on the results from our empirical
evaluation, studying the running times and approximation
quality. We implemented all presented algorithms and ran
simulations on an Intel i5-7200U Processor (4 cores) with
8GB RAM running Debian Stable 11 (Bullseye). Our code
is publicly available at [9]. We include instructions for re-
producing the results presented in this paper. The main logic
is implemented in C++. To solve linear programs, either
fractionally or integrally, we use the library Gurobi [10] in
Java.

A. Running Times

We first report on the running times of our algorithms.
In [8] a repository is provided which includes an ILP solver
for different variants of the SDN Network update problem,
including (but not limited to) the SLF and RLF problems.
The ILP is adapted from [11]. It can be used to determine the
(integral) optimum OPT for any instance of these problems.
To the best of our knowledge, this is the only publicly available
algorithm based on linear programming which precedes our
techniques. It is also the only tool we know besides ours that

TABLE I: Comparison with state-of-the-art exact algorithm
for SLF and RLF.

Size of Number of [8] New Exact
instance samples SLF SLF

60 100 942s 42s
70 80 1145s 73s
80 60 1616s 78s
90 40 1671s 122s

100 30 1135s 188s
110 30 1683s 405s

Size of Number of [8] New Exact
instance samples RLF RLF

60 50 1610s 110s
70 40 1948s 248s
80 30 2124s 527s
90 20 2242s 1118s

100 20 2816s 4154s
110 10 4014s 6185s

can exactly solve large instances of SLF/RLF in a reasonable
amount of time.

From the results in Table I we can see that the speed
of this state-of-the-art ILP solver is slower compared to our
algorithms. To analyze the running times we used randomly
generated instances/permutations. The first two columns indi-
cate the size of the randomly generated instances/permutations
and the number of samples generated for this size, respectively.
The following columns contain the number of seconds required
by each of the algorithms to solve all of these instances. For
the SLF problem our implementation is usually faster by a
factor of 10 to 20 for instances with less than 90 nodes, which
are relevant network sizes in practice. The benefit however
lowers for larger networks. For the RLF problem again the
speed difference is significant in the favor of our algorithms for
reasonably sized instances with less than 90 nodes. We credit
the good performance of our solver to our lazy cycle-breaking
technique. Indeed, without the use of lazy cycle-breaking, i.e.
by writing down all cycle constraints in Gurobi, our algorithms
usually ran into memory limitations for instances with more
than 40 nodes.

Regarding the RLF heuristics, Table II provides a summary
of their performance. It is apparent that using the Linear
Programming approach to solve the RLF instances exactly is
much slower than using the corresponding rounding approx-
imation algorithm. In particular, exactly solving large RLF
instances, e.g. with more than 100 nodes, requires several
hours and our experiments hence timed out. Regarding the
other RLF heuristics, Peacock runs in under 1 second for all
experiments (not shown in the table) but Local Search is also
significantly faster than any of the LP-based approaches. Later
we will see that Local Search offers the best approximation
quality, improving on Peacock and showing that it provides
an attractive trade-off between accuracy and speed.



TABLE II: Running times of different RLF algorithms. A
hyphen indicates a running time of over one hour.

Size of Number of LP Exact LP Round Local Search
instance samples RLF RLF RLF

60 200 442s 136s 5s
70 100 756s 134s 4s
80 75 2192s 154s 3s
90 50 2786s 111s 4s

100 50 - 292s 6s
110 50 - 303s 7s

TABLE III: RLF: Empirical approximation factors.

Maximum Maximum Mean Mean
difference factor difference factor

Rounding (n = 70) 7 2.75 1.29 1.35
Peacock (n = 70) 4 2.33 1.26 1.37

Local Search (n = 70) 2 1.66 0.74 1.2
Rounding (n = 85) 5 2.25 0.93 1.24
Peacock (n = 85) 4 2.33 1.36 1.41

Local Search (n = 85) 2 1.66 0.66 1.18

B. Approximation Quality

We next report on our results on the approximation quality.
In Figure 5 we consider the SLF algorithms. On the top of
Figure 5 we compare the three quantities LPOPT , i.e. the
minimal T for which the polytope LP (T ) is (fractionally)
feasible, OPT , i.e. the optimal/minimal number of rounds for
an integral solution, and the solution ALG provided by the
SLF rounding algorithm, i.e. the number of rounds the rounded
integral solution y∗ uses. This boxplot has been produced
by running the algorithms on randomly generated permuta-
tions/instances of the SLF problem. Notice that LPOPT and
OPT are usually very close to each other. Also, for most
instances OPT and LPOPT stabilize at around 4 rounds.
The rounded solution ALG is usually close to OPT , but
outliers are present too, requiring 8 and 10 rounds to solve,
respectively. Similar experiments for other instance sizes show
almost identical results.

At the bottom of Figure 5 we show how the mode and
the mean of the empirical approximation factor behave for
different values of n. The data has been produced by running
50 simulations on randomly generated permutations/instances
of the SLF problem for each n = 60, 65, . . . , 110. We kept
the number of simulations relatively small for performance
reasons. This leads to quite high variance. In particular, there
is an outlying maximal approximation factor 6.5 obtained for
n = 85. Such spikes are relatively common for the SLF
problem: most randomly generated instances are well approx-
imated, and instances for which the approximation factor is
high are quite rare. The worst-case empirical approximation
factor ALG/OPT seems to get progressively worse, both
in mode and in mean, as we increase the size n of the
instances. While it is in principle possible that for higher n
the approximation factor stabilizes/converges to a constant,
we suspect that our rounding procedure can behave poorly
in pathological cases, even though it is usually competitive.

In Figure 6 we next consider the RLF algorithms. As for the

Fig. 5: SLF: Comparison of Rounding with OPT

Fig. 6: RLF: Comparison of Heuristics with OPT



SLF problem, on the top of Figure 6, the quantities LPOPT

and OPT have a narrow distribution and are almost always
equal to each other; for most instances only 3 or 4 rounds are
required. The LP Rounding Algorithm has a broad distribution
with long upper whiskers and outliers. Peacock solves almost
all instances in 5 rounds, but outliers exist at 3 and 7 rounds,
respectively. In all cases, the Local Search algorithm seems to
perform the best: all its results fit compactly in a small box
which is almost as low as the boxes of LPOPT and OPT .
There are no whiskers or outliers. In Table III we gather some
information regarding the empirical approximation factors. For
space reasons we only show the results for n = 70 and n = 85.
The results for other values of n are very similar and confirm
that Local Search is the best performing approximation.

At the bottom of Figure 6 we compare the non-LP based
heuristics for larger values of n. (The LP cannot be used for
such big instances.) For each value of n = 300, 310, . . . , 400
we sample 50 random permutations and compute the mean
number of rounds required to solve these instances for all
algorithms. The results confirm the impressions from above:
Local Search finds the shortest schedules.

VI. RELATED WORK

There already exists a large body of literature surrounding
the broad question of how to update policies and routes in
(software-defined) networks [3], [5], [12]–[20]. For compre-
hensive surveys of recent literature in the area of consistent
network updates we refer the reader to [1], [2].

Reitblatt et al. [3] initiated the study of network updates
using a 2-Phase Commit Protocol (2PC) with packet tagging.
The protocol also served as a foundation for distributed control
plane implementations [13]. However, packet tagging is often
undesirable and can lead to unexpected issues as well [4].

In [5], [21], Wattenhofer et al. studied transient consis-
tency properties, including strong loop-freedom (SLF), for
destination-based routing policies. However, their model uses a
different objective function, where the number of nodes which
can be updated in a single round needs to be maximized,
instead of minimizing the number of rounds. The paper [7] also
analyzes this alternative optimization problem and provides a
proof of NP-hardness in the case of SLF. The problem we
are interested in, i.e. of minimizing the number of rounds, is
also proven to be NP-hard in the SLF case [6], while for RLF
this remains an open question. The objective of minimizing the
number of rounds was first studied by Schmid et al. in [7], [8].
They show that this problem is NP-hard for SLF but it remains
open if this also holds for the RLF case. In [8] the Peacock
algorithm is introduced, which can solve any RLF instance
using O(log n) rounds where this is a tight bound [8]. In the
more recent work [22] the stronger result is proven that there
exist RLF instances which cannot be scheduled in less than
Ω(log n) many rounds (with any algorithm). Researchers have
also investigated how to efficiently update multiple policies
simultaneously [23].

Several previous exact algorithms for the SLF and/or RLF
problems are based on Petri Networks [24], [25], Linear Tem-

poral Logic [26], [27], Stackelberg Games [28], BDDs [29],
[30] or other techniques [31]. These tools can be used to en-
force other consistency guarantees than loop-freedom and are
thus more general yet slower than more specialized techniques.
Examples of such tools include the recent Kaki [25], Netstack
[28], Latte [32] and Netsynth [26].

In [8] an exact algorithm, based on an integer linear pro-
gramming formulation from [11], is used specifically for the
SLF/RLF problems. However, even the aforementioned integer
linear program [11] is significantly more complex than our
formulation, and leads to slower performance than our (more
specialized) exact algorithms. Our paper provides, as far as
we know, the first exact algorithms designed specifically for
the SLF and RLF problems. In the case of RLF there has also
been a line of research to design heuristics, like Peacock [8]
or the more recent Savitar [22].

VII. CONCLUSION

We presented both exact and approximate algorithms for
the strong and relaxed loop-free network update problems.
In particular, we presented a parameterized LP which allows
(after our optimizations) to solve the problems both exactly
(using an ILP formulation) and approximately (using an LP
formulation and a suitable rounding algorithm) for a significant
number of nodes. Our algorithms provide a way to compute
the optimum much faster than with any other method known
to us for instances of reasonable size. We further find that for
the RLF problem, which relaxes the SLF problem, if only an
approximation is required, the best-performing heuristic is the
Local Search algorithm. This heuristic improves on the state-
of-the-art Peacock algorithm in that it explicitly searches for
the best set of forward edges to update. We implemented all
algorithms and published our code to ensure that our results
are reproducible and falsifiable.

Our work opens several interesting avenues for future re-
search. On the theory front, we showed that Peacock is not an
o(log n)-approximation: we gave an example where Peacock
requires Θ(log n) rounds though it could be solved in O(1)
rounds. It is easy to see that our Local Search algorithm
actually finds a schedule with O(1) rounds for these instances.
Hence, it would be interesting to study whether Local Search
provides a constant approximation. On the practical front,
it would be interesting to explore algorithm engineering ap-
proaches to further improve the performance of our algorithms,
and generalize them for additional consistency properties. The
authors have provided public access to their code and/or data
at [9].
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