
Self-Adjusting Grid Networks

Chen Avina, Ingo van Duijnb,, Maciej Pacutc, Stefan Schmidc

aSchool of Electrical and Computer Engineering, Ben Gurion University of the Negev
bAalborg University

cTechnical University of Berlin

Abstract

Emerging networked systems become increasingly flexible, reconfigurable, and “self-∗”. This introduces
an opportunity to adjust networked systems in a demand-aware manner, leveraging spatial and temporal
locality in the workload for online optimizations. However, it also introduces a tradeoff: while more frequent
adjustments can improve performance, they also entail higher reconfiguration costs. This paper studies
self-adjusting grid networks in which frequently communicating nodes (e.g., virtual machines) are moved
topologically closer in an online and demand-aware manner, striking a balance between the benefits and
costs of reconfigurations. We show that the underlying algorithmic problem can be seen as a generalization
of the classic dynamic list update problem known from self-adjusting data structures: in a network, requests
can occur between node pairs. This pairwise optimization turns out to be significantly harder than the
classical problem it generalizes. Our main result is a general Ω(log n) lower bound even in a scenario where
not only the self-adjusting network topology forms a grid but also the communication pattern (the demand
graph); hence, in principle, in this scenario the demand can be served at constant cost, once it is learned.
To demonstrate the challenge of adapting a network to pair-wise communication requests, we also discuss
the 1-dimensional grid in more details and present an online algorithm that is O(log n)-competitive in this
setting.

Keywords: Self-∗, self-adjusting data structures, self-adjusting networks, competitive analysis, distributed
algorithms, communication networks.

1. Introduction

Communication networks are becoming increas-
ingly flexible, along three main dimensions: rout-
ing (enabler: software-defined networking), embed-
ding (enabler: virtualization), and topology (en-
abler: reconfigurable optical technologies). In par-
ticular, the possibility to quickly reconfigure com-
munication networks, e.g., by migrating (virtual-
ized) communication endpoints [9] or by reconfig-
uring the (optical) topology [16, 11], allows these
networks to become demand-aware: i.e., to adapt
to the traffic pattern they serve, in an online and
“self-∗” manner. In particular, in a self-adjusting
network, frequently communicating node pairs can
be moved topologically closer, saving communica-
tion costs (e.g., bandwidth, energy) and improving
performance (e.g., latency, throughput).

However, today, we still do not have a good un-
derstanding yet of the algorithmic problems under-

lying self-adjusting networks. The design of such
algorithms faces several challenges. In particular,
as the demand is often not known ahead of time,
online algorithms are required to react to changes
in the workload in a clever way; ideally, such online
algorithms are “competitive” even when compared
to an optimal offline algorithm which knows the
demand ahead of time. Furthermore, online algo-
rithms need to strike a balance between the benefits
of adjustments (i.e., improved performance and/or
reduced costs) and their costs (i.e., frequent ad-
justments can temporarily harm consistency and/or
performance, or come at energy costs).

The vision of self-adjusting networks is reminis-
cent of self-adjusting data structures such as self-
adjusting lists and splay trees, which optimize
themselves toward the workload. In particular, the
dynamic list update problem, introduced already in
the 1980s by Sleator and Tarjan in their seminal

work [23], asks for an online algorithm to reconfig-
ure an unordered linked list data structure, such
that a sequence of lookup requests is served op-
timally and at minimal reconfiguration costs (i.e.,
pointer rotations). It is well-known that a sim-
ple move-to-front strategy, which immediately pro-
motes each accessed element to the front of the list,
is dynamically optimal, that is, has a constant com-
petitive ratio.

This paper initiates the study of a most basic self-
adjusting grid network, which can be seen as a
generalization of the dynamic list update problem,
along two dimensions: first, instead of considering
a 1-dimensional list, we consider a d-dimensional
grid; second and more importantly, while data
structures serve requests originating from the front
of the list (the “root”) to access data items, net-
works serve communication requests between pairs
of nodes. The objective in this pairwise general-
ization, is to move nodes (e.g., virtual machines)
which currently communicate frequently, closer to
each other, while accounting for reconfiguration
costs.

1.1. Formal Model

We study the design of a self-adjusting network
which optimizes itself toward the pairwise commu-
nication requests it serves. At the core of this model
is a set V of communicating nodes and a static net-
work N . One can think of the nodes in V as virtual
machines, and the nodes of N as physical hosts; the
virtual machines are hosted on the nodes of N (one
virtual machine per host), and their communication
is facilitated by the network links (edges) of N . An
embedding (injection) of V into the nodes of N is
called a host configuration and is denoted h; the set
of all configurations is denoted CV ↪→N .

A sequence of communication requests σ =
(σ0, σ1, . . . , σm) is called demand, and can be served
at a cost of the sum of its constituent requests.
Specifically, a communication request is a pair of
communicating nodes, and a configuration h ∈
CV ↪→N can serve a communication request (u, v) ∈
V ×V at cost dN (h(u), h(v)), where dN denotes the
(hop) distance in N . See Figure 1 for an illustra-
tion of a network with communicating nodes con-
figured. The cost of serving communication (4, 6)
in the figure’s configuration is 2. Note that the
demand (dashed lines) in the figure can actually
be configured so that every communication request
can be served at cost 1.

In our model, we are interested in minimizing the
cost of the demand by allowing host reconfigura-
tions. A reconfiguration is a transition from a con-
figuration h to h′ by a sequence of host migra-
tions, where one migration comprises two neigh-
boring network nodes exchanging their embedded
communicating nodes; the cost of a reconfiguration
is the minimal number of migrations necessary to
implement it. In summary, this yields:

Definition 1. Given a finite demand σ =
(σ0, σ1, . . . , σm) and a sequence of configurations
h0, h1, . . . , hm ∈ CV ↪→N . The cost of serving σ is
the sum of serving each σi in hi plus the recon-
figuration cost between subsequent configurations
hi, hi+1.

The Pairwise Grid Update Problem. In particular,
we study the problem of designing a self-adjusting
grid network : a network N whose topology forms a
d-dimensional grid, or d-grid, for which we use the
following notation:

• A d-grid is a graph N = (VN , E)
where VN ⊂ N × · · · × N, with E =
{((n1, . . . , nd), (m1, . . . ,md)) | ∃i s.t. |ni −
mi| = 1 and ∀j ̸= i, nj = mj}.

• The length of a grid is its largest dimension,
i.e., max(n1,...,nd)∈V ni.

• A subgrid of a d-grid is any subset of the grid
which forms a d′-grid, with 1 ≤ d′ ≤ d

31 2

4

1

2

1 2

5 6

3

Figure 1: A 2× 3 grid network N (solid squares), with com-
municating nodes (dashed circles) configured on it.

Definition 2 (Pairwise Grid Update). Let V ,
h, and σ be as before, with N representing the d-
dimensional grid (for some constant d), with all di-
mensions having length n1/d.

The cost of serving a request σi = (u, v) ∈ σ is given
by dN (h(u), h(v)) = ∥h(u), h(v)∥1, where ∥·∥1 is the
ℓ1 norm (taxicab distance).

2

As a first step, we in this paper consider the Pair-
wise Grid Update problem for the case where the
demand has the same topology as the network: the
communication requests between nodes also form a
grid topology. We will refer to this graph as the de-
mand graph or, synonymously, request graph. More
formally, to denote the demand as a graph, we let
Ei = {σ1, . . . , σi} be the first i requests of σ inter-
preted as a set of edges on V , so that the request
graph R(σ) = (V,Em) models the entire demand
σ.

Since the self-adjusting network and the demand
have the same topology, in principle, there exists a
configuration of V into the grid network such that
any request can be served at cost 1. However, ini-
tially, the embedding may be arbitrarily far from
optimal, and hence needs to be learned.

Online Competitive Ratio. Recall that the cost in-
curred by an algorithm A on σ is the sum of com-
munication and reconfiguration costs. In the realm
of online algorithms and competitive analysis, we
compare an online algorithm ON to an offline al-
gorithm OFF which has complete knowledge of σ
ahead of time. We want to devise online algorithms
ON which minimize the competitive ratio ρ:

ρ = max
σ

cost(ON(σ))

cost(OFF(σ))

1.2. Related Work

One important area of related work arises in the
context of the dynamic list update problem. Since
the groundbreaking work by Sleator and Tarjan on
amortized analysis and self-adjusting data struc-
tures [23], researchers have explored many inter-
esting variants of self-adjusting data structures,
also using randomized algorithms [21], studying the
power of lookaheads [1, 3], or devising offline algo-
rithms [5, 20]. The deterministic Move-To-Front
(MTF) algorithm is known to optimally solve the
standard formulation of the list update problem: it
is constant competitive [23, 4]. To the best of our
knowledge, the exact competitive ratio in the ran-
domized setting (against an oblivious adversary) is
still an open problem [3, 24]. The state-of-the-art
randomized algorithm [3] makes an initial random
choice between two known algorithms that have dif-
ferent worst-case request sequences, relying on the
BIT [21] and TIMESTAMP [2] algorithms.

We also note that the self-adjusting network design
problem for pairwise requests can be considered
a special case of general online problems such as
the online Metrical Task System (MTS) problems.
However, given the exponential number of possi-
ble configurations, the competitive ratio of generic
MTS algorithms will be high if applied to our more
specific problem (at least according to the exist-
ing bounds). Furthermore, we note that in case
the demand graph and the network have the same
topology, the problem can be seen as a learning
problem and is hence related to bandits theory [13];
however, in our model, reconfigurations come at a
cost.

There also exists work on self-adjusting networks
whose (bounded-degree) topology can be adjusted,
e.g., [8, 10, 22, 19, 15]. However, these approaches
cannot be applied in our context, where only the
mapping between the virtual machines and the
physical servers can be changed, but not the net-
work itself.

The paper closest to ours are by Avin et al. [6, 7]
and by Olver et al. [17]. In [6], the authors con-
sider a problem related to self-adjusting grid net-
works, for a special type of input sequences which
are chosen i.i.d. from a given pairwise distribution,
namely a symmetric product distribution. For this
model, the authors propose a local, distributed al-
gorithm that is constant competitive for sufficiently
long sequences; they also show that the problem is
NP-hard. In [7], the authors present different swap-
ping heuristics for migrating virtual machines on a
hypercubic networks, aiming to aggressively collo-
cate communicating nodes. Olver et al. [17] intro-
duced the Itinerant List Update (ILU) problem: a
relaxation of the classic dynamic list update prob-
lem in which the pointer no longer has to return
to a home location after each request. The authors
present an Ω(log n) lower bound on the randomized
competitive ratio and also describe a polynomial-
time offline algorithm and prove that it achieves
an approximation ratio of O(log2 n). In contrast,
we in our paper focus on online algorithms and de-
mand graphs (where the edges are communication
requests) which form a grid. In fact, we show that
the lower bound Ω(log n) even holds in this restric-
tive case, at least for deterministic algorithms. We
also present an online algorithm which matches this
bound in our model.

Bibliographic note. A preliminary version of this

3

paper was presented at SSS 2019 [12]. After the
publication of conference version of this paper, Ak-
senov et al. developed a constant-competitive al-
gorithm for the setting where self-adjusting linear
networks serve 2× n grid demands [18].

1.3. Contributions

This paper initiates the study of a class of basic self-
adjusting networks (d-grids), which optimize them-
selves toward the dynamically changing demand
(restricted to the same topology), while amortiz-
ing reconfiguration cost. The underlying algorith-
mic problem is natural and motivated by emerging
reconfigurable communication networks where vir-
tual machines can be migrated in a demand-aware
manner. In the special case of a 1-dimensional grid
(a line), the problem can also be seen as a pairwise
generalization of the fundamental dynamic list up-
date problem. Our main result is a negative one:
we show that unlike the classic dynamic list update
problem, which admits for constant-competitive on-
line algorithms, there is an Ω(log n) lower bound on
the competitive ratio of any deterministic online al-
gorithm for the Pairwise Grid Update problem,
even if the demand forms the same grid topology
as the physical network. We further show that the
offline variant of the problem is NP-complete. We
also demonstrate the challenges of designing online
algorithms by presenting an online algorithm which
is O(log n)-competitive for long enough sequences
on 1-grids (i.e., lines), where the demand has the
same topology.

1.4. Organization

The remainder of this paper is organized as fol-
lows. In Section 2, we put the problem and its
challenges into perspective with respect to the list
update problem. In Section 3 we derive the lower
bound for Pairwise Grid Update. Then, in Sec-
tion 4 we present the upper bound for Pairwise
List Update and the NP-completeness of its of-
fline variant. We conclude in Section 5.

2. From Classic to Pairwise List Up-
date

To provide an intuition of the challenges involved
in designing online algorithms for Pairwise Grid
Update problems and to put the problem into per-
spective, we first revisit the classic list update prob-
lem and then discuss why similar techniques fail if

applied to communicating node pairs, i.e., scenarios
where requests do not come from fixed points in the
network (e.g. the head of a list network).

The (dynamic) list update problem [23] introduced
by Sleator and Tarjan over 30 years ago is one of
the most fundamental and oldest online problems:
Given a set of n elements stored in a linked list, how
to update the list over time such that it optimally
serves a request sequence τ = (τ1, τ2, . . .) where for
each i, τi ∈ V is an arbitrary element stored in the
list? The cost incurred by an algorithm is the sum
of the access costs (i.e. scanning from the front of
the list to the accessed element) and the number
of migrations (swaps in their terminology). As ac-
cesses to the list elements start at the front of the
list, it makes sense to amortize high access costs by
moving frequently accessed elements closer to the
front of the list. In fact, the well-known Move-To-
Front (MTF) algorithm even moves an accessed el-
ement to the front immediately, and is known to be
constant competitive: its cost is at most a constant
factor worse than that of an optimal offline algo-
rithm which knows the entire sequence τ ahead of
time [23]. Throughout the literature, slightly differ-
ent cost models have been used for the list update
problem. Generally, a cursor is located at the head
of the list at each request. Then, the algorithm can
perform two operations, each operation incurring
unit cost. i) Move the cursor to the left, or to the
right, one position; the element in the new position
is referred to as touched. ii) Swap the element at
the cursor with the element one position to the left
or right; the cursor also moves.

In the 1-dimensional pair-wise update problem,
upon a request σi = (si, ti), the cursor is placed
at si instead of the head of the list, and ti needs
to be looked up. To demonstrate the significance of
this difference, we first present a paraphrased ver-
sion of the proof by Tarjan and Sleator showing the
dynamic optimality of mtf. After that, we show-
case a simple access sequence differentiating the two
problems.

2.1. Expositional Proof for Optimality of
MTF

While the potential argument used to show dy-
namic optimality of the move-to-front strategy for
the list access problem yields a very elegant and
succinct proof [23], it lacks intuition which makes it
difficult to generalize the argument. The key idea in
the potential argument is to compare the execution

4

1 2 3 4 5 6

1 23 4 56

1 23 4 56

1 23 4 56

1 234 56

1 2345 6

1 2 3 4 5 6

1 2 3 4 56

1 23 4 56

1 23 4 56

1 23 4 56

1 23 4 56

0

0

0

0

1

1

1

1

1

1

1

6

3

1

3

6

b1 =

b2 =

b3 =

b4 =

b5 =

b6 =

a1 =

a2 =

a3 =

a4 =

a5 =

Figure 2: mtf (yellow) and A (blue) on τ = 6, 3, 1, 3, 6

of mtf to the execution of an arbitrary algorithm
A. The algorithm is fixed for the analysis, but any
valid algorithm can be used, e.g. the optimal offline
algorithm. The state (represented by a list) of mtf
and A are juxtaposed at every access, comparing
how the order of elements in both lists differ. In
fact, it is sufficient to only consider the relative or-
der of two arbitrary but fixed elements, call them
u and v. Consider the order of u and v in the state
of A before it performs the ith access. If this order
is the same as in mtf before it performs the ith
access, let bi = 0 and otherwise bi = 1. Similarly,
if their relative order is the same in mtf after its
ith access, let ai = 0 and otherwise ai = 1. This
describes an inversion sequence b1a1b2a2 . . . bmam.
Figure 2 illustrates this for mtf and an arbitrarily
chosen algorithm A on a sequence τ = 6, 3, 1, 3, 6,
with the inversions of 1 and 6 described by the se-
quence 01111011100.

Suppose that τi ∈ {u, v} and that mtf touches u
and v while accessing τi. The proof by Tarjan and
Sleator boils down to three observations.

Observation 1. MTF inverts u and v relative to

A by accessing τi, i.e. bi ̸= ai.

Observation 2. If bi = 0, mtf and A agree on the
order of u and v before τi. Since mtf touches both,
A also touches both in order to access τi.

Observation 3. For bi = 1, let j < i be the largest
index such that bj = 0 or aj = 0 (note that j exists
because b1 = 0). When aj = 0, and thus bj+1 = 1,
A inverts u and v and therefore must have touched
both. When bj = 0, and thus aj = 1, mtf inverts
u and v and one of them is τj . By Observation 2, if
bj = 0 and mtf touches u and v to access τj , then
A does as well.

The last observation is essentially the amortized
argument rephrased as a charging argument. We
can now easily prove the dynamic optimality of
mtf.

Theorem 1 (Tarjan & Sleator). mtf is 4-
competitive.

Proof. We prove that for all τi = v where mtf
touches u, there is a move by A touching u. mtf
first moves the cursor to τi, and then swaps τi to
the front. Along the way it touches u twice, once
with a move and once with a swap, incurring a cost
of 2.

For bi = 0 (resp. bi = 1), we use Observation 2
(resp. 3) to charge the cost to A touching u while
accessing τi (resp. τj). By Observation 1, bi ̸= ai,
and thus for any τk ∈ {u, v} with i < k, the largest
index j′ < k with bj′ = 0 or aj′ = 0 must be at
least i, and therefore j < i ≤ j′. This guarantees
that mtf charges at most a cost of 4 to one move
of A. Since all the cost incurred by mtf is charged
to some move of A, the claim follows.

In the original work by Tarjan and Sleator, MTF
is shown to be 2-competitive. This is because their
cost model allows accessed elements to be moved
to the front ‘for free’. If we allow this as well, the
cursor touches u only once to access v, resulting in
a factor 2.

2.2. The Challenge of Pairwise List Up-
date

Generalizing dynamic list update to pairwise re-
quests introduces a number of challenges already
present in 1-dimensional grids, which render the
problem more difficult. First, the natural inversion
argument no longer works: a reference point such as

5

v1

v2
v3

v4

v5

v6v
n−1

c

Figure 3: A star graph used to construct a cyclic sequence
of requests σc = (c, v1), (c, v2), . . . , (c, vn−1), (c, v1), . . .

the front of the list is missing in the pairwise setting.
This makes it harder to relate algorithms to each
other, and to perform a potential function analy-
sis of the competitive ratio. Second, for general
request graphs R(σ) (describing the demand pat-
tern), an online algorithm needs to be able to essen-
tially “recognize” certain patterns over time.

Regarding the latter, consider the set of nodes V =
{v1, ..., vn} and let τc be a cyclic sequence: for all
τi, τi+1 ∈ τc with τi = vj and τi+1 = vk it holds that
j + 1 = k (modn − 1). From this we construct a
similar sequence σc for the pairwise problem, on the
set of nodes V ∪{c}, with σi = (c, τi). This yields a
star graph R(σc) as denoted in Figure 3. An offline
algorithm can efficiently serve the cyclic order by
first embedding the elements in the order v1, ...vk,
and then moving the element c one position further
after every request. If the cost of embedding the
initial order is dominated by serving all requests,
then the amortized cost is O(1) per request (per
cycle there are n− 1 moves of cost O(1) and once c
is moved a distance n). However, in the list update
model, any sequence cycling through all elements is
a worst-case sequence with Ω(n) per request. This
demonstrates that a “dynamic cursor” can mean
a factor n difference in cost. What the sequence
σc also demonstrates, is that aggregating elements
around a highly communicative node is suboptimal;
in the particular case of σc, it is this central node
that needs to be moved.

Another pattern is a request sequence σ that
forms a connected path in the request graph
R(σ) (describing the demand). When restricted
to only these patterns, the 1-dimensional pair-
wise problem corresponds to the Itinerant List

Update Problem (ILU) studied in [17]. In this
work it is shown that deriving non-trivial upper
bounds on the competitive ratio already seems
notoriously hard (even offline approximation fac-
tors are relatively high). Note that the star ex-
ample can be expressed as a path, i.e. σ′

c =
(c, v1), (v1, c), (c, v2), (v2, c), (c, v3), . . ., demonstrat-
ing the significance of understanding simple request
patterns for pairwise requests. This, among other,
motivates us to specifically consider request graphs
with a linear demand in this paper.

3. Lower Bound for Pairwise Grid Up-
date

This section derives a lower bound on the com-
petitive ratio of any algorithm for Pairwise Grid
Update, where both the self-adjusting network as
well as the demand feature a grid topology. The
proof relies on a technical statement which can be
independently understood of its application in the
lower bound. We therefore first present the techni-
cal part in Section 3.1, and then present the adver-
sarial lower bound strategy in Section 3.2.

3.1. Technical Proof

Theorem 2. Let x1, . . . , xk and y1, . . . , yk be se-
quences of k nonnegative numbers, and let x (resp.

y) denote
∑k

i=1 xi (resp.
∑k

i=1 yi). Let the weight
of an involution1 over the indices 1, . . . , k be defined
as w(f) =

∑k
i=1 xiyf(i).

The average weight over all involutions is Ω(xyk).

Proof. Let Ik denote the set of all involutions on a
set of k elements, where |Ik| = T (k) is given by the
recurrence T (k) = T (k − 1) + (k − 1)T (k − 2) with
T (0) = T (1) = 1. For every pair of distinct indices
i, j, there are T (k− 2) involutions f ∈ Ik such that
f(i) = j (namely for all involutions on the remain-
ing k−2 indices). Similarly for every index i, there
are T (k − 1) involutions such that f(i) = i. Thus,
for every ordered pair of (not necessarily distinct)
indices i, j there are at least T (k − 2) involutions
with f(i) = j.

For convenience we define a staircase of points
pj = (

∑j
i=1 xi,

∑j
i=1 yi). Observe that we can sub-

divide the rectangle defined by pk and the origin

1A function f such that f(f(x)) = x for all x. One can
think of it as a matching that allows self-pairings.

6

x1 x2 x3 x4 x5 x6 x7 x8

y1

y2

y3

y4

y5

y6

y7

y8

p8
p7

p5

p4

p2

Figure 4: A staircase of 8 points based on the sequences
x1, . . . , x8 and y1, . . . , y8. The values w(2, 5), w(8, 4), and
w(7, 7) are visualized as the area of rectangles highlighted in
red, green, and blue respectively.

into k2 axis-aligned rectangles, so that the area of
every such rectangle corresponds to the weight of
one ordered pair of indices (see Figure 4). Since
every ordered pair of indices appears in at least
T (k−2) involutions, their weight (and thus the cor-
responding rectangle), contributes at least T (k−2)
times in the sum of weights over all involutions.
This means that the area xy of the complete rect-
angle contributes T (k − 2) times to that sum:∑

f∈Ik
w(f)

|Ik|
≥

T (k − 2) ·
∑k

i=1

∑k
j=1 w(i, j)

T (k)

=
T (k − 2)

T (k)
· xy

To lower bound T (k−2)
T (k) , we first define R(n) =

T (n)
T (n−1) and observe that this definition is equiva-

lent to the one in Lemma 1:

R(n) =
T (n)

T (n− 1)

=
T (n− 1) + (n− 1)T (n− 2)

T (n− 1)

= 1 + (n− 1)
T (n− 2)

T (n− 1)

= 1 +
n− 1

R(n− 1)

Since T (n)
T (n−2) = R(n)R(n−1), we can use Lemma 1

to lower bound T (k−2)
T (k) by:

T (k − 2)

T (k)
=

1

R(k)R(k − 2)

≥ 1

(1 +
√
k + 1)(1 +

√
k − 1)

= Θ

(
1

k

)
thus yielding an average weight of Θ(xyk) over all
involutions.

Lemma 1. Let R(n) = 1 + n−1
R(n−1) with R(1) = 1;

for all n ≥ 1 it holds that:

√
n

(i)

≤ R(n)
(ii)
< 1 +

√
n+ 1

Proof. The proof is by induction on n, with base
case

√
1 ≤ R(1) < 1 +

√
1 + 1. From R(n) < 1 +√

n+ 1 we conclude:

√
n+ 1 = 1 +

n

1 +
√
n+ 1

(ii)
< 1 +

(n+ 1)− 1

R(n)
= R(n+ 1)

And from
√
n ≤ R(n) we conclude:

R(n+ 1) = 1 +
(n+ 1)− 1

R(n)

(i)

≤ 1 +
n√
n
= 1 +

√
n

< 1 +
√

(n+ 1) + 1

3.2. Adversarial Lower Bound

Theorem 3. The competitive ratio ρ =

maxσ
cost(ON(σ))
cost(OFF(σ)) for Pairwise Grid Update,

with |σ| = Ω(n1+
1
d), is at least Ω(log n). This

bound holds for arbitrarily long sequences, but if

|σ| = Θ(n1+
1
d), it even holds if the request graph is

a d-grid.

To prove this, we consider an arbitrary online al-
gorithm ON for Pairwise Grid Update. The
main idea is to have an adaptive online adver-
sary construct a sequence σON that depends on
the algorithm ON. The adversary constructs σON

so that the resulting request graph R(σON) is a d-
grid. Because an offline algorithm knows R(σON)

7

in advance, it can immediately configure it at cost

O(n1+
1
d) and serve all requests at optimal cost of

1; since |σ| = Ω(n1+
1
d), the configuration cost of

O(n1+
1
d) is negligible. We show that the online al-

gorithm is forced to essentially reconfigure its lay-
out log n times, resulting in the desired ratio. To
facilitate our analysis, we use a notion of the distor-
tion of an embedding reminiscent of the one used
in the Minimum Linear Arrangement (MLA) [14]
problem.

Definition 3. Given a request graph (V,E) with
E ⊆ V × V , let

E+ = {(u, v) | dG(u, v) < ∞}

denote the transitive closure of E.
For h ∈ CV ↪→N , let dh(E) denote the distortion of
E, which is defined as:

dh(E) =
∑

(u,v)∈E+

dN (h(u), h(v))

To build σON, the adversary gradually commits to
the edges of R(σON). Having already requested
σ1, . . . , σi, then depending on the distortion the ad-
versary:

Option 1: requests σi+1 =
argmax(u,v)∈Ei

dN (h(u), h(v)) (largest
distorted previous request)

Option 2: reveals a new batch of edgesM ⊂ V ×V

From these two options, the adversary’s strategy
becomes clear; Option 1 forces the highest possi-
ble cost to ON based on Ei and h, and Option 2
introduces new communication edges to force an in-
crease in distortion. What is left to show is how the
value of dh(Ei) comes into play, and which edges
the adversary reveals in Option 2. The adversary
reveals at most dn edges (since the final request
graph is a d-dimensional grid), and the size of ev-
ery subsequent batch of edges is essentially halved,
resulting in Θ(log n) batches. After each batch, for
ON to remain optimal it must permute its layout

at cost Ω(n1+
1
d), totaling a cost of Ω(n1+

1
d log n)

for all batches combined. To ensure that R(σON)
is a subgrid, the partial request graph Ei (i.e., the
set of revealed edges) always comprises a set of dis-
joint subgrids. Therefore, the adversary only re-
veals sets of edges that concatenate two subgrids

in Ei along their length. Initially Ei is empty and
the corresponding subgrids are all singleton sets of
u ∈ V .

h

Ei

N1 2 3 4 5 6 7 8

N1 2 3 4 5 6 7 8

h′

e1 e2

h(e1)

h(e2)

(a) Two embeddings h and h′ of a set of edges. Even though
both embeddings embed only a single edge suboptimally, the
distortion of dh(E) is bigger than dh′ (E) because more paths
in Ei cross e1 than e2.

M

h

Ei

h((Ei ∪M)+)

N1 2 3 4 5 6 7 8

(b) A visualization of dh(Ei∪M): the list graph N, Ei (solid)
and M (dashed) are sets of edges, configured on N by h
(dotted). The sum of length of the configured edges h((Ei ∪
M)+) is the distortion dh(Ei ∪ M).

Figure 5: Illustrations of distortion on a 1-grid (list)

To help decide which edges to reveal, we use the dis-
tortion to associate a cost to batches of edges that
the adversary can commit to. Let M ⊆ V × V \Ei

be any set of edges such that the graph (V,Ei∪M)
comprises a set of disjoint subgrids. For a config-
uration h of ON, the set M induces a distortion
of dh(Ei ∪ M), as shown in Figure 5b. We show
that for any embedding that ON chooses, the ad-
versary can find a set M so that the distortion is
large.

Lemma 2. Let N be a d-grid graph, and E ⊆
V × V a set of edges so that the graph G = (V,E)
induces k disjoint subgrids of the same shape. For
every h ∈ CV ↪→N , there exists a set M ⊆ V × V

such that dh(E ∪ M) = Ω(n
2+

1
d

k) and (V,E ∪ M)
contains a set of at least k/2 disjoint subgrids of
the same shape.

8

To prove this lemma, we use Theorem 2.

Lemma 2. Let L1, ..., Lk ⊆ E be the uniform sub-
grids in G. For all pairs (i, j), let (Li, Lj) denote
any set of edges so that Li∪Lj∪(Li, Lj) = Li⊕Lj is
a concatenation of of Li and Lj along their length,
which is well defined since the subgrids have the
same shape (if Li = Lj then Li ⊕Lj = ∅). For any
involution f on the subgrids we have:

2dh(E∪{(Li, Lf(i)) | i ̸= f(i)}) ≥
k∑

i=1

dh(Li⊕Lf(i)).

(1)
The factor 2 is necessary because for i such that i ̸=
f(i), the term dh(Li ⊕ Lf(i)) appears twice in the
sum. Now partition N into three subgrid slabs: a
bottom slab X = {(n1, ..., nd) ∈ N | n1 ≤ ⌈n/3⌉}, a
top slab Y = {(n1, ..., nd) ∈ N | ⌊2n/3⌋ ≤ n1}, and
the centre slab C = N \ (X ∪Y). Let hX(Li) (resp.
hY (Li)) denote the number of elements of Li that
h maps onto X (resp. Y). Every two vertices u, v
so that h(u) ∈ X and h(v) ∈ Y are by construction

at least Θ(n
1
d) apart in N , and therefore we can

lower bound dh(Li ⊕ Lj) by:

dh(Li ⊕ Lj) ≥ Θ(n
1
d) · hX(Li)hY (Lj) (2)

For an involution f drawn uniformly at random,
Theorem 2 gives us a bound on the expected value
of the following:

E

(
k∑

i=1

hX(Li)hY (Lf(i))

)
= Ω

(
⌈n/3⌉2

k

)
(3)

Therefore, there exists an involution f for which we
have:

2dh(E ∪
⋃
i

(Li, Lf(i)))
(1)

≥
k∑

i=1

dh(Li ⊕ Lf(i))

(2)

≥ Θ(n
1
d) ·

k∑
i=1

hX(Li)hY (Lf(i))

(3)
= Θ(n

1
d) · Ω(n2/k)

= Ω

n2+
1
d

k

Since this holds for any choice of (Li, Lj), we can
pick them so that (V,E ∪

⋃
i(Li, Lf(i))) | i ̸= f(i)})

contains at least k/2 disjoint subgrids with the same
shape.

This lemma (and the proof) partially reveals how
the adversary commits to a new batch of edges in
Option 2; it can essentially pick a random match-
ing between subgrids and concatenate them so they
form bigger subgrids. For a clean scheme of build-
ing up subgrids, we assume w.l.o.g. that n = 2dp.

This means that the size n
1
d of the grid is 2p,

meaning that the adversary can perfectly build
up hypercube-shaped subgrids of size 21, 22, ..., 2p.
However, a hypercube comprises 2d half-sized hy-
percubes, whereas Lemma 2 matches pairs of sub-
grids. Since a hypercube needs to be cut in d di-
mensions to yield said half-sized hypercubes, we can
conversely also build up the hypercubes of size 2i+1

by d rounds of concatenating subgrids composed of
hypercubes of size 2i.

Next we show the precondition for the adversary to
opt for Option 1, including a lower bound on the
corresponding cost imposed on ON.

Lemma 3. Let N be a d-grid, h ∈ CV ↪→N a con-
figuration, and E ⊆ V × V a set of edges so that
the graph G = (V,E) has n/ℓ disjoint subgrids of
size ℓ. If dh(E) = Ω(ℓn2), then there exists an edge
(u, v) ∈ E such that dh(u, v) = Ω(n/ℓ).

Proof. There are n/ℓ ·
(
ℓ
2

)
= O(ℓn) distinct con-

nected pairs of vertices in G, meaning that the av-
erage distortion of the shortest path between each

pair is Ω(ℓn2)
O(ℓn) = Ω(n). The highest distortion is at

least the average, and every path in G has length
at most ℓ. On this path, there must exist an edge
with distortion Ω(n/ℓ), since if all edges have a dis-
tortion of o(n/ℓ), the total would be o(n).

Combined, Lemma 2 and Lemma 3 imply that the
adversary can either request an edge at cost Ω(n/ℓ),
or increase the distortion to Ω(ℓn2) by revealing a
new batch of edges. The final ingredient is a lower
bound on how much cost the adversary can impose
on ON in between these batches.

Lemma 4. Let N be a d-grid, and E ⊂ V ×V a set
of communication edges forming disjoint subgrids.
If h, h′ ∈ CV ↪→N are two embeddings that differ
only in the order of two adjacent elements u and v,

9

then dh(E) ≤ dh′(E)+2ℓ, where ℓ is the size of the
largest sublist in E.

Proof. Consider all shortest paths in E that end in
u. At most ℓ paths ending in u (or v) are reduced
by 1, and therefore dh(E))− dh′(E) ≤ 2ℓ.

Combining the previous lemmata, we can prove the
main technical result.

Lemma 5. For every online algorithm A, there
is a sequence σON of length Θ(n1+ε) such that

cost(ON(σON)) = Ω(εn1+
1
d log n), for 0 < ε ≤ 1.

Furthermore, the resulting request graph R(σON)
is a subgrid.

Proof. W.l.o.g. assume that n = 2dp for some inte-
ger p so that the hypercube concatenation scheme
described earlier can be employed.

Consider the situation right after a batch of edges is
revealed, where all subgrids have cardinality ℓ. By
Lemma 2 this implies that the distortion is Ω(ℓn2).
Let σ = σi, σi+1, ..., σi+ℓn be the requests obtained
by repeatedly requesting the edge in Ei with largest
distortion. There are two situations:

• Throughout serving σ, the distortion is always
at least Ω(ℓn2). Then by Lemma 3 each σj ,
i ≤ j ≤ i + ℓn incurred a cost of Ω(n/ℓ), at
total cost Ω(n2).

• By serving σ, ON halves the distortion, thus
reducing it by at least Ω(ℓn2). Then, since by
Lemma 4 every swap reduces the distortion by
at most 2ℓ, ON must have used at least Ω(n2)
swaps.

This argument holds for each batch of edges re-
vealed. The adversary stops when the subgrids have
cardinality 2ε logn, yielding a sequence σON with

|σON| =
∑

ℓ∈{20,...,2ε log n}

ℓn = Θ(n1+ε)

and cost(σON) = Ω(εn1+ε log n). By Lemma 3, the
adversary only requests edges that are introduced
using the matching from Lemma 2. Any set of edges
introduced by the latter Lemma concatenates two
already existing subgrids, hence R(σON) is a sub-
grid.

To wrap up the proof for Theorem 3, we conclude
by showing that for any online algorithm ON, the

sequence σON can be solved in Θ(n1+
1
d) by an op-

timal offline algorithm.

Proof of Theorem 3. Let ON be any online algo-
rithm solving Pairwise Grid Update. Apply
Lemma 5 with ε = 1/d, yielding cost(ON(σON)) =

Ω(n1+
1
d log n). Since σON is a d-grid, an offline al-

gorithm can embed this graph at (worst case op-

timal) cost Θ(n1+
1
d), and serve every request at

optimal cost O(1). This yields cost(OFF (σON)) =

Θ(n1+
1
d), and thus

ρ =
cost(ON(σ))

cost(OFF(σ))
= Ω(log n)

In order to make this bound hold for arbitrary long
sequences, we slightly modify the adversary. After

every Θ(n1+
1
d) requests it serves, it can reconfig-

ure to a new grid at cost O(n1+
1
d), and repeat the

argument to force cost of Ω(n1+
1
d log n) to ON for

the subsequent Θ(n1+
1
d) requests.

4. Online Algorithms and Complexity

While our main contribution is the derived lower
bound, we in this section also initiate the study
of upper bounds, shedding light on the underly-
ing algorithmic challenges. We present a O(log n)-
competitive online algorithm Gread for requests
issued according to a 1-dimensional grid (i.e., a lin-
ear order), and discuss its distributed implementa-
tion. We also prove that the offline variant of Pair-
wise List Update, the 1-dimensional grid update
problem, is already NP-complete.

4.1. An Upper Bound

This section presents a O(log n)-competitive online
algorithm for Pairwise List Update. Our main
technical lemma shows that the total cost spent
on learning the optimal embedding never exceeds
O(n2 log n). We propose a simple greedy algorithm
that identifies a locally optimal embedding, and al-
ways moves towards this embedding. Observe that
a set of k sublists can be embedded perfectly on a
line graph in at most 2kk! ways (they are permuted
in some order, and every list has at most two orien-
tations). Given a configuration h ∈ CV ↪→N of the
lists, we define the locally optimal embedding to
be an optimal embedding one that takes the fewest

10

number of reconfigurations to reach, starting at h.
Formally, if opt(E) is the set of optimal embeddings
of a set edges, then the h-optimal embedding of E
is

h[E] = argmin
h′∈opt(E)

∑
v∈V

|h(v)− h′(v)|

With such a configuration we associate the
cost:

Φh[E] =
∑
v∈V

|h(v)− h[E](v)|

Let Gread be the algorithm (it GREedily ADjoins
sublists), that upon seeing a new edge σi, immedi-
ately moves to the embedding h[Ei∪{σi+1}].

For each Ei, let V(Ei) be the connected compo-
nents of (V,Ei), so that Vσ = ∪1≤i≤mV(Ei) is the
set of all sublists induced by σ. This naturally de-
fines a binary tree Tσ = (Vσ, Eσ): for every first
occurrence σi of (u,w) ∈ Em connecting two sub-
lists U,W in R(Ei), there are two corresponding
edges (U,U ∪W) and (W,U ∪W) in Eσ.For every
σi ∈ Em,Gread incurs some cost for reconfiguring,
and the following lemma bounds this cost.

Lemma 6. Let h be an optimal embedding of Ei,
and let σi+1 be an edge connecting two sublists U
and W of Ei. It holds that

Φh[Ei ∪ {σi+1}] ≤ n ·min(|U |, |W |)

Proof. Since Ei is optimally embedded by h, we
simply need to move the smaller of U and W into
its correct location so that Ei ∪ {σi+1} is opti-
mally embedded. This requires every element in
the smaller list to be moved at most n locations,
therefore Φh[Ei ∪ {σi+1}] ≤ nmin(|U |, |W |).

For a node U ∈ Vσ, let left(U) and right(U) denote
U ’s left and right child respectively. Further, let
w(U) denote the number of nodes in the subtree
rooted at U . Observe that for any binary tree with
nodes N , it holds that∑

v∈N

min(w(left(v)), w(right(v))) ≤ |N | log |N |

Theorem 4. For any σ, with |σ| = m, such that
|Em| = k and R(σ) is a list,

cost(Gread(σ)) = O(m+ nk log k)

Proof. Let hi denote the configuration after request
σ1, and let h0 denote the trivial optimal initial em-
bedding. Then the total cost of Gread is the sum
of reconfiguring after every σi plus accessing every
request at cost 1:

cost(Gread(σ))−m =

m∑
i=0

Φhi
[Ei ∪ {σi+1}]

≤
∑
U∈Vσ

nmin(w(left(U)), w(right(U)))

≤ nk log k

To give an example of Gread, we can consider the
sequence derived for our lower bound in Section 3.
When applied to this sequence, after each batch of
revealed edges, Gread spends O(n2) reconfiguring
to perfectly embed the current demand, yielding
a total O(n2 log n). This also means that for this
sequence, Gread is log n competitive.

4.2. Distributed Implementation of Gread

To execute Gread in a distributed environment,
we have to address several aspects: i) how to per-
form (local) routing, ii) how to ensure nodes know
to which (temporary) sublist they belong, together
with the size of the sublist, and iii) how to perform
the reconfiguration and merging of two sublists. We
address these issues one by one.

Routing: The basic problem with routing is that
the source nodes do not know the location of the
destination, since initially there is no sense of di-
rection. To overcome this problem each source ini-
tiates an exponential search on both sides of the line
network when it first needs to communicate with a
destination. This will guarantee that the cost of
the first route request will be O(i) for a destination
that is i hops away on the line network. Note that
this is proportional to the cost of any algorithm.
According to Gread the cost of all future requests
will be 1 since after the first communication request
the source and destination are reconfigured to be
neighbors.

Sublist: During the execution each node maintains
the following information: A bit that indicates if it
is at the end of a sublist (a node is at the end
of a sublist if it has less than two neighbors from
that sublist). If it is at the end of the list then

11

the node maintains the size of the list (up to log n
bits).

Reconfiguration: Basically Gread merges two
sublists by swapping the shorter list toward the
longer sublist. Note that this happens only on the
first routing request from a source to destination.
This can be done in a distributed manner in the
following way. On the first routing request, the
source (which must be an end node) attaches the
size of its sublist to the message. The destination
(which also must be an end node), upon receiv-
ing the request, answers to the source with the size
of its own sublist (initially set to one). It is then
clear to both the source and destination which sub-
list needs to move toward which sublist and what
will be the size of the merged sublist. Then, both
source and destination send messages within their
sublist informing the other ends of the sublist of the
size of the merged list. Now, w.l.o.g., assume the
destination needs to move toward the source. The
destination then starts performing swaps (with its
neighbor that is not on its current list) toward the
source. This process ends when both the destina-
tion is a neighbor of the source and the source is
a neighbor of its previous neighbor on its list. Be-
fore starting the swaps the destination informs its
neighbor (which in turn informs its neighbor and so
on) to follow up after it with similar swaps. It can
be observed that after this process the two list will
be merged into a larger list and both ends will know
the sizes of the new sublist. The cost of the recon-
figuration is O(nmin(|U |, |W |)) where U andW are
the two sublists involved in the merging.

4.3. NP-Completeness of the Offline Vari-
ant

We present a reduction from the classic Minimum
Linear Arrangement (MLA) problem to the of-
fline variant of Pairwise List Update. Through-
out this section, we refer to the offline Pairwise
List Update as DLU. The MLA problem can be
seen as a static variant of the DLU problem, where
we choose a static network configuration at the be-
ginning for free, and we serve all requests without
further reconfiguration.

In [17], the authors considered the Itinerant List
Update problem, which is closely related to DLU.
They suggested that MLA is equivalent to Itiner-
ant List Update, where many identical copies of
the MLA graph arrive. In this section, we highlight
the technical challenge for showing the equivalency

to MLA (that is valid for both DLU and Itinerant
List Update). Then, we introduce necessary mod-
ifications to this idea to show the NP-completeness
of DLU.

The idea of repeating multiple MLA graphs faces
the following technical challenge. If we are not dili-
gent with the request order, the cost of DLU may
decrease in comparison to MLA by interleaving re-
quests with reconfigurations. To see that, consider
the example of transforming of the MLA instance
in form of a star with a central vertex c and 5 other
vertices to the instance of DLU. Two optimal MLA
solutions of cost 9 exist: placing c at any of two
graph centers (vertices at positions 3 and 4). As-
sume c is placed at position 3, and in the chosen
edge order, the requests to the nodes at 1 and 2
precede the requests to the nodes at 5 and 6. Then,
this ordering enables the optimal DLU solution to
obtain a lower cost than the optimal MLA by per-
forming a single reconfiguration. Moving c to po-
sition 4 after serving requests to nodes at 1 and
2 decreases the distance to both nodes at 5 and 6
at the cost of a single reconfiguration. The opti-
mal DLU cost is then 8, which is smaller than the
optimal MLA cost 9.

We show a reduction from MLA to DLU that mit-
igates the problem of edge ordering entirely. To
this end, we map any vertex of MLA to a group
of DLU nodes that stay adjacent due to a large
number of inter-group requests. We map the MLA
edges to requests between the central nodes of the
corresponding groups.

We repeat the MLA request pattern several times,
called rounds. We show that there exists a low-
cost round where groups stay in a fixed order —
and we reconstruct the solution to MLA from it.
To determine the sufficient number of rounds, we
introduce the following helper lemma.

Lemma 7. Fix any integers A and D. Consider a
sequence of non-negative integers with the average
upper-bounded by A. We mark at most D elements
of the sequence as defective. If an element is defec-
tive, it equals 0. Then the following holds: if length
of the sequence is at least D(A+1)+1, then a non-
defective element no larger than A exists.

Proof. Assume the opposite, i.e., that the sequence
of length n, where n ≥ D · (A+1)+1 consists only
of defective elements and elements larger than A.

12

Then, the sum of the sequence is at least (n−D) ·
(A + 1) for D ≤ (n − 1)/(A + 1). This sum is at
least A · n + 1, thus the average is strictly larger
than A, a contradiction.

Theorem 5. Offline DLU is NP-complete.

Proof. We reduce MLA to (offline) DLU. Given any
integer k and any instance IMLA of MLA, we con-
struct an instance IDLU of DLU. We show that
there exists a solution to IMLA with cost at most k
if and only if there exists a solution to IDLU with
cost at most Thr, where Thr is bounded by a poly-
nomial of k and |IMLA|. First, we describe the con-
struction, and then we prove (⇒), followed by (⇐).

In the following, we describe the construction of
IDLU . Fix an integer k and an instance IMLA =
⟨V,E⟩. We denote n = |V | and m = |E|. The
construction consists of the following parts.

Groups of vertices. We order V arbitrarily, and
for each v ∈ V we produce a group of adjacent
g nodes, where g is the smallest odd number that
exceeds k3. We denote the sequence of nodes of the
group by G(v), and we distinguish its (g/2 + 1)-th
(central) node by c(v). In total we construct n · g
nodes.

Rounds of requests. We produce the requests in
R := ⌊(n2 · (k + 1) + 1)/(1 − 1/k)⌋ rounds, each
consisting of identical requests. We elaborate on
the choice for R later in this proof. In each round,
for each edge of MLA we produce a single inter-
group request that we follow with a sequence of
intra-group requests.

Inter-group requests. In each round, we order
MLA edges arbitrarily, and for each edge {u, v} ∈ E
we produce a request ⟨c(u), c(v)⟩. After each such
request, we issue a sequence of intra-group requests.

Intra-group requests. After each inter-group
request in each round, we produce S :=
Rk(g − 1) + n2g2 + 1 requests between each pair of
adjacent vertices ⟨G(v)(i), G(v)(i+1)⟩ in each group.
These requests enforce the preservation of the struc-
ture of each group: the adjacency of consecutive
nodes and the position of the central node. (The
value S is equal to ThrI + ThrE + 1 that we intro-
duce in a moment.)

The feasibility threshold. Recall that we per-
form a reduction between two decision problems.

The cost threshold Thr for a solution to DLU con-
sists of three parts: Thr := ThrI + ThrE + ThrS .

1. The initial reconfiguration budget is ThrI :=
n2g2, and it allows for a full reconfiguration of
all nodes.

2. The budget for serving inter-group requests is
ThrE := Rk(g − 1), and it equals to k times
the distance between the centers of the groups,
multiplied by the number of rounds R.

3. The budget for intra-group requests is ThrS :=
RSn(g − 1), and it allows for S requests be-
tween adjacent nodes of each group at distance
1, multiplied by the number of rounds R.

First, we show the implication (⇒). We take any
solution SMLA to MLA with cost at most k, and
construct the DLU instance as follows. Before we
serve any request, we reconfigure groups of nodes
according to the vertex arrangement in SMLA, and
we serve all requests in this configuration. The re-
configuration cost is bounded by ThrI , as we per-
form one reconfiguration of all nodes. The structure
of groups is preserved (consecutive nodes of each
group are adjacent), hence inter-group requests cost
exactly ThrS . If MLA incurs the cost ce for an
edge e, then for it we incur the cost ce · (g − 1)
in each of R rounds for the corresponding request.
As the cost of MLA edges sums to k, the cost of
inter-group requests sum to ThrE . In total, the
constructed solution has cost Thr, and the claim
holds.

Next, we show the implication (⇐). Fix a solution
to I of cost at most Thr. We say that a configura-
tion is well-aligned if each pair of consecutive nodes
of each group is adjacent. We say that a round is
defective, if a group exchange happens during this
round. We say that a round is excessive, if the cost
of inter-cluster requests exceeds k(g−1) during this
round.

In the following, we express the necessary condi-
tions for the existence of non-defective and non-
excessive round. Then, we construct a solution to
MLA from the group order in this round, and show
that its cost is at most k.

We claim that the solution reaches a well-aligned
configuration at least once during each sequence
of inter-group requests. To see that, note that
the minimum cost of serving inter-group requests

13

throughout all rounds is ThrS , and this is achiev-
able by serving all requests over one hop. If the
solution would not reach a well-aligned configura-
tion, a pair of nodes requested S times is not adja-
cent, and this additionally incurs the cost at least
S = ThrI +ThrE +1, and the solution exceeds the
cost Thr already.

This allows to reason about the cost of serving any
intra-cluster request. Consider a round where no
groups exchange positions. For this fixed order of
the groups, by p(u) we denote the index of the group
u in this order. Then, we claim that each request
⟨c(u), c(v)⟩ costs at least |p(u)− p(v)|(g− 1). If the
cost would be lower, then the distance between c(u)
and c(v) must be decreased by migrations. How-
ever, this means these must move back to guaran-
tee the well-aligned position for the upcoming inter-
group requests.

Some rounds may be defective, i.e., the solution
may move to a configuration with a different group
order during that round. This requires moving an
entire group, and costs at least g2. The defective
rounds may be allowed by exchanges paid from bud-
gets ThrI and ThrE . Note that the budget ThrS
is tight: the cost of inter-group requests is at least
ThrS .

We claim that at most n2 + R/k2 rounds may be
defective (note that this is dependant on the num-
ber of rounds). At most n2 of these can be paid
from ThrI . This can happen if the solution does
not reconfigure groups at the beginning, but defers
some of the exchanges to later rounds. Addition-
ally, some exchanges may be paid from ThrE : for
each k2 rounds, the budget ThrE allows for an ad-
ditional exchange.

Now, we lower-bound the number of rounds R suf-
ficient to guarantee the existence of non-defective,
non-excessive round. Note that on average, the cost
of intra-group requests in each round is bounded by
k(g− 1). We claim no cost for intra-group requests
in defective rounds. Note that in a non-defective
round, each intra-group request cost is divisible by
g−1. Hence, to simplify calculations, we divide the
cost of each round and the average cost by g − 1.

To justify the choice of R, we use Lemma 4.3. We
apply it to the sequence of (scaled) costs of rounds,
and conclude that it is sufficient that the length
of the round sequence (R) satisfies the inequality
R ≥ (n2 + R/k2) · (k + 1) + 1. We note that our

choice of R satisfies this criterion. This inequality
also justifies the choice of g = Ω(k3). Crucially, the
rate of growth of the budget ThrE must allow for
an extra reconfiguration no more frequently than
every k2 rounds. Otherwise, no positive R would
satisfy the inequality.

The solution to MLA reconstructed from the node
order in a non-defective, non-excessive round has
the cost at most k. The reconstruction is correct,
as the round is non-defective, and has cost at most
k as the round is non-excessive.

The reduction is polynomial: the number of nodes
and requests and the value Thr are polynomials
of m,n and k. Finding the round without recon-
figurations is linear in terms of the number of re-
quests.

5. Conclusion

We presented a lower bound of Ω(log n) on the on-
line competitiveness of Pairwise Grid Update,
even under very restricted and seemingly simple
communication patterns. We further initiated the
discussion of online algorithms for such restricted
scenarios and presented a deterministic Θ(log n)-
competitive algorithm. We believe that our work
opens several interesting directions for future re-
search. In particular, it would be interesting to
shed light on the competitive ratio achievable in
more general network topologies and request pat-
terns. It would further be interesting to study
randomized algorithms and to generalize our cost
model, for example also accounting for congestion
aspects.

Acknowledgments. Research supported by the
European Research Council (ERC), consolidator
grant AdjustNet (grant agreement No. 864228)
and by the Austrian Science Fund (FWF) project I
5025-N (DELTA).

References

[1] S. Albers. A competitive analysis of the list update
problem with lookahead. Theoretical Computer Sci-
ence, 197(1-2):95–109, 1998.

[2] S. Albers. Improved randomized on-line algorithms for
the list update problem. SIAM Journal on Computing,
27(3):682–693, 1998.

[3] S. Albers, B. Von Stengel, and R. Werchner. A com-
bined bit and timestamp algorithm for the list update
problem. Information Processing Letters, 56(3):135–
139, 1995.

14

[4] S. Albers and J. Westbrook. Self-organizing data struc-
tures. In Online algorithms, pages 13–51. Springer,
1998.

[5] C. Ambühl. Offline list update is np-hard. In European
Symposium on Algorithms, pages 42–51. Springer, 2000.

[6] C. Avin, M. Borokhovich, B. Haeupler, and Z. Lotker.
Self-adjusting grid networks to minimize expected path
length. In International Colloquium on Structural In-
formation and Communication Complexity, pages 36–
54. Springer, 2013.

[7] C. Avin, O. Dunay, and S. Schmid. Strategies for traffic-
aware vm migration. In Proc. 6th IEEE/ACM Inter-
national Conference on Utility and Cloud Computing
(UCC), December 2013.

[8] C. Avin, A. Hercules, A. Loukas, and S. Schmid. To-
wards communication-aware robust topologies. ArXiv
Technical Report, 2017.

[9] C. Avin, A. Loukas, M. Pacut, and S. Schmid. Online
balanced repartitioning. In International Symposium
on Distributed Computing, pages 243–256. Springer,
2016.

[10] C. Avin, K. Mondal, and S. Schmid. Demand-aware
network design with minimal congestion and route
lengths. In Proc. IEE INFOCOM, 2019.

[11] C. Avin and S. Schmid. Toward demand-aware net-
working: A theory for self-adjusting networks. In ACM
SIGCOMM Computer Communication Review (CCR),
2018.

[12] C. Avin, I. van Duijn, and S. Schmid. Self-adjusting lin-
ear networks. In Proc. 21st International Symposium
on Stabilization, Safety, and Security of Distributed
Systems (SSS), 2019.

[13] S. Bubeck, N. Cesa-Bianchi, et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends® in Machine Learning,
5(1):1–122, 2012.

[14] J. Dı́az, J. Petit, and M. Serna. A survey of graph
layout problems. ACM Computing Surveys (CSUR),
34(3):313–356, 2002.

[15] S. Huq and S. Ghosh. Locally self-adjusting skip graphs.
In Proc. IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS), pages 805–815,
2017.

[16] M. Ghobadi et al. Projector: Agile reconfigurable data
center interconnect. In Proc. ACM SIGCOMM, pages
216–229, 2016.

[17] N. Olver, K. Pruhs, K. Schewior, R. Sitters, and
L. Stougie. The itinerant list update problem. In 13th
Workshop on Models and Algorithms for Planning and
Scheduling Problems, page 163, 2017.

[18] A. Paramonov, I. Salem, S. Schmid, and V. Ak-
senov. Self-adjusting linear networks with ladder de-
mand graph. In Proc. 30th International Colloquium
on Structural Information and Communication Com-
plexity (SIROCCO), 2023.

[19] B. Peres, O. Souza, O. Goussevskaia, S. Schmid, and
C. Avin. Distributed self-adjusting tree networks. In
Proc. IEE INFOCOM, 2019.

[20] N. Reingold and J. Westbrook. Off-line algorithms for
the list update problem. Information Processing Let-
ters, 60(2):75–80, 1996.

[21] N. Reingold, J. Westbrook, and D. D. Sleator. Random-
ized competitive algorithms for the list update problem.
Algorithmica, 11(1):15–32, 1994.

[22] S. Schmid, C. Avin, C. Scheideler, M. Borokhovich,

B. Haeupler, and Z. Lotker. Splaynet: Towards locally
self-adjusting networks. IEEE/ACM Transactions on
Networking (ToN), 2016.

[23] D. D. Sleator and R. E. Tarjan. Amortized efficiency
of list update and paging rules. Communications of the
ACM, 28(2):202–208, 1985.

[24] B. Teia. A lower bound for randomized list update al-
gorithms. Information Processing Letters, 47(1):5–9,
1993.

15

	Introduction
	Formal Model
	Related Work
	Contributions
	Organization

	From Classic to Pairwise List Update
	Expositional Proof for Optimality of MTF
	The Challenge of Pairwise List Update

	Lower Bound for Pairwise Grid Update
	Technical Proof
	Adversarial Lower Bound

	Online Algorithms and Complexity
	An Upper Bound
	Distributed Implementation of Gread
	NP-Completeness of the Offline Variant

	Conclusion

