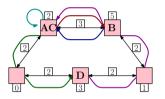
Approximating the Virtual Network Embedding Problem: Theory and Practice



23rd International Symposium on Mathematical Programming 2018

Bordeaux, France

Matthias Rost
Technische Universität Berlin, Internet Network Architectures

Stefan Schmid Universität Wien, Communication Technologies

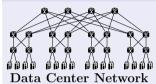
A Short Introduction to the

Virtual Network Embedding Problem

Wide-Area Network

Substrate (Physical Network)

- Directed graph $G_S = (V_S, E_S)$
- ullet Capacities $c_S:G_S o\mathbb{R}_{\geq 0}$

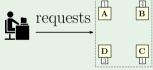


Wide-Area Network

Substrate (Physical Network)

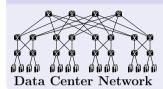
- Directed graph $G_S = (V_S, E_S)$
- Capacities $c_S: G_S \to \mathbb{R}_{\geq 0}$

'Classic' Cloud Computing



bunch of VMs

- User requests virtual machines
- No guarantee on network performance



Wide-Area Network

Substrate (Physical Network)

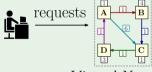
- Directed graph $G_S = (V_S, E_S)$
- Capacities $c_S: G_S \to \mathbb{R}_{\geq 0}$

'Classic' Cloud Computing

bunch of VMs

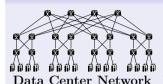
- User requests virtual machines
- No guarantee on network performance

Goal: Virtual Networks (since ≈ 2006)



Virtual Network

- Communication requirements given
- Network performance will be guaranteed

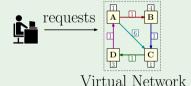


Wide-Area Network

Substrate (Physical Network)

- Directed graph $G_S = (V_S, E_S)$
- ullet Capacities $c_S:G_S o\mathbb{R}_{\geq 0}$

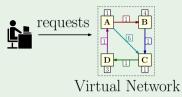
Goal: Virtual Networks (since ≈ 2006)



Virtual Network Request $G_r = (V_r, E_r)$

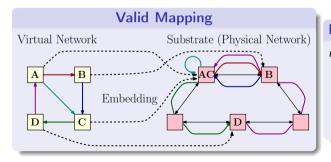
- ullet demands $d_r:G_r o \mathbb{R}_{\geq 0}$
- mapping restrictions
 - $V_S^i \subseteq V_S$ for $i \in V_r$
 - $E_S^{\bar{i},j} \subseteq E_S$ for $(i,j) \in E_r$

Goal: Virtual Networks (since \approx 2006)



Virtual Network Request $G_r = (V_r, E_r)$

- ullet demands $d_r:G_r o \mathbb{R}_{\geq 0}$
- mapping restrictions
 - $V_S^i \subseteq V_S$ for $i \in V_r$
 - $E_S^{i,j} \subseteq E_S$ for $(i,j) \in E_r$



Def: Valid mapping $m_r = (m_V, m_E) \dots$

 $m_V: V_r
ightarrow V_S$ and $m_E: E_r
ightarrow \mathcal{P}(E_S)$ satisfies

valid connectivity: $m_V(i) \stackrel{m_E(i,j)}{\sim} m_V(j)$

valid node mapping: $m_V(i) \in V_S^i$

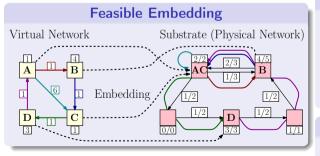
valid edge mapping: $m_E(i,j) \subseteq E_S^{i,j}$

Goal: Virtual Networks (since \approx 2006)



Virtual Network Request $G_r = (V_r, E_r)$

- ullet demands $d_r:G_r o \mathbb{R}_{\geq 0}$
- mapping restrictions
 - $V_S^i \subseteq V_S$ for $i \in V_r$
 - $E_S^{i,j} \subseteq E_S$ for $(i,j) \in E_r$



Def: Valid mapping $m_r = (m_V, m_E) \dots$

 $m_V: V_r \to V_S$ and $m_E: E_r \to \mathcal{P}(E_S)$ satisfies valid connectivity: $m_V(i) \stackrel{m_E(i,j)}{\leadsto} m_V(j)$

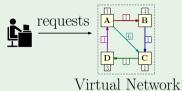
valid node mapping: $m_V(i) \in V_S^i$

valid edge mapping: $m_E(i,j) \subseteq E_S^{i,j}$

Def: Feasible embedding m_r ...

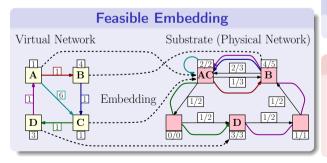
...is valid and respects capacities.

Goal: Virtual Networks (since \approx 2006)



Virtual Network Request $G_r = (V_r, E_r)$

- ullet demands $d_r:G_r o \mathbb{R}_{\geq 0}$
- mapping restrictions
 - $V_S^i \subseteq V_S$ for $i \in V_r$
 - $E_S^{\check{i},j} \subseteq E_S$ for $(i,j) \in E_r$



Def: Feasible embedding m_r ...

... is valid and respects capacities.

Virtual Network Embedding Problem

Setting Online vs. Offline
Objectives resource minimization.

profit maximization, energy minimization, . . .

Related Work & Overview of Contributions

Computational Complexity

Andersen [2002] \mathcal{NP} -hardness (argument)

 $\mathcal{NP}\text{-hardness}$ and inapproximability for offline

VNEP (profit)

Amaldi et al. [2016]

Heuristics & Exact Algorithms

Generally

≫ 100 works, e.g. . . .

Chowdhury et al. [2009]
Heuristics based on **Linear**

Programming; hoped for approximations...

Approximations

None for general graphs!

Bansal et al. [2011] for trees

Even et al. [2016] for chains

Computational Complexity

Andersen [2002] \mathcal{NP} -hardness (argument)

Amaldi et al. [2016]

NP-hardness and inapproximability for offline VNEP (profit)

Heuristics & Exact Algorithms

Generally

 \gg 100 works, e.g. . . .

Chowdhury et al. [2009]
Heuristics based on Linear

Programming; hoped for approximations...

Approximations

None for general graphs!

Bansal et al. [2011] for trees

Even et al. [2016] for chains

VNEP is of crucial importance, yet is hardly understood!

Computational Complexity

Andersen [2002]

 \mathcal{NP} -hardness (argument)

Amaldi et al. [2016] \mathcal{NP} -hardness and inapproximability for offline VNEP (profit)

Heuristics & Exact Algorithms

Generally

enerally

 \gg 100 works, e.g. ...

Chowdhury et al. [2009] Heuristics based on **Linear**

Programming; hoped for approximations...

Approximations

None for general graphs!

Bansal et al. [2011] for trees

Even et al. [2016] for chains

Idea of this Talk: Give Overview on Our Results

Complexity results showing \mathcal{NP} -completeness and inapproximability.

(FPT-)Linear Programs for computing convex combinations of valid mappings.

(FPT-)Approximations for offline VNEP based on randomized rounding.

Computational Complexity

Andersen [2002]

 $\mathcal{NP} ext{-hardness}$ (argument)

Amaldi et al. [2016] \mathcal{NP} -hardness and

inapproximability for offline VNEP (profit)

Heuristics & Exact Algorithms

Generally

bellerally

 \gg 100 works, e.g. ...

Chowdhury et al. [2009] Heuristics based on **Linear**

Programming; hoped for approximations...

Approximations

None for general graphs!

Bansal et al. [2011] for trees

Even et al. [2016] for chains

Idea of this Talk: Give Overview on Our Results

Complexity results showing $\mathcal{N}\mathcal{P}\text{-completeness}$ and inapproximability.

(FPT-)Linear Programs for computing convex combinations of valid mappings.

(FPT-)Approximations for offline VNEP based on randomized rounding.

Computational Complexity

Andersen [2002]

 \mathcal{NP} -hardness (argument)

Amaldi et al. [2016] \mathcal{NP} -hardness and

inapproximability for offline VNEP (profit)

Heuristics & Exact Algorithms

Generally

≫ 100 works, e.g. . . .

Chowdhury et al. [2009]

Heuristics based on Linear Programming; hoped for

approximations...

Approximations

None for general graphs!

Bansal et al. [2011] for trees

Even et al. [2016] for chains

Idea of this Talk: Give Overview on Our Results

Complexity results showing $\mathcal{NP}\text{--completeness}$ and inapproximability.

(FPT-)Linear Programs for computing convex combinations of valid mappings.

(FPT-)Approximations for offline VNEP based on randomized rounding.

Computational Complexity

Andersen [2002]

VNEP (profit)

 $\mathcal{NP}\text{-hardness}$ (argument)

Amaldi et al. [2016] \mathcal{NP} -hardness and inapproximability for offline

Heuristics & Exact Algorithms

Generally

enerally

 \gg 100 works, e.g. ...

Chowdhury et al. [2009]
Heuristics based on Linear

Programming; hoped for approximations...

Approximations

None for general graphs!

Bansal et al. [2011] for trees

Even et al. [2016] for chains

Idea of this Talk: Give Overview on Our Results

Complexity results showing $\mathcal{N}\mathcal{P}\text{-completeness}$ and inapproximability.

(FPT-)Linear Programs for computing convex combinations of valid mappings.

(FPT-)Approximations for offline VNEP based on randomized rounding.

Idea of this Talk: Give Overview on Our Results

Complexity results showing \mathcal{NP} -completeness and inapproximability^a.

(FPT-)Linear Programs for computing convex combinations of valid mappings^{b,c}.

(FPT-)Approximations for offline VNEP based on randomized rounding^{b,c}.

- ^a Matthias Rost and Stefan Schmid. Charting the Complexity Landscape of Virtual Network Embeddings. In *Proc. IFIP Networking*, 2018c
- ^b Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. In *Proc. IFIP Networking*, 2018d
- ^c Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452

Complexity of the VNEP¹

¹Matthias Rost and Stefan Schmid. Charting the Complexity Landscape of Virtual Network Embeddings. In *Proc. IFIP Networking*, 2018c

Reminder: 3-SAT and \mathcal{NP} -Completeness

3-SAT-Formula ϕ

 $\phi = \bigwedge_{\mathcal{C}_i \in \mathcal{C}_{\phi}} \mathcal{C}_i$ with $\mathcal{C}_i \in \mathcal{C}_{\phi}$ being disjunctions of at most 3 (possible negated) literals.

Example 3-SAT formula
$$\phi$$
 over literals $\mathcal{L}_{\phi} = \{x_1, x_2, x_3, x_4\}$

$$\phi = \underbrace{(x_1 \lor x_2 \lor x_3)}_{\mathcal{C}_1} \land \underbrace{(\bar{x}_1 \lor x_2 \lor x_4)}_{\mathcal{C}_2} \land \underbrace{(x_2 \lor \bar{x}_3 \lor x_4)}_{\mathcal{C}_3}$$

Definition of 3-SAT

Decide whether satisfying assignment $a: \mathcal{L}_{\phi} \to \{F, T\}$ exists for formula ϕ . Output: Yes/No.

Theorem: Karp [1972]

3-SAT is \mathcal{NP} -complete.

Methodology: Proving \mathcal{NP} -completeness

Proving \mathcal{NP} -completeness of the VNEP

- VNEP lies in \mathcal{NP} (answer can be checked in polynomial time).
- Reduction from 3-SAT to VNEP.

Outline of Reduction Framework

3-SAT instance $\phi \vdash$ \rightarrow VNEP instance $(G_{r(\phi)}, G_{S(\phi)}, \text{restrictions})$

 ϕ satisfiable? \rightleftharpoons feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

Proving \mathcal{NP} -completeness of the VNEP

- VNEP lies in \mathcal{NP} (answer can be checked in polynomial time).
- Reduction from 3-SAT to VNEP.

Outline of Reduction Framework

 \rightarrow VNEP instance $(G_{r(\phi)}, G_{S(\phi)}, \text{restrictions})$ 3-SAT instance $\phi \vdash$

 ϕ satisfiable? feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

Input: 3-SAT formula

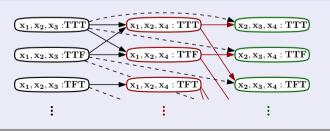
$$\phi = (x_1 \vee x_2 \vee x_3) \wedge (\bar{x}_1 \vee x_2 \vee x_4) \wedge (x_2 \vee \bar{x}_3 \vee x_4)$$

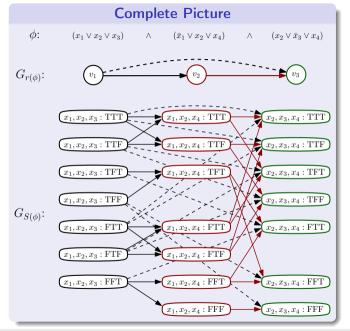
Request $G_{r(\phi)}$

- $V_{r(\phi)} = \{ v_i \mid \mathcal{C}_i \in \mathcal{C}_{\phi} \}$
- $E_{r(\phi)} = \{ (v_i, v_j) \mid C_i \text{ introduces literal used by } C_j \}$

Substrate $G_{S(\phi)}$

- one node per clause and per satisfying assignment
- edges as for the requests, if assignments do not contradict





Outline of Reduction Framework

3-SAT instance $\phi \longmapsto VNEP$ instance $(G_{r(\phi)}, G_{S(\phi)}, restrictions)$

 ϕ satisfiable? feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

Outline of Reduction Framework

3-SAT instance $\phi \longmapsto VNEP$ instance $(G_{r(\phi)}, G_{S(\phi)}, restrictions)$

 ϕ satisfiable? feasible embedding of $G_{r(\phi)}$ on $G_{S(\phi)}$ under restrictions?

Base Lemma

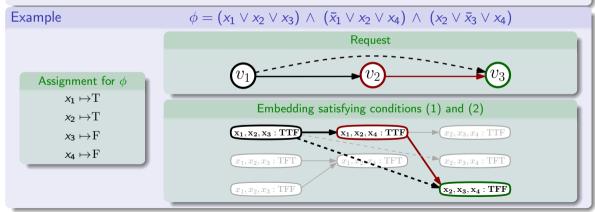
Formula ϕ is satisfiable if and only if there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t.

- (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the *i*-th clause, and
- (2) all virtual edges are mapped on exactly one substrate edge.

Base Lemma

Formula ϕ is satisfiable if and only if there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t.

- (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the i-th clause, and
- (2) all virtual edges are mapped on exactly one substrate edge.

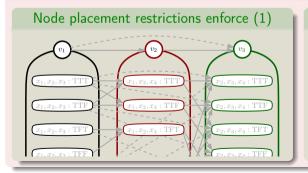


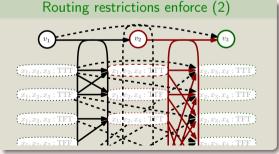
Base Lemma

Formula ϕ is satisfiable if and only if there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t.

- (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the i-th clause, and
- (2) all virtual edges are mapped on exactly one substrate edge.

Decision VNEP is \mathcal{NP} -complete under mapping restrictions





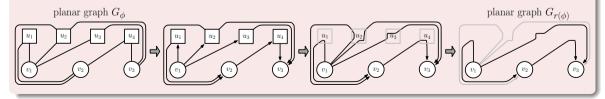
Base Lemma

Formula ϕ is satisfiable if and only if there exists a mapping of $G_{r(\phi)}$ on $G_{S(\phi)}$, s.t.

- (1) each virtual node v_i is mapped to a 'satisfying assignment node' of the i-th clause, and
- (2) all virtual edges are mapped on exactly one substrate edge.

Decision VNEP is \mathcal{NP} -complete for degree-bounded, planar request graphs

- Reduction from planar 3-SAT variant using literals max. 4 times (see Kratochvíl [1994]):
 - ullet each planar formula ϕ leads to a planar request graph $G_{r(\phi)}$
 - each node of $G_{r(\phi)}$ has degree at most 12



(FPT-)Linear Programs for Computing Convex Combinations of Valid Mappings^{2,3}

² Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. In *Proc. IFIP Networking*, 2018d

³ Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452

(2)

Classic LP Formulation

Formulation 1: Classic MCF Formulation for the VNEP

$$\sum_{u \in V_{S}^{i}} y_{r,i}^{u} = x_{r} \qquad \forall r \in \mathcal{R}, i \in V_{r}$$

$$\sum_{u \in V_{S}^{i}} y_{r,i}^{u} = 0 \qquad \forall r \in \mathcal{R}, i \in V_{r}$$
(2)

$$u \in V_c \setminus V_c^i$$

$$\begin{bmatrix} \sum_{(u,v)\in\delta^{+}(u)} z_{r,i,j}^{u,v} \\ -\sum_{r} z_{r,i,j}^{v,u} \end{bmatrix} = \begin{bmatrix} y_{r,i}^{u} \\ -y_{r,j}^{u} \end{bmatrix} \ \forall \begin{bmatrix} r \in \mathcal{R}, (i,j) \in E_{r}, \\ u \in V_{\mathcal{S}} \end{bmatrix}$$
(3)

$$z_{r,i,j}^{u,v} = 0 \qquad \forall \begin{bmatrix} r \in \mathcal{R}, (i,j) \in E_r, \\ (u,v) \in E_S \setminus E_S^{i,j} \end{bmatrix}$$
(4)
$$\sum d_r(i) \cdot y_{r,i}^u = a_r^{\tau,u} \qquad \forall r \in \mathcal{R}, (\tau,u) \in R_S^V$$
(5)

$$\sum_{i \in V_r, \tau_r(i) = r} d_r(i) \cdot y_{r,i}^u = a_r^{\tau,u} \qquad \forall r \in \mathcal{R}, (\tau, u) \in R_S^V$$
 (5)

$$\sum_{l=0}^{l=v_r,\tau_l(l)=\tau} d_r(i,j) \cdot z_{r,i,j}^{u,v} = a_r^{u,v} \qquad \forall r \in \mathcal{R}, (u,v) \in E_S$$
 (6)

$$\sum_{r \in \mathcal{P}} a_r^{x,y} \le c_S(x,y) \, \forall (x,y) \in R_S \tag{7}$$

Main Building Block: **Multi-Commodity Flows**

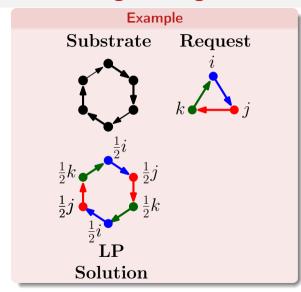
$$\mathbf{y}^{\mathbf{u}}_{\mathsf{r},\mathbf{i}} \in [\mathbf{0},\mathbf{1}]$$
: maps node $i \in V_r$ on V_S

$$\mathbf{z}_{\mathsf{r},\mathsf{i},\mathsf{j}}^{\mathsf{u},\mathsf{v}} \in [0,1]$$
: maps $(i,j) \in \mathcal{E}_{\mathit{r}}$ on $(u,v) \in \mathcal{E}_{\mathcal{S}}$

$$\sum_{(\mathbf{u}, \mathbf{v}) \in \delta^{+}(\mathbf{u})} z_{r, i, j}^{\mathbf{u}, \mathbf{v}} - \sum_{(\mathbf{v}, \mathbf{u}) \in \delta^{-}(\mathbf{u})} z_{r, i, j}^{\mathbf{v}, \mathbf{u}} = y_{r, i}^{\mathbf{u}} - y_{r, j}^{\mathbf{u}} \quad (3)$$

Local Connectivity Property

Given a (fractional) mapping of $i \in V_r$ to $u \in V_{S}$, a 'valid' mapping can be recovered for edges incident to i and their respective endpoints.



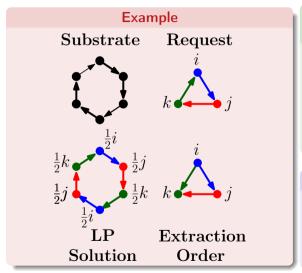
Main Building Block: **Multi-Commodity Flows**

 $\mathbf{y_{r,i}^u} \in [0,1]$: maps node $i \in V_r$ on V_S $\mathbf{z}_{r,i,i}^{\mathbf{u},\mathbf{v}} \in [0,1]$: maps $(i,j) \in E_r$ on $(u,v) \in E_S$

$$\sum_{(\mathbf{u}, \mathbf{v}) \in \delta^{+}(\mathbf{u})} z_{r, i, j}^{\mathbf{u}, \mathbf{v}} - \sum_{(\mathbf{v}, \mathbf{u}) \in \delta^{-}(\mathbf{u})} z_{r, i, j}^{\mathbf{v}, \mathbf{u}} = y_{r, i}^{\mathbf{u}} - y_{r, j}^{\mathbf{u}} \quad (3)$$

Local Connectivity Property

Given a (fractional) mapping of $i \in V_r$ to $u \in V_S$, a 'valid' mapping can be recovered for edges incident to i and their respective endpoints.



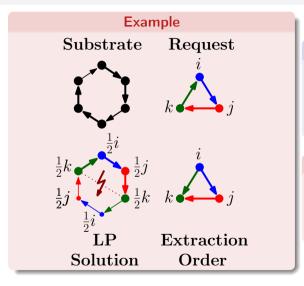
Main Building Block: **Multi-Commodity Flows**

 $\mathbf{y_{r,i}^u} \in [\mathbf{0},\mathbf{1}]$: maps node $i \in V_r$ on V_S $\mathbf{z}_{r,i,i}^{\mathbf{u},\mathbf{v}} \in [\mathbf{0},\mathbf{1}]$: maps $(i,j) \in E_r$ on $(u,v) \in E_S$

$$\sum_{(\mathbf{u}, \mathbf{v}) \in \delta^{+}(\mathbf{u})} z_{r, i, j}^{\mathbf{u}, \mathbf{v}} - \sum_{(\mathbf{v}, \mathbf{u}) \in \delta^{-}(\mathbf{u})} z_{r, i, j}^{\mathbf{v}, \mathbf{u}} = y_{r, i}^{\mathbf{u}} - y_{r, j}^{\mathbf{u}} \quad (3)$$

Local Connectivity Property

Given a (fractional) mapping of $i \in V_r$ to $u \in V_S$, a 'valid' mapping can be recovered for edges incident to i and their respective endpoints.



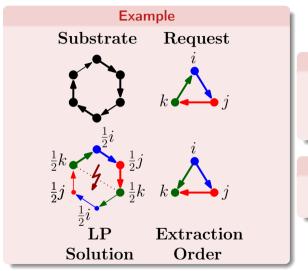
Local Connectivity Property

Given a (fractional) mapping of $i \in V_r$ to $u \in V_S$, a 'valid' mapping can be recovered for edges incident to i and their respective endpoints.

Main Issue

Targets of confluences pose problems!

In the example: target k of confluence $\langle (i, k) \rangle, \langle (i, j), (j, k) \rangle$.



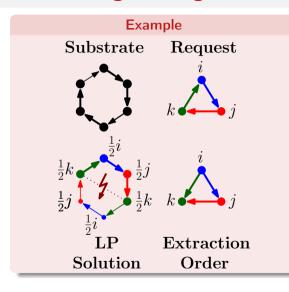
Main Issue

Targets of confluences pose problems!

In the example: target k of confluence $\langle (i, k) \rangle, \langle (i, j), (j, k) \rangle$.

Theorem

Decomposing solutions to the MCF LP is not possible in general.



Main Issue

Targets of confluences pose problems!

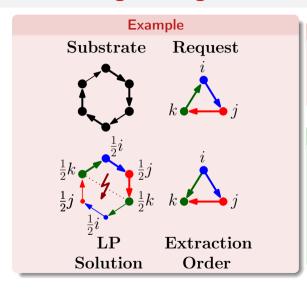
In the example: target k of confluence $\langle (i, k) \rangle, \langle (i, j), (j, k) \rangle$.

Theorem

Decomposing solutions to the MCF LP is not possible in general.

Theorem

MCF LP Formulation has infinite integrality gap.



Main Issue

Targets of confluences pose problems!

In the example: target k of confluence $\langle (i,k) \rangle, \langle (i,j), (j,k) \rangle$.

Key Insight

If we fix confluence target nodes valid mappings can always be extracted, when following the extraction order.

In the example:

Consider one **sub-LP** formulation per potential mapping location of k.

Extraction Order $G_r^{\mathcal{X}}$

Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,j}^{\mathcal{X}}$

A confluence $C_{i,j}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

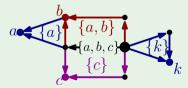
Extraction Order $G_r^{\mathcal{X}}$

Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,j}^{\mathcal{X}}$

A confluence $C_{i,j}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

- If edge e lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Labeling can be computed in polynomial-time (by applying Menger's theorem).
- Each label has unique root node at which the mapping of the label must be fixed.
- Outgoing edges are partitioned into edge bags not sharing labels.



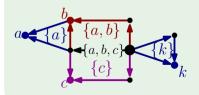
Extraction Order $G_r^{\mathcal{X}}$

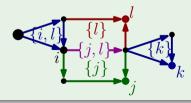
Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,j}^{\mathcal{X}}$

A confluence $C_{i,j}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

- If edge e lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Labeling can be computed in polynomial-time (by applying Menger's theorem).
- Each label has unique root node at which the mapping of the label must be fixed.
- Outgoing edges are partitioned into edge bags not sharing labels.





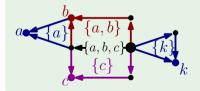
Extraction Order $G_r^{\mathcal{X}}$

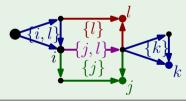
Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,i}^{\mathcal{X}}$

A confluence $C_{i,i}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in G_r^{χ} .

- If edge e lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Labeling can be computed in polynomial-time (by applying Menger's theorem).
- Each label has unique root node at which the mapping of the label must be fixed.
- Outgoing edges are partitioned into edge bags not sharing labels.





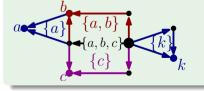
Extraction Order $G_r^{\mathcal{X}}$

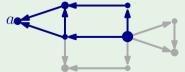
Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

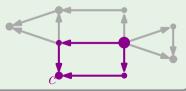
Confluence $C_{i,j}^{\mathcal{X}}$

A confluence $C_{i,j}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

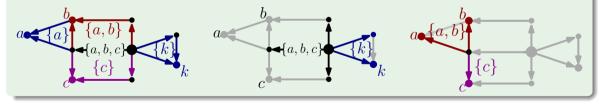
- If edge e lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Labeling can be computed in polynomial-time (by applying Menger's theorem).
- Each label has unique root node at which the mapping of the label must be fixed.
- Outgoing edges are partitioned into edge bags not sharing labels.







- If edge e lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Labeling can be computed in polynomial-time (by applying Menger's theorem).
- Each label has unique root node at which the mapping of the label must be fixed.
- Outgoing edges are partitioned into edge bags not sharing labels.



Extraction Order $G_r^{\mathcal{X}}$

Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,j}^{\mathcal{X}}$

A confluence $C_{i,j}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

Pre-Processing Extraction Orders

- If edge $e \in E_r^{\mathcal{X}}$ lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Outgoing edges are partitioned into edge bags not sharing labels.
- Each label has unique root node at which the mapping of the label must be fixed.

Generation of Linear Program

- If $e \in E_r$ is labeled with $\mathcal{L}_{r,e}^{\mathcal{X}}$, then $|V_S|^{|\mathcal{L}_{r,e}^{\mathcal{X}}|}$ many commodities are considered for e.
- For each edge bag variables are introduced to enumerate all potential label mappings.
- Root nodes of labels 'decide' on the confluence's mapping.

Extraction Order $G_r^{\mathcal{X}}$

Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,j}^{\mathcal{X}}$

A confluence $C_{i,j}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

Pre-Processing Extraction Orders

- If edge $e \in E_r^{\mathcal{X}}$ lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Outgoing edges are partitioned into edge bags not sharing labels.
- Each label has unique root node at which the mapping of the label must be fixed.

Generation of Linear Program

- If $e \in E_r$ is labeled with $\mathcal{L}_{r,e}^{\mathcal{X}}$, then $|V_S|^{|\mathcal{L}_{r,e}^{\mathcal{X}}|}$ many commodities are considered for e.
- For each edge bag variables are introduced to enumerate all potential label mappings.
- Root nodes of labels 'decide' on the confluence's mapping.

Extraction Order $G_r^{\mathcal{X}}$

Rooted acyclic reorientation of the original request graph G_r . $G_r^{\mathcal{X}}$ is **not unique!**

Confluence $C_{i,i}^{\mathcal{X}}$

A confluence $C_{i,i}^{\mathcal{X}}$ from i to j is a pair of (node-)disjoint paths connecting i to j in $G_r^{\mathcal{X}}$.

Pre-Processing Extraction Orders

- If edge $e \in E_r^{\mathcal{X}}$ lies on confluence $C_{i,i}^{\mathcal{X}}$, then it is labeled with the confluence's target i.
- Outgoing edges are partitioned into edge bags not sharing labels.
- Each label has unique root node at which the mapping of the label must be fixed.

Generation of Linear Program

- If $e \in E_r$ is labeled with $\mathcal{L}_{r,e}^{\mathcal{X}}$, then $|V_S|^{|\mathcal{L}_{r,e}^{\mathcal{X}}|}$ many commodities are considered for e.
- For each edge bag variables are introduced to enumerate all potential label mappings.
- Root nodes of labels 'decide' on the confluence's mapping.

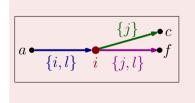
Pre-Processing Extraction Orders

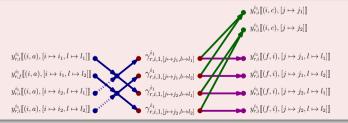
- If edge $e \in E_r^{\mathcal{X}}$ lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Outgoing edges are partitioned into edge bags not sharing labels.
- Each label has unique root node at which the mapping of the label must be fixed.

Generation of Linear Program

- If $e \in E_r$ is labeled with $\mathcal{L}_{r,e}^{\mathcal{X}}$, then $|V_S|^{|\mathcal{L}_{r,e}^{\mathcal{X}}|}$ many commodities are considered for e.
- For each edge bag variables are introduced to enumerate all potential label mappings.
- Root nodes of labels 'decide' on the confluence's mapping.

Stitching Flow Variables via Node Mapping Variables





Pre-Processing Extraction Orders

- If edge $e \in E_r^{\mathcal{X}}$ lies on confluence $C_{i,j}^{\mathcal{X}}$, then it is labeled with the confluence's target j.
- Outgoing edges are partitioned into edge bags not sharing labels.
- Each label has unique root node at which the mapping of the label must be fixed.

Def. Extraction Width $ew_{\mathcal{X}}(G_r^{\mathcal{X}})$

... is the size of the largest edge bag plus one of the extraction order $\text{ew}_{\mathcal{X}}(G_r^{\mathcal{X}})$.

Generation of Linear Program

- If $e \in E_r$ is labeled with $\mathcal{L}_{r,e}^{\mathcal{X}}$, then $|V_S|^{|\mathcal{L}_{r,e}^{\mathcal{X}}|}$ many commodities are considered for e.
- For each edge bag variables are introduced to enumerate all potential label mappings.
- Root nodes of labels 'decide' on the confluence's mapping.

Proof of Decomposability

... via decomposition algorithm. Overall runtime $\mathcal{O}(\text{poly}(|G_S|^{\text{ew}_{\mathcal{X}}(G_r^{\mathcal{X}})} \cdot |G_r|))$.

Novel Decomposable LP Formulation: Takeaways

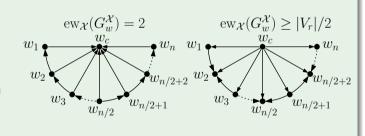
Overview of Construction Request Graph G_r Extraction Order $G_r^{\mathcal{X}}$ Labeling / Extraction Width $ew_{\mathcal{X}}(G_{\epsilon}^{\mathcal{X}})$ LP of size $\mathcal{O}(\operatorname{poly}(|G_S|^{\operatorname{ew}_{\mathcal{X}}(G_r^{\mathcal{X}})}\cdot |G_r|))$ Decomposition Algorithm with runtime $\mathcal{O}(\text{poly}(|G_S|^{\text{ew}_{\mathcal{X}}(G_r^{\mathcal{X}})}\cdot |G_r|))$ Convex Combinations of valid mappings: $\mathcal{D}_r = \{(f_r^k, m_r^k) | f_r^k > 0, m_r^k \in \mathcal{M}_r\}$

- Which graphs have bounded extraction width?
- How to find extraction orders of small width?

- Which graphs have bounded extraction width?
- How to find extraction orders of small width?

Extraction Width: Overview of Results

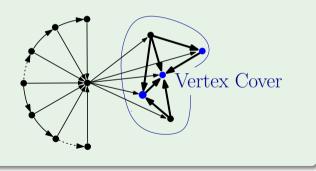
- Extraction width may vary by factor $\Omega(|V_r|)$
- Minimizing extraction width is *NP*-hard (via reduction from Vertex-Cover)
- Cactus graphs (cycles intersect in at most a single node) have
 bounded extraction width



- Which graphs have bounded extraction width?
- How to find extraction orders of small width?

Extraction Width: Overview of Results

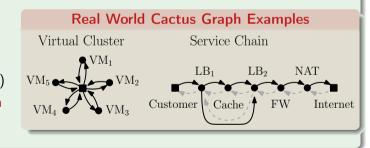
- Extraction width may vary by factor $\Omega(|V_r|)$
- Minimizing extraction width is \mathcal{NP} -hard (via reduction from Vertex-Cover)
- Cactus graphs (cycles intersect in at most a single node) have
 bounded extraction width



- Which graphs have bounded extraction width?
- How to find extraction orders of small width?

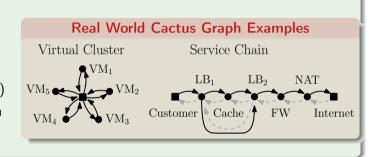
Extraction Width: Overview of Results

- Extraction width may vary by factor $\Omega(|V_r|)$
- Minimizing extraction width is *NP*-hard (via reduction from Vertex-Cover)
- Cactus graphs (cycles intersect in at most a single node) have bounded extraction width



Extraction Width: Overview of Results

- Extraction width may vary by factor $\Omega(|V_r|)$
- Minimizing extraction width is NP-hard (via reduction from Vertex-Cover)
- Cactus graphs (cycles intersect in at most a single node) have bounded extraction width



Can we do substantially better? No!

Computing valid mappings for planar graphs is \mathcal{NP} -complete \Rightarrow FPT algorithms are necessary.

(FPT-)Approximations for offline VNEP based on Randomized Rounding^{2,3}

² Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. In *Proc. IFIP Networking*, 2018d

³ Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452

Profit Variant

- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Profit for request $p_r > 0$.
- Task: Embed subset of requests feasibly maximizing the attained profit.

Profit Variant

- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Profit for request $p_r > 0$.
- Task: Embed subset of requests *feasibly* maximizing the attained profit.

Cost Variant

- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Substrate resource costs $k_S: G_S \to \mathbb{R}_{>0}$.
- Task: Find feasible embeddings for all requests minimizing cost.

Focus: Profit Variant

- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Profit for request $p_r > 0$.
- Task: Embed subset of requests *feasibly* maximizing the attained profit.

Cost Variant

- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Substrate resource costs $k_S: G_S \to \mathbb{R}_{>0}$.
- Task: Find feasible embeddings for all requests minimizing cost.

Focus: Profit Variant

- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Profit for request $p_r > 0$.
- Task: Embed subset of requests *feasibly* maximizing the attained profit.

Cost Variant

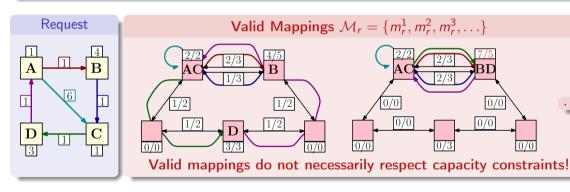
- A set of request $\mathcal{R} = \{r_1, r_2, \ldots\}$ is given.
- Substrate resource costs $k_S: G_S \to \mathbb{R}_{>0}$.
- Task: Find feasible embeddings for all requests minimizing cost.

Combine Single Decomposable LP Formulations while . . .

... enforcing capacity constraints and maximizing the profit. \Rightarrow LP for offline VNEP (profit).

Combine Single Decomposable LP Formulations while . . .

 \dots enforcing capacity constraints and maximizing the profit. \Rightarrow LP for offline VNEP (profit).



Combine Single Decomposable LP Formulations while . . .

... enforcing capacity constraints and maximizing the profit. \Rightarrow LP for offline VNEP (profit).

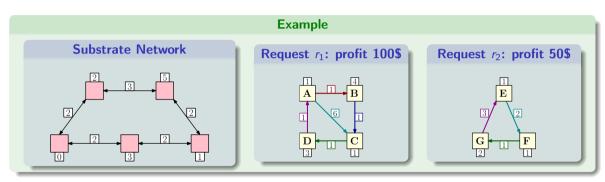
Decomposable LP Formulation allows us to solve Fractional VNEP

$$f_r^k \in \{0,1\}$$
 $\forall r \in \mathcal{R}, m_r^k \in \mathcal{M}_r$ (8)

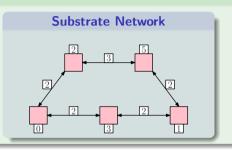
$$\sum_{k \in \mathcal{M}} f_r^k \le 1 \qquad \forall r \in \mathcal{R} \tag{9}$$

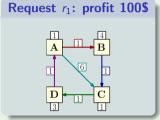
$$\sum_{r \in \mathcal{R}} \sum_{m_r^k \in \mathcal{M}_r} A(m_r^k, x) \cdot f_r^k \le c_S(x) \qquad \forall x \in R_S$$
 (10)

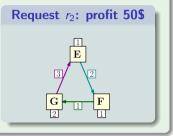
$$\max \sum_{r \in \mathcal{R}} \sum_{m^k \in \mathcal{M}_r} p_r f_r^k \tag{11}$$



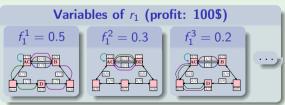
Example

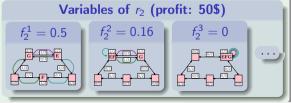




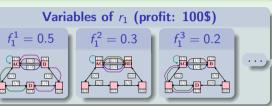


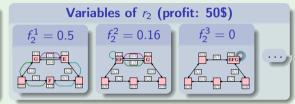
Example Solution to Linear Program: Profit 133\$





Example Solution to Linear Program: Profit 133\$





Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

end

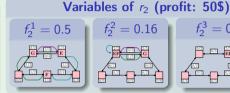
return solution

Example Solution to Linear Program: Profit 133\$

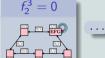
Variables of r_1 (profit: 100\$)

$$f_1^1 = 0.5 \qquad f_1^2 = 0.3$$

$$f_1^3 = 0.2$$



$$f_2^2 = 0.16$$



Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do choose m_r^k with probability f_r^k

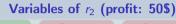
end

return solution

Rounding Outcomes

Iter. Reg. 1 Reg. 2 Profit max Load

Example Solution to Linear Program: Profit 133\$



$$f_1^1 = 0.5$$
 $f_1^2 = 0.3$

$$f_1^3 = 0.2$$

$$f_2^2 = 0.16$$

Variables of r_2 (profit: 50\$)

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do choose m_r^k with probability f_r^k

end

return solution

Rounding Outcomes

Iter. Reg. 1

 $f_2^1 = 0.5$

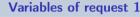
Req. 2

150\$

Profit

max Load 200%

Example Solution to Linear Program: Profit 133\$



$$f_1^1 = 0.5$$
 $f_1^2 = 0.3$

$$f_1^3 = 0.2$$

 $f_2^1 = 0.5$

$$f_2^2 = 0.16$$

Variables of r_2 (profit: 50\$)

Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

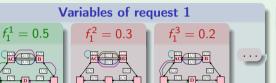
end

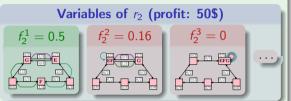
return solution

Rounding Outcomes

Iter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_2^2	150\$	200%
2	$m_1^{ar{3}}$	Ø_	100\$	100%

Example Solution to Linear Program: Profit 133\$





Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure				
Input	: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$			
foreach $r \in \mathcal{R}$ do				
ch	pose m_r^k with probability f_r^k			

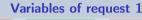
Rounding Outcomes

Iter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_{2}^{2}	150\$	200%
2	$m_1^{ar{3}}$	Ø_	100\$	100%
3	$m_1^{ar{1}}$	m_2^1	150\$	200%

return solution

end

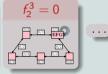
Example Solution to Linear Program: Profit 133\$



$$f_1^1 = 0.5 \qquad f_1^2 = 0.3$$

$$f_1^3 = 0.2$$

Variables of r_2 (profit: 50\$)



Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do choose m_r^k with probability f_r^k

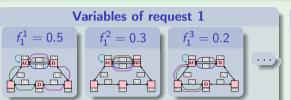
end

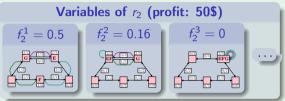
return solution

Rounding Outcomes

Iter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_{2}^{2}	150\$	200%
2	$m_1^{ar{3}}$	\emptyset	100\$	100%
3	$m_1^{ar{1}}$	m_2^1	150\$	200%
4	$m_1^{\bar{2}}$	$m_2^{\overline{1}}$	150\$	200%
	_	_		

Example Solution to Linear Program: Profit 133\$





Idea: Treat weights as probabilities!

Algorithm: RoundingProcedure

Input: Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$ do

choose m_r^k with probability f_r^k

end

return solution

Rounding Outcomes

lter.	Req. 1	Req. 2	Profit	max Load
1	m_1^1	m_{2}^{2}	150\$	200%
2	$m_1^{ar{3}}$	Ø_	100\$	100%
3	m_1^1	m_2^1	150\$	200%
4	m_1^2	m_2^1	150\$	200%
:	:	:	:	:
•	•			•

First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

```
Algorithm: VNEP Approximation (Profit)
// perform preprocessing
compute optimal LP solution
compute \{\mathcal{D}_r\}_{r\in\mathcal{R}} from LP solution
do
    solution \leftarrow RoundingProcedure(\{\mathcal{D}_r\}_{r\in\mathcal{R}})
            solution not (\alpha, \beta, \gamma)-approximate
while
            and rounding tries not exceeded
```

```
Algorithm: RoundingProcedure
Input : Optimal convex combinations \{\mathcal{D}_r\}_{r\in\mathcal{R}}
foreach r \in \mathcal{R} do
    choose m_r^k with probability f_r^k
end
return solution
```

First (FPT-)Approximation Algorithm for VNEP

Main Theorem: (FPT-)Approximation for the Virtual Network Embedding Problem

The Algorithm returns (α, β, γ) -approximate solutions for the of at least an α fraction of the optimal profit, and allocations on nodes and edges within factors of β and γ of the original capacities, respectively, with high probability.

First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit) // perform preprocessing compute optimal LP solution **compute** $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution do solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) (solution *not* (α, β, γ) -approximate and rounding tries not exceeded

Definition of Parameters

$$\begin{split} \alpha = &1/3 & \text{(relative achieved profit)} \\ \beta = &(1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(V_S) \cdot \log(|V_S|)}) & \text{(max node load)} \\ \gamma = &(1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(|E_S|)}) & \text{(max edge load)} \\ \varepsilon = & \max_{r \in \mathcal{R}, x \in R_S} d_{\max}(r, x)/c_S(x) \leq 1 & \text{(max demand/capacity)} \\ \Delta(X) = & \max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x)/d_{\max}(r, x))^2 \begin{pmatrix} \text{sum over } \mathcal{R} \text{ of squared} \\ \max \text{ (total / single) alloc} \end{pmatrix} \end{split}$$

Main Theorem: (FPT-)Approximation for the Virtual Network Embedding Problem

The Algorithm returns (α, β, γ) -approximate solutions for the of at least an α fraction of the optimal profit, and allocations on nodes and edges within factors of β and γ of the original capacities, respectively, with high probability.

First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)

// perform preprocessing compute optimal LP solution compute $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution do

solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) while $\begin{pmatrix} \text{ solution } not \ (\alpha, \beta, \gamma) \text{-approximate} \\ \text{ and rounding tries not exceeded} \end{pmatrix}$

Definition of Parameters

$$\begin{split} \alpha = &1/3 & \text{(relative achieved profit)} \\ \beta = & (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(V_S) \cdot \log(|V_S|)}) & \text{(max node load)} \\ \gamma = & (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(|E_S|)}) & \text{(max edge load)} \\ \varepsilon = & \max_{r \in \mathcal{R}, x \in R_S} d_{\max}(r, x)/c_S(x) \leq 1 & \text{(max demand/capacity)} \\ \Delta(X) = & \max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x)/d_{\max}(r, x))^2 & \text{sum over } \mathcal{R} \text{ of squared } \\ \max(total / single) \text{ alloc} \end{split}$$

Applicability in Practice: Computing β and γ is hard . . .

- Computing β and γ requires enumerating all valid mappings.
- $\beta \in \mathcal{O}(\varepsilon \cdot \sqrt{|\mathcal{R}| \cdot \max_{r \in \mathcal{R}} |V_r| \cdot \log(|V_S|)})$ and $\gamma \in \mathcal{O}(\varepsilon \cdot \sqrt{|\mathcal{R}| \cdot \max_{r \in \mathcal{R}} |E_r| \cdot \log(|E_S|)})$

First (FPT-)Approximation Algorithm for VNEP

Randomized Rounding Approximation

Algorithm: VNEP Approximation (Profit)

// perform preprocessing compute optimal LP solution **compute** $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution

do solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) solution *not* (α, β, γ) -approximate and rounding tries not exceeded

Definition of Parameters

$$\begin{split} \alpha = &1/3 & \text{(relative achieved profit)} \\ \beta = & (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(V_S) \cdot \log(|V_S|)}) & \text{(max node load)} \end{split}$$

$$\begin{split} \gamma = & (1 + \varepsilon \cdot \sqrt{2 \cdot \Delta(E_S) \cdot \log(|E_S|)}) \quad \text{(max edge load)} \\ \varepsilon = & \max_{r \in \mathcal{R}. x \in R_S} d_{\max}(r, x) / c_S(x) \leq 1 \quad \text{(max demand/capacity)} \end{split}$$

$$\Delta(X) = \max_{x \in X} \sum_{r \in \mathcal{R}} (A_{\max}(r, x) / d_{\max}(r, x))^2 \begin{pmatrix} \text{sum over } \mathcal{R} \text{ of squared} \\ \max \text{ (total / single) alloc} \end{pmatrix}$$

Applicability in Practice: Computing β and γ is hard . . .

- Computing β and γ requires enumerating all valid mappings.
- $\beta \in \mathcal{O}(\varepsilon \cdot \sqrt{|\mathcal{R}| \cdot \max_{r \in \mathcal{R}} |V_r| \cdot \log(|V_S|)})$ and $\gamma \in \mathcal{O}(\varepsilon \cdot \sqrt{|\mathcal{R}| \cdot \max_{r \in \mathcal{R}} |E_r| \cdot \log(|E_S|)})$

Consider Heuristics

Return best solution found within X iterations.

Derived Heuristics

Randomized Rounding Approximation

```
Algorithm: VNEP Approximation
// perform preprocessing
compute optimal LP solution
compute \{\mathcal{D}_r\}_{r\in\mathcal{R}} from LP solution
do
    solution \leftarrow RoundingProcedure(\{\mathcal{D}_r\}_{r\in\mathcal{R}})
            solution not (\alpha, \beta, \gamma)-approximate
while
            and rounding tries not exceeded
```

Derived Heuristics

Heuristic Idea: Fixed #Iterations

Algorithm: Heuristic Adaptation

// perform preprocessing compute optimal LP solution compute $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution do

| solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r \in \mathcal{R}}$) while rounding tries not exceeded

return best solution

Vanilla Rounding: RR_{MinLoad}

- still may exceed capacities
- return solution with least resource violations (among those: highest profit)

Derived Heuristics

Heuristic Idea: Fixed #Iterations

Algorithm: Heuristic Adaptation

// perform preprocessing compute optimal LP solution compute $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ from LP solution do

solution \leftarrow RoundingProcedure($\{\mathcal{D}_r\}_{r\in\mathcal{R}}$) while rounding tries not exceeded

return best solution

Algorithm: RoundingProcedure (Heuristic)

Input : Optimal convex combinations $\{\mathcal{D}_r\}_{r\in\mathcal{R}}$ foreach $r \in \mathcal{R}$, do

choose m_r^k with probability f_r^k discard mapping if capacity violated end

return solution

Vanilla Rounding: RR_{MinLoad}

- still may exceed capacities
- return solution with least resource violations (among those: highest profit)

Heuristic Rounding: RR_{Heuristic}

- RoundingProcedure: discard chosen mappings exceeding capacities
- always yields feasible solutions
- return solution with highest profit

Computational Evaluation^{4,5}

⁴ Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. In *Proc. IFIP Networking*, 2018d

⁵ Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. Technical report, March 2018b. URL http://arxiv.org/abs/1803.03622

Computational Evaluation: Setup

Substrate: GEANT

Code available: https://github.com/vnep-approx/evaluation-ifip-networking-2018

Generation Parameters for 1,500 instances

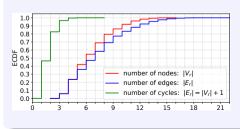
Number of requests: 40, 60, 80, 100

Node-Resource Factor (NRF): 0.2, 0.4, 0.6, 0.8, 1.0

Edge-Resource Factor (ERF): 0.25, 0.5, 1.0, 2.0, 4.0

Instances per combination: 15

Requests: Synthetic Cactus Requests



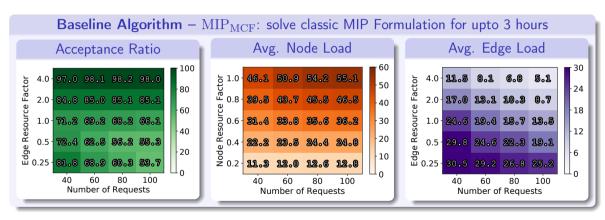
embedding resource costs

Node mapping restriction:
1/4 substrate nodes

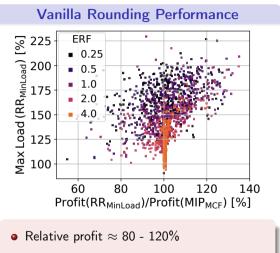
Demands: exp. dist.
according to NRF/ERF

Profit: minimum

Computational Evaluation: Setup

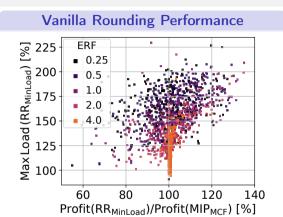


Computational Evaluation: Heuristic Performance

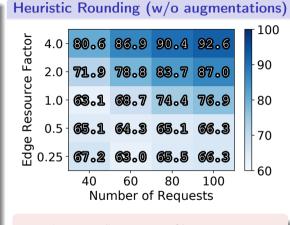


Resource augmentations mostly < 200%

Computational Evaluation: Heuristic Performance

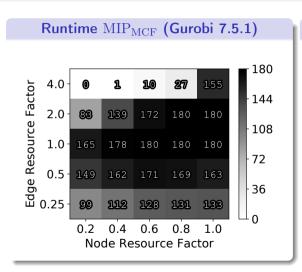


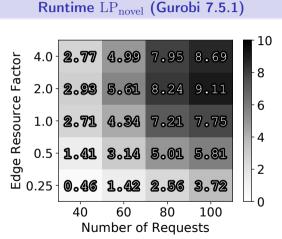
- Relative profit $\approx 80 120\%$
- Resource augmentations mostly < 200%



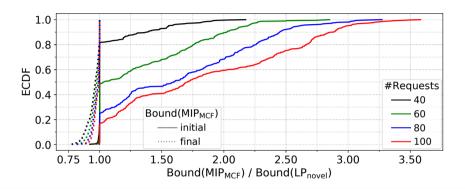
- Relative profit $\approx 65 90\%$
- min: 22.5% / mean: 73.8% / max: 101%

Computational Evaluation: Runtimes





Computational Evaluation: Formulation Strengths



- Root relaxation values upto 3.5 times better than when using the MCF LP.
- Final MIP bounds improve novel LP bounds by at most a factor of 1.3.

Conclusion

Summary

Complexity: Computing valid mappings is \mathcal{NP} -complete for planar graphs.

(FPT-)Linear Programs: Valid mappings can be computed in FPT using novel LP.

(FPT-)Approximations: For offline VNEP (profit & cost) based on randomized rounding.

Evaluation:

- Solutions quite good even without resource augmentations.
- Novel formulation is much stronger.
- Runtime becomes an issue.

Conclusion

Summary

Complexity: Computing valid mappings is \mathcal{NP} -complete for planar graphs.

(FPT-)Linear Programs: Valid mappings can be computed in FPT using novel LP.

(FPT-)Approximations: For offline VNEP (profit & cost) based on randomized rounding.

Evaluation: • Solutions quite good even without resource augmentations.

Novel formulation is much stronger.

Runtime becomes an issue.

Future Work

Runtime: Column generation could be readily applied, need to try it.

Heuristics: Many possibilities, also for online problem.

Extraction width: Can improve the formulation further (\rightarrow tree-width).

Online Approximation: Need to improve rounding scheme (using e.g. Bansal et al. [2011]).

Thank You!

Questions?

References I

- Edoardo Amaldi, Stefano Coniglio, Arie M.C.A. Koster, and Martin Tieves. On the computational complexity of the virtual network embedding problem. *Electronic Notes in Discrete Mathematics*, 52:213 220, 2016.
- David G. Andersen. Theoretical approaches to node assignment. [Online]. Available: http://repository.cmu.edu/compsci/86/, December 2002.
- Nikhil Bansal, Kang-Won Lee, Viswanath Nagarajan, and Murtaza Zafer. Minimum congestion mapping in a cloud. In *Proc. ACM PODC*, 2011.
- N. Chowdhury, M.R. Rahman, and R. Boutaba. Virtual network embedding with coordinated node and link mapping. In *Proc. IEEE INFOCOM*, 2009.
- Guy Even, Matthias Rost, and Stefan Schmid. An approximation algorithm for path computation and function placement in sdns. In Jukka Suomela, editor, *Structural Information and Communication Complexity*. Springer, 2016.

References II

- Richard M Karp. Reducibility among combinatorial problems. In *Complexity of computer computations*, pages 85–103. Springer, 1972.
- Jan Kratochvíl. A special planar satisfiability problem and a consequence of its np-completeness. *Discrete Applied Mathematics*, 52(3), 1994.
- Matthias Rost and Stefan Schmid. (FPT-)Approximation Algorithms for the Virtual Network Embedding Problem. Technical report, March 2018a. URL http://arxiv.org/abs/1803.04452.
- Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. Technical report, March 2018b. URL http://arxiv.org/abs/1803.03622.
- Matthias Rost and Stefan Schmid. Charting the Complexity Landscape of Virtual Network Embeddings. In *Proc. IFIP Networking*, 2018c.
- Matthias Rost and Stefan Schmid. Virtual Network Embedding Approximations: Leveraging Randomized Rounding. In *Proc. IFIP Networking*, 2018d.