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A Short Introduction to the
Virtual Network Embedding Problem



Operators offer their Network Resources

Data Center Network Wide-Area Network

Substrate (Physical Network)
Directed graph GS = (VS ,ES)

Capacities cS : GS → R≥0
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V i
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Virtual Network Request Gr = (Vr ,Er )

demands dr : Gr → R≥0
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Embedding

Def: Valid mapping mr = (mV ,mE ) . . .
mV : Vr → VS and mE : Er → P(ES) satisfies

valid connectivity: mV (i)
mE (i,j)
 mV (j)

valid node mapping: mV (i) ∈ V i
S

valid edge mapping: mE (i , j) ⊆ E i,j
S
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Def: Valid mapping mr = (mV ,mE ) . . .

mV : Vr → VS and mE : Er → P(ES) satisfies

valid connectivity: mV (i)
mE (i,j)
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valid node mapping: mV (i) ∈ V i
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Def: Feasible embedding mr . . .
. . . is valid and respects capacities.
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Def: Feasible embedding mr . . .
. . . is valid and respects capacities.

Virtual Network Embedding Problem
Setting Online vs. Offline

Objectives resource minimization,
profit maximization,
energy minimization, . . .
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Related Work & Overview of Contributions



Related Work

Computational Complexity

Andersen [2002]
NP-hardness (argument)

Amaldi et al. [2016]
NP-hardness and
inapproximability for offline
VNEP (profit)

Heuristics & Exact Algorithms

Generally
� 100 works, e.g. . . .

Chowdhury et al. [2009]
Heuristics based on Linear
Programming; hoped for
approximations...

Approximations

None for general graphs!
Bansal et al. [2011] for
trees

Even et al. [2016] for chains
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VNEP is of crucial importance, yet is hardly understood!
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Idea of this Talk: Give Overview on Our Results
Complexity results showing NP-completeness and inapproximabilitya.

(FPT-)Linear Programs for computing convex combinations of valid mappingsb,c.
(FPT-)Approximations for offline VNEP based on randomized roundingb,c.

Computational evaluation of derived heuristics for offline profit VNEPb.

a Matthias Rost and Stefan Schmid. Charting the Complexity Landscape of Virtual Network
Embeddings. In Proc. IFIP Networking, 2018c

b Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging
Randomized Rounding. In Proc. IFIP Networking, 2018d

c Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network
Embedding Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452
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Complexity of the VNEP1

1Matthias Rost and Stefan Schmid. Charting the Complexity Landscape of Virtual Network Embeddings.
In Proc. IFIP Networking, 2018c



Reminder: 3-SAT and NP-Completeness

3-SAT-Formula φ

φ =
∧
Ci∈Cφ Ci with Ci ∈ Cφ being disjunctions of at most 3 (possible negated) literals.

Example 3-SAT formula φ over literals Lφ = {x1, x2, x3, x4}
φ = (x1 ∨ x2 ∨ x3)︸ ︷︷ ︸

C1

∧ (x̄1 ∨ x2 ∨ x4)︸ ︷︷ ︸
C2

∧ (x2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
C3

Definition of 3-SAT
Decide whether satisfying assignment a : Lφ → {F,T} exists for formula φ. Output: Yes/No.

Theorem: Karp [1972]

3-SAT is NP-complete.
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Methodology: Proving NP-completeness

Proving NP-completeness of the VNEP
1 VNEP lies in NP (answer can be checked in polynomial time).
2 Reduction from 3-SAT to VNEP.

Outline of Reduction Framework

3-SAT instance φ VNEP instance (Gr(φ),GS(φ), restrictions)

φ satisfiable? feasible embedding of Gr(φ) on GS(φ) under restrictions?
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Our Reduction Framework

Input: 3-SAT formula φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

Request Gr(φ)

Vr(φ) = {vi | Ci ∈ Cφ} v1 v3v2

Er(φ) = { (vi , vj) | Ci introduces literal used by Cj }

Substrate GS(φ)

one node per clause and
per satisfying assignment
edges as for the requests,
if assignments do not
contradict

x1,x2,x3 :TTT

x1,x2,x3 :TTF

x1,x2,x3 :TFT

x1,x2,x4 : TTT

x1,x2,x4 : TTF

x2,x3,x4 : TTT

x2,x3,x4 : TTF

x2,x3,x4 : TFTx1,x2,x4 : TFT
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Complete Picture
φ: (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

GS(φ):

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2Gr(φ):

x1, x2, x4 : TFT
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Our Reduction Framework

Outline of Reduction Framework

3-SAT instance φ VNEP instance (Gr(φ),GS(φ), restrictions)

φ satisfiable? feasible embedding of Gr(φ) on GS(φ) under restrictions?
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Our Reduction Framework

Outline of Reduction Framework

3-SAT instance φ VNEP instance (Gr(φ),GS(φ), restrictions)

φ satisfiable? feasible embedding of Gr(φ) on GS(φ) under restrictions?

Base Lemma
Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.
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Our Reduction Framework
Base Lemma

Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Example φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x4) ∧ (x2 ∨ x̄3 ∨ x4)

Assignment for φ
x1 7→T
x2 7→T
x3 7→F
x4 7→F

Request

v1 v3v2

Embedding satisfying conditions (1) and (2)

x1,x2,x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1,x2,x4 : TTF x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2,x3,x4 : TFF

x1, x2, x4 : TFT
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Our Reduction Framework
Base Lemma

Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Decision VNEP is NP-complete under mapping restrictions

Node placement restrictions enforce (1)
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x1, x2, x4 : TTT
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x1, x2, x4 : FFF

x2, x3, x4 : TTT

x2, x3, x4 : TTF

x2, x3, x4 : TFT

x2, x3, x4 : TFF

x2, x3, x4 : FTT

x2, x3, x4 : FFT

x2, x3, x4 : FFF

v1 v3v2

x1, x2, x4 : TFT

Routing restrictions enforce (2)

x1, x2, x3 : TTT

x1, x2, x3 : TTF

x1, x2, x3 : TFT

x1, x2, x3 : TFF

x1, x2, x3 : FTT

x1, x2, x3 : FTF

x1, x2, x3 : FFT

x1, x2, x4 : TTT

x1, x2, x4 : TTF

x1, x2, x4 : FTT

x1, x2, x4 : FTF

x1, x2, x4 : FFT

x1, x2, x4 : FFF
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Our Reduction Framework

Base Lemma
Formula φ is satisfiable if and only if there exists a mapping of Gr(φ) on GS(φ), s.t.
(1) each virtual node vi is mapped to a ‘satisfying assignment node’ of the i-th clause, and
(2) all virtual edges are mapped on exactly one substrate edge.

Decision VNEP is NP-complete for degree-bounded, planar request graphs

Reduction from planar 3-SAT variant using literals max. 4 times (see Kratochvíl [1994]):
each planar formula φ leads to a planar request graph Gr(φ)

each node of Gr(φ) has degree at most 12

v1 v3v2

u1 u2 u4u3

planar graph Gφ

u1 u2 u4u3

v1 v3v2

u1 u2 u4u3

v1 v3v2

planar graph Gr(φ)

v1 v3v2
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(FPT-)Linear Programs for Computing
Convex Combinations of Valid Mappings2,3

2 Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized
Rounding. In Proc. IFIP Networking, 2018d

3 Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding
Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452

http://arxiv.org/abs/1803.04452


Linear Programming: Classic MCF Formulation and its Limits

Classic LP Formulation

Formulation 1: Classic MCF Formulation for the VNEP∑
u∈V i

S

yur ,i= xr ∀r ∈ R, i ∈ Vr (1)∑
u∈VS\V i

S

yur ,i= 0 ∀r ∈ R, i ∈ Vr (2)


∑

(u,v)∈δ+(u)

zu,vr ,i ,j

− ∑
(v ,u)∈δ−(u)

zv ,ur ,i ,j

=

[
yur ,i
−yur ,j

]
∀
[

r ∈ R, (i , j) ∈ Er ,

u ∈ VS

]
(3)

zu,vr ,i ,j= 0 ∀
[

r ∈ R, (i , j) ∈ Er ,

(u, v) ∈ ES \ E i ,j
S

]
(4)∑

i∈Vr ,τr (i)=τ

dr (i) · yur ,i= aτ,ur ∀r ∈ R, (τ, u) ∈ RV
S (5)∑

(i ,j)∈Er

dr (i , j) · zu,vr ,i ,j= au,vr ∀r ∈ R, (u, v) ∈ ES (6)∑
r∈R

ax ,yr ≤ cS(x , y) ∀(x , y) ∈ RS (7)

Main Building Block:
Multi-Commodity Flows

yu
r,i ∈ [0, 1]: maps node i ∈ Vr on VS

zu,vr,i,j ∈ [0, 1]: maps (i , j) ∈ Er on (u, v) ∈ ES∑
(u,v)∈δ+(u)

zu,vr,i,j −
∑

(v,u)∈δ−(u)

zv,ur,i,j = yu
r,i − yu

r,j (3)

Local Connectivity Property
Given a (fractional) mapping of i ∈ Vr to
u ∈ VS , a ‘valid’ mapping can be recovered
for edges incident to i and their respective
endpoints.
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Linear Programming: Classic MCF Formulation and its Limits
Example

Request
i

jk
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1
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1
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1
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1
2j
1
2j

Solution

Main Building Block:
Multi-Commodity Flows

yu
r,i ∈ [0, 1]: maps node i ∈ Vr on VS
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(u,v)∈δ+(u)

zu,vr,i,j −
∑

(v,u)∈δ−(u)

zv,ur,i,j = yu
r,i − yu

r,j (3)

Local Connectivity Property
Given a (fractional) mapping of i ∈ Vr to
u ∈ VS , a ‘valid’ mapping can be recovered
for edges incident to i and their respective
endpoints.
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Linear Programming: Classic MCF Formulation and its Limits

Example

Request
i

jk

Substrate

1
2i

1
2j

1
2k

LP

1
2i

1
2k

1
2j
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2j

Extraction

i

jk

OrderSolution

Local Connectivity Property
Given a (fractional) mapping of i ∈ Vr to
u ∈ VS , a ‘valid’ mapping can be recovered
for edges incident to i and their respective
endpoints.

Main Issue
Targets of confluences pose problems!

In the example: target k of
confluence 〈(i , k)〉, 〈(i , j), (j , k)〉.
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Main Issue
Targets of confluences pose problems!

In the example: target k of
confluence 〈(i , k)〉, 〈(i , j), (j , k)〉.

Theorem
Decomposing solutions to the MCF LP

is not possible in general.
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Linear Programming: Classic MCF Formulation and its Limits
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Extraction

i

jk

OrderSolution

Main Issue
Targets of confluences pose problems!

In the example: target k of
confluence 〈(i , k)〉, 〈(i , j), (j , k)〉.

Theorem
Decomposing solutions to the MCF LP

is not possible in general.

Theorem
MCF LP Formulation has
infinite integrality gap.
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Linear Programming: Classic MCF Formulation and its Limits

Example

Request
i

jk

Substrate

1
2i

1
2j

1
2k

LP

1
2i

1
2k

1
2j
1
2j

Extraction

i

jk

OrderSolution

Main Issue
Targets of confluences pose problems!

In the example: target k of
confluence 〈(i , k)〉, 〈(i , j), (j , k)〉.

Key Insight
If we fix confluence target nodes valid
mappings can always be extracted, when
following the extraction order.

In the example:
Consider one sub-LP formulation per
potential mapping location of k .
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Outline of Novel Decomposable LP Formulations

Extraction Order GXr
Rooted acyclic reorientation of the original
request graph Gr . GXr is not unique!

Confluence CXi ,j

A confluence CXi ,j from i to j is a pair of
(node-)disjoint paths connecting i to j in GXr .
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Outline of Novel Decomposable LP Formulations
Extraction Order GXr

Rooted acyclic reorientation of the original
request graph Gr . GXr is not unique!

Confluence CXi ,j

A confluence CXi ,j from i to j is a pair of
(node-)disjoint paths connecting i to j in GXr .

Pre-Processing Extraction Orders

If edge e lies on confluence CXi ,j , then it is labeled with the confluence’s target j .
Labeling can be computed in polynomial-time (by applying Menger’s theorem).
Each label has unique root node at which the mapping of the label must be fixed.
Outgoing edges are partitioned into edge bags not sharing labels.

b

c

a

k{c}

{a}
{k}{a, b, c}

{a, b}
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Outline of Novel Decomposable LP Formulations
Extraction Order GXr

Rooted acyclic reorientation of the original
request graph Gr . GXr is not unique!

Confluence CXi ,j

A confluence CXi ,j from i to j is a pair of
(node-)disjoint paths connecting i to j in GXr .

Pre-Processing Extraction Orders

If edge e lies on confluence CXi ,j , then it is labeled with the confluence’s target j .
Labeling can be computed in polynomial-time (by applying Menger’s theorem).
Each label has unique root node at which the mapping of the label must be fixed.
Outgoing edges are partitioned into edge bags not sharing labels.

b

c

a

k{c}

{a}
{k}{a, b, c}

{a, b}
{j, l}

i

l

j
k{j}

{i, l}
{k}

{l}
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Outline of Novel Decomposable LP Formulations
Extraction Order GXr

Rooted acyclic reorientation of the original
request graph Gr . GXr is not unique!

Confluence CXi ,j

A confluence CXi ,j from i to j is a pair of
(node-)disjoint paths connecting i to j in GXr .

Pre-Processing Extraction Orders

If edge e lies on confluence CXi ,j , then it is labeled with the confluence’s target j .
Labeling can be computed in polynomial-time (by applying Menger’s theorem).
Each label has unique root node at which the mapping of the label must be fixed.
Outgoing edges are partitioned into edge bags not sharing labels.

b

c

a

k{c}

{a}
{k}{a, b, c}

{a, b}
{j, l}

i

l

j
k{j}

{i, l}
{k}

{l}

Edge Bags
Outgoing edges are partitioned, such that partitions do not share labels.

b

c

a

k

{k}{a, b, c}
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Outline of Novel Decomposable LP Formulations
Extraction Order GXr

Rooted acyclic reorientation of the original
request graph Gr . GXr is not unique!

Confluence CXi ,j

A confluence CXi ,j from i to j is a pair of
(node-)disjoint paths connecting i to j in GXr .

Pre-Processing Extraction Orders

If edge e lies on confluence CXi ,j , then it is labeled with the confluence’s target j .
Labeling can be computed in polynomial-time (by applying Menger’s theorem).
Each label has unique root node at which the mapping of the label must be fixed.
Outgoing edges are partitioned into edge bags not sharing labels.

b

c

a

k{c}

{a}
{k}{a, b, c}

{a, b} a

c
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Outline of Novel Decomposable LP Formulations

Pre-Processing Extraction Orders

If edge e lies on confluence CXi ,j , then it is labeled with the confluence’s target j .
Labeling can be computed in polynomial-time (by applying Menger’s theorem).
Each label has unique root node at which the mapping of the label must be fixed.
Outgoing edges are partitioned into edge bags not sharing labels.

b

c

a

k{c}

{a}
{k}{a, b, c}

{a, b}
b

c

a

k

{k}{a, b, c}

b

c

a

{c}

{a, b}
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Outline of Novel Decomposable LP Formulation

Extraction Order GXr
Rooted acyclic reorientation of the original
request graph Gr . GXr is not unique!

Confluence CXi ,j

A confluence CXi ,j from i to j is a pair of
(node-)disjoint paths connecting i to j in GXr .

Pre-Processing Extraction Orders Generation of Linear Program

If edge e ∈ EXr lies on confluence CXi ,j , then
it is labeled with the confluence’s target j .

If e ∈ Er is labeled with LXr ,e , then |VS ||L
X
r,e |

many commodities are considered for e.
Outgoing edges are partitioned into edge
bags not sharing labels.

For each edge bag variables are introduced to
enumerate all potential label mappings.

Each label has unique root node at which
the mapping of the label must be fixed.

Root nodes of labels ‘decide’ on the
confluence’s mapping.
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Extraction Order GXr
Rooted acyclic reorientation of the original
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many commodities are considered for e.
Outgoing edges are partitioned into edge
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For each edge bag variables are introduced to
enumerate all potential label mappings.

Each label has unique root node at which
the mapping of the label must be fixed.

Root nodes of labels ‘decide’ on the
confluence’s mapping.
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Outline of Novel Decomposable LP Formulation
Pre-Processing Extraction Orders Generation of Linear Program

If edge e ∈ EXr lies on confluence CXi ,j , then
it is labeled with the confluence’s target j .

If e ∈ Er is labeled with LXr ,e , then |VS ||L
X
r,e |

many commodities are considered for e.
Outgoing edges are partitioned into edge
bags not sharing labels.

For each edge bag variables are introduced to
enumerate all potential label mappings.

Each label has unique root node at which
the mapping of the label must be fixed.

Root nodes of labels ‘decide’ on the
confluence’s mapping.

Stitching Flow Variables via Node Mapping Variables

yi1r,iJ(i, a), [i 7→ i1, l 7→ l1]K

yi1r,fJ(i, a), [i 7→ i1, l 7→ l2]K

yi1r,iJ(i, a), [i 7→ i2, l 7→ l1]K

yi1r,iJ(i, a), [i 7→ i2, l 7→ l2]K

γi1r,i,1,[j 7→j1,l 7→l1]

{j}

{i, l} {j, l}
a

i

c
f

γi1r,i,1,[j 7→j1,l 7→l2]

γi1r,i,1,[j 7→j2,l 7→l1]

γi1r,i,1,[j 7→j2,l 7→l2]

yi1r,iJ(i, c), [j 7→ j1]K

yi1r,iJ(i, c), [j 7→ j2]K

yi1r,iJ(f, i), [j 7→ j1, l 7→ l1]K

yi1r,iJ(f, i), [j 7→ j1, l 7→ l2]K

yi1r,iJ(f, i), [j 7→ j2, l 7→ l1]K

yi1r,iJ(f, i), [j 7→ j2, l 7→ l2]K
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Outline of Novel Decomposable LP Formulation

Pre-Processing Extraction Orders Generation of Linear Program

If edge e ∈ EXr lies on confluence CXi ,j , then
it is labeled with the confluence’s target j .

If e ∈ Er is labeled with LXr ,e , then |VS ||L
X
r,e |

many commodities are considered for e.
Outgoing edges are partitioned into edge
bags not sharing labels.

For each edge bag variables are introduced to
enumerate all potential label mappings.

Each label has unique root node at which
the mapping of the label must be fixed.

Root nodes of labels ‘decide’ on the
confluence’s mapping.

Def. Extraction Width ewX (GXr )

. . . is the size of the largest edge bag plus
one of the extraction order ewX (GXr ).

Proof of Decomposability
. . . via decomposition algorithm. Overall
runtime O(poly(|GS |ewX (GXr ) · |Gr |)).
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Novel Decomposable LP Formulation: Takeaways

Overview of Construction

Request Graph Gr

⇓
Extraction Order GXr

⇓
Labeling / Extraction Width ewX (GXr )

⇓
LP of size O(poly(|GS |ewX (GXr ) · |Gr |))

⇓
Decomposition Algorithm with runtime O(poly(|GS |ewX (GXr ) · |Gr |))

⇓
Convex Combinations of valid mappings: Dr = {(f kr ,mk

r )|f kr > 0,mk
r ∈Mr}
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Extraction Width – Overview of Results

Which graphs have bounded extraction width?
How to find extraction orders of small width?
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Extraction Width – Overview of Results

Which graphs have bounded extraction width?
How to find extraction orders of small width?

Extraction Width: Overview of Results

Extraction width may vary by
factor Ω(|Vr |)
Minimizing extraction width is
NP-hard
(via reduction from Vertex-Cover)
Cactus graphs (cycles intersect in
at most a single node) have
bounded extraction width

ewX (GXw ) ≥ |Vr|/2ewX (GXw ) = 2

w1

w2

w3
wn/2

wn

wn/2+1

wn/2+2

w1

w2

w3
wn/2

wn

wn/2+1

wn/2+2

wc wc
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Extraction Width – Overview of Results

Which graphs have bounded extraction width?
How to find extraction orders of small width?

Extraction Width: Overview of Results

Extraction width may vary by
factor Ω(|Vr |)
Minimizing extraction width is
NP-hard
(via reduction from Vertex-Cover)
Cactus graphs (cycles intersect in
at most a single node) have
bounded extraction width

Vertex Cover
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Extraction Width – Overview of Results

Which graphs have bounded extraction width?
How to find extraction orders of small width?

Extraction Width: Overview of Results

Extraction width may vary by
factor Ω(|Vr |)
Minimizing extraction width is
NP-hard
(via reduction from Vertex-Cover)
Cactus graphs (cycles intersect in
at most a single node) have
bounded extraction width

Real World Cactus Graph Examples

Customer Internet

LB1 LB2

Cache FW

NAT
VM1

VM2

VM3VM4

VM5

Service ChainVirtual Cluster
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Extraction Width – Overview of Results

Extraction Width: Overview of Results

Extraction width may vary by
factor Ω(|Vr |)
Minimizing extraction width is
NP-hard
(via reduction from Vertex-Cover)
Cactus graphs (cycles intersect in
at most a single node) have
bounded extraction width

Real World Cactus Graph Examples

Customer Internet

LB1 LB2

Cache FW

NAT
VM1

VM2

VM3VM4

VM5

Service ChainVirtual Cluster

Can we do substantially better? No!
Computing valid mappings for planar graphs is NP-complete ⇒ FPT algorithms are necessary.
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(FPT-)Approximations for offline VNEP
based on Randomized Rounding2,3

2 Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized
Rounding. In Proc. IFIP Networking, 2018d

3 Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding
Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452

http://arxiv.org/abs/1803.04452


Approximating the Offline VNEP

Profit Variant
A set of request R = {r1, r2, . . .} is given.
Profit for request pr > 0.
Task: Embed subset of requests feasibly
maximizing the attained profit.
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Approximating the Offline VNEP

Profit Variant
A set of request R = {r1, r2, . . .} is given.
Profit for request pr > 0.
Task: Embed subset of requests feasibly
maximizing the attained profit.

Cost Variant
A set of request R = {r1, r2, . . .} is given.
Substrate resource costs kS : GS → R≥0.
Task: Find feasible embeddings for all
requests minimizing cost.
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Approximating the Offline VNEP

Focus: Profit Variant
A set of request R = {r1, r2, . . .} is given.
Profit for request pr > 0.
Task: Embed subset of requests feasibly
maximizing the attained profit.

Cost Variant
A set of request R = {r1, r2, . . .} is given.
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Approximating the Offline VNEP

Focus: Profit Variant
A set of request R = {r1, r2, . . .} is given.
Profit for request pr > 0.
Task: Embed subset of requests feasibly
maximizing the attained profit.

Cost Variant
A set of request R = {r1, r2, . . .} is given.
Substrate resource costs kS : GS → R≥0.
Task: Find feasible embeddings for all
requests minimizing cost.

Combine Single Decomposable LP Formulations while . . .
. . . enforcing capacity constraints and maximizing the profit. ⇒ LP for offline VNEP (profit).
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Approximating the Offline VNEP

Combine Single Decomposable LP Formulations while . . .
. . . enforcing capacity constraints and maximizing the profit. ⇒ LP for offline VNEP (profit).

Request

A B

CD

1 4

3 1

1

11

1

6

Valid Mappings Mr = {m1
r ,m

2
r ,m

3
r , . . .}

AC B

D

1/2

1/2 1/2

1/2

2/3

1/3

2/2 4/5

0/0 3/3 0/0

AC
2/2 7/5

0/0 0/3

2/3

2/3

0/0

0/0

0/0

0/0

0/0

BD

. . .

Valid mappings do not necessarily respect capacity constraints!
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Approximating the Offline VNEP

Combine Single Decomposable LP Formulations while . . .
. . . enforcing capacity constraints and maximizing the profit. ⇒ LP for offline VNEP (profit).

Decomposable LP Formulation allows us to solve Fractional VNEP

Is k-th mapping of request r chosen?

Select at most one mapping:

Enforce capacity for each resource x :

Maximize the profit:

f kr ∈ {0, 1} ∀r ∈ R,mk
r ∈Mr (8)∑

mk
r ∈Mr

f kr ≤ 1 ∀r ∈ R (9)∑
r∈R

∑
mk

r ∈Mr

A(mk
r , x) · f kr ≤ cS(x) ∀x ∈ RS (10)

max
∑
r∈R

∑
mk

r ∈Mr

pr f
k
r (11)
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Randomized Rounding Revisited

Example

Substrate Network

2 5

0 3 1

3

2 2

2 2

Request r1: profit 100$

A B

CD

1 4

3 1

1

11

1

6

Request r2: profit 50$

E

FG

1

2 1

3

1

2
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Randomized Rounding Revisited
Example

Substrate Network

2 5

0 3 1

3

2 2

2 2

Request r1: profit 100$

A B

CD

1 4

3 1

1

11

1

6

Request r2: profit 50$

E

FG

1

2 1

3

1

2

Example Solution to Linear Program: Profit 133$

Variables of r1 (profit: 100$)

f 1
1 = 0.5

AC B

D

1/2

1/2 1/2

1/2

2/3

1/3

2/2 4/5

0/0 3/3 0/0

f 2
1 = 0.3

AC
2/2 7/5

0/0 0/3

2/3

2/3

0/0

0/0

0/0

0/0

0/0

BD

f 3
1 = 0.2

AC B

D

2/2

2/2

1/3

1/3

2/2 4/5

0/0 3/3

0/0

0/0

0/0

. . .

Variables of r2 (profit: 50$)

f 1
2 = 0.5

1/2

3/3

0/3

2/2 1/5

0/0 1/3 0/0

G E

F

1/2 2/2

2/2

f 2
2 = 0.16

EF G

0/2

3/3

1/3

2/2 2/5

0/0 0/00/3

0/2

0/2

0/2

f 3
2 = 0

EFG

0/2

0/3
0/2 5/5

0/0 0/00/3

0/2

0/2

0/2

. . .
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Randomized Rounding Revisited

Example Solution to Linear Program: Profit 133$

Variables of r1 (profit: 100$)

f 1
1 = 0.5

AC B

D

1/2

1/2 1/2

1/2

2/3

1/3

2/2 4/5

0/0 3/3 0/0

f 2
1 = 0.3

AC
2/2 7/5

0/0 0/3

2/3

2/3

0/0

0/0

0/0

0/0

0/0

BD

f 3
1 = 0.2

AC B

D

2/2

2/2

1/3

1/3

2/2 4/5

0/0 3/3

0/0

0/0

0/0

. . .

Variables of r2 (profit: 50$)

f 1
2 = 0.5

1/2

3/3

0/3

2/2 1/5

0/0 1/3 0/0

G E

F

1/2 2/2

2/2

f 2
2 = 0.16

EF G

0/2

3/3

1/3

2/2 2/5

0/0 0/00/3

0/2

0/2

0/2

f 3
2 = 0

EFG

0/2

0/3
0/2 5/5

0/0 0/00/3

0/2

0/2

0/2

. . .

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
return solution
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Randomized Rounding Revisited

Example Solution to Linear Program: Profit 133$

Variables of r1 (profit: 100$)

f 1
1 = 0.5

AC B

D

1/2

1/2 1/2

1/2

2/3

1/3

2/2 4/5

0/0 3/3 0/0

f 2
1 = 0.3

AC
2/2 7/5

0/0 0/3

2/3

2/3

0/0

0/0

0/0

0/0

0/0

BD

f 3
1 = 0.2

AC B

D

2/2

2/2

1/3

1/3

2/2 4/5

0/0 3/3

0/0

0/0

0/0

. . .

Variables of r2 (profit: 50$)

f 1
2 = 0.5

1/2

3/3

0/3

2/2 1/5

0/0 1/3 0/0

G E

F

1/2 2/2

2/2

f 2
2 = 0.16

EF G

0/2

3/3

1/3

2/2 2/5

0/0 0/00/3

0/2

0/2

0/2

f 3
2 = 0

EFG

0/2

0/3
0/2 5/5

0/0 0/00/3

0/2

0/2

0/2

. . .

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
return solution

Rounding Outcomes

Iter. Req. 1 Req. 2 Profit max Load
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Randomized Rounding Revisited

Example Solution to Linear Program: Profit 133$

Variables of r2 (profit: 50$)

f 1
1 = 0.5

AC B

D

1/2

1/2 1/2

1/2

2/3

1/3

2/2 4/5

0/0 3/3 0/0

f 2
1 = 0.3

AC
2/2 7/5

0/0 0/3

2/3

2/3

0/0

0/0

0/0

0/0

0/0

BD

f 3
1 = 0.2

AC B

D

2/2

2/2

1/3

1/3

2/2 4/5

0/0 3/3

0/0

0/0

0/0

. . .

Variables of r2 (profit: 50$)

f 1
2 = 0.5

1/2

3/3

0/3

2/2 1/5

0/0 1/3 0/0

G E

F

1/2 2/2

2/2

f 2
2 = 0.16

EF G

0/2

3/3

1/3

2/2 2/5

0/0 0/00/3

0/2

0/2

0/2

f 3
2 = 0

EFG

0/2

0/3
0/2 5/5

0/0 0/00/3

0/2

0/2

0/2

. . .

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
return solution

Rounding Outcomes

Iter. Req. 1 Req. 2 Profit max Load
1 m1

1 m2
2 150$ 200%
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Randomized Rounding Revisited

Example Solution to Linear Program: Profit 133$

Variables of request 1
f 1
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. . .

Variables of r2 (profit: 50$)
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0/2

0/2

0/2

. . .

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
return solution

Rounding Outcomes

Iter. Req. 1 Req. 2 Profit max Load
1 m1

1 m2
2 150$ 200%

2 m3
1 ∅ 100$ 100%
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Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
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Rounding Outcomes
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1 ∅ 100$ 100%

3 m1
1 m1

2 150$ 200%
4 m2

1 m1
2 150$ 200%

Matthias Rost (TU Berlin) Approximating the Virtual Network Embedding Problem: Theory and Practice ISMP 2018, Bordeaux 22



Randomized Rounding Revisited

Example Solution to Linear Program: Profit 133$
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Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
return solution

Rounding Outcomes

Iter. Req. 1 Req. 2 Profit max Load
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...

...
...

...
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First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while

(
solution not (α, β, γ)-approximate
and rounding tries not exceeded

)

Algorithm: RoundingProcedure
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

end
return solution
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First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while

(
solution not (α, β, γ)-approximate
and rounding tries not exceeded

)

Main Theorem: (FPT-)Approximation for the Virtual Network Embedding Problem

The Algorithm returns (α, β, γ)-approximate solutions for the of at least an α fraction of the
optimal profit, and allocations on nodes and edges within factors of β and γ of the original
capacities, respectively, with high probability.
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First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while

(
solution not (α, β, γ)-approximate
and rounding tries not exceeded

)

Definition of Parameters
α =1/3 (relative achieved profit)

β =(1 + ε ·
√

2 ·∆(VS ) · log(|VS |)) (max node load)

γ =(1 + ε ·
√

2 ·∆(ES ) · log(|ES |)) (max edge load)

ε = max
r∈R,x∈RS

dmax(r , x)/cS (x) ≤ 1 (max demand/capacity)

∆(X ) =max
x∈X

∑
r∈R

(Amax(r , x)/dmax(r , x))2
(

sum over R of squared
max (total / single) alloc

)

Main Theorem: (FPT-)Approximation for the Virtual Network Embedding Problem

The Algorithm returns (α, β, γ)-approximate solutions for the of at least an α fraction of the
optimal profit, and allocations on nodes and edges within factors of β and γ of the original
capacities, respectively, with high probability.
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First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while

(
solution not (α, β, γ)-approximate
and rounding tries not exceeded

)

Definition of Parameters
α =1/3 (relative achieved profit)

β =(1 + ε ·
√

2 ·∆(VS ) · log(|VS |)) (max node load)

γ =(1 + ε ·
√

2 ·∆(ES ) · log(|ES |)) (max edge load)

ε = max
r∈R,x∈RS

dmax(r , x)/cS (x) ≤ 1 (max demand/capacity)

∆(X ) =max
x∈X

∑
r∈R

(Amax(r , x)/dmax(r , x))2
(

sum over R of squared
max (total / single) alloc

)

Applicability in Practice: Computing β and γ is hard . . .
Computing β and γ requires enumerating all valid mappings.
β ∈ O(ε ·

√
|R| ·maxr∈R |Vr | · log(|VS |)) and γ ∈ O(ε ·

√
|R| ·maxr∈R |Er | · log(|ES |))
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First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while

(
solution not (α, β, γ)-approximate
and rounding tries not exceeded

)

Definition of Parameters
α =1/3 (relative achieved profit)

β =(1 + ε ·
√

2 ·∆(VS ) · log(|VS |)) (max node load)

γ =(1 + ε ·
√

2 ·∆(ES ) · log(|ES |)) (max edge load)

ε = max
r∈R,x∈RS

dmax(r , x)/cS (x) ≤ 1 (max demand/capacity)

∆(X ) =max
x∈X

∑
r∈R

(Amax(r , x)/dmax(r , x))2
(

sum over R of squared
max (total / single) alloc

)

Applicability in Practice: Computing β and γ is hard . . .
Computing β and γ requires enumerating all valid mappings.
β ∈ O(ε ·

√
|R| ·maxr∈R |Vr | · log(|VS |)) and γ ∈ O(ε ·

√
|R| ·maxr∈R |Er | · log(|ES |))

Consider Heuristics
Return best solution found within X iterations.
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Derived Heuristics

Randomized Rounding Approximation

Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while

(
solution not (α, β, γ)-approximate
and rounding tries not exceeded

)
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Derived Heuristics

Heuristic Idea: Fixed #Iterations

Algorithm: Heuristic Adaptation
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while rounding tries not exceeded
return best solution

Vanilla Rounding: RRMinLoad

still may exceed capacities
return solution with least resource violations
(among those: highest profit)
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Derived Heuristics

Heuristic Idea: Fixed #Iterations

Algorithm: Heuristic Adaptation
// perform preprocessing
compute optimal LP solution
compute {Dr}r∈R from LP solution
do

solution ← RoundingProcedure({Dr}r∈R)
while rounding tries not exceeded
return best solution

Algorithm: RoundingProcedure (Heuristic)
Input : Optimal convex combinations {Dr}r∈R
foreach r ∈ R do

choose mk
r with probability f kr

discard mapping if capacity violated
end
return solution

Vanilla Rounding: RRMinLoad

still may exceed capacities
return solution with least resource violations
(among those: highest profit)

Heuristic Rounding: RRHeuristic

RoundingProcedure:
discard chosen mappings exceeding capacities
always yields feasible solutions
return solution with highest profit
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Computational Evaluation4,5

4 Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized
Rounding. In Proc. IFIP Networking, 2018d

5 Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized
Rounding. Technical report, March 2018b. URL http://arxiv.org/abs/1803.03622
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Computational Evaluation: Setup

Substrate: GEANT

Code available:
https://github.com/vnep-approx/
evaluation-ifip-networking-2018

Generation Parameters for 1,500 instances

Number of requests: 40, 60, 80, 100
Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0
Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0

Instances per combination: 15

Requests: Synthetic Cactus Requests

0 3 6 9 12 15 18 21

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

E
C

D
F

number of nodes: |Vr|

number of edges: |Er|

number of cycles: |Er| |Vr| + 1

Profit: minimum
embedding resource costs

Node mapping restriction:
1/4 substrate nodes

Demands: exp. dist.
according to NRF/ERF
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Computational Evaluation: Setup

Baseline Algorithm – MIPMCF: solve classic MIP Formulation for upto 3 hours
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Computational Evaluation: Heuristic Performance

Vanilla Rounding Performance
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Relative profit ≈ 80 - 120%

Resource augmentations mostly < 200%
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Computational Evaluation: Heuristic Performance
Vanilla Rounding Performance
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Heuristic Rounding (w/o augmentations)
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Relative profit ≈ 65 - 90%

min: 22.5% / mean: 73.8% / max: 101%
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Computational Evaluation: Runtimes

Runtime MIPMCF (Gurobi 7.5.1)
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Runtime LPnovel (Gurobi 7.5.1)
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Computational Evaluation: Formulation Strengths
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Root relaxation values upto 3.5 times better than when using the MCF LP.

Final MIP bounds improve novel LP bounds by at most a factor of 1.3.
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Conclusion



Conclusion

Summary
Complexity: Computing valid mappings is NP-complete for planar graphs.

(FPT-)Linear Programs: Valid mappings can be computed in FPT using novel LP.
(FPT-)Approximations: For offline VNEP (profit & cost) based on randomized rounding.

Evaluation: Solutions quite good even without resource augmentations.
Novel formulation is much stronger.
Runtime becomes an issue.
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Conclusion

Summary
Complexity: Computing valid mappings is NP-complete for planar graphs.

(FPT-)Linear Programs: Valid mappings can be computed in FPT using novel LP.
(FPT-)Approximations: For offline VNEP (profit & cost) based on randomized rounding.

Evaluation: Solutions quite good even without resource augmentations.
Novel formulation is much stronger.
Runtime becomes an issue.

Future Work
Runtime: Column generation could be readily applied, need to try it.

Heuristics: Many possibilities, also for online problem.
Extraction width: Can improve the formulation further (→ tree-width).

Online Approximation: Need to improve rounding scheme (using e.g. Bansal et al. [2011]).
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Thank You!

Questions?
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