
Stefan Schmid (University of Vienna)

Towards Self-Driving Networks: Automated What-if Analysis
and Synthesis for Dependable Networks

Communication Networks
• Critical infrastructure of digital

society
– Popularity of datacentric applications:

health, business, entertainment, social
networking, AI/ML, etc.

– Evident during ongoing pandemic:
online learning, online conferences, etc.

• Traffic is currently growing
explosively
– Especially in, to and, from datacenters

Increasingly stringent dependability requirements!

Facebook datacenter

1

Requirements vs Reality

… even 911 services affected!… 1000s passengers stranded…Entire countries disconnected…

Outages simply due to human error! (No attacks...)
2

Even Tech-Savvy Companies Struggle

We discovered a misconfiguration on this pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck” volumes
and added more requests to the re-mirroring storm.

Service outage was due to a series of internal network events that corrupted
router data tables.

Experienced a network connectivity issue […] interrupted the airline's
flight departures, airport processing and reservations systems

Also here: due to human errors.
3

No Surprise: Networks Are Complex

Un-evolved best practices
(tcpdump, traceroute - from the 1990s)

500-router network: typically
>1 million lines of configuration

Manual, device-centric
network configurations

(CLI, LANmanager)

Complex, leaky, low-level interfaces
(VLANs, Spanning Tree, Routing)

4

Example: BGP in
Datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

Da
ta

ce
nt

er

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

5

Example: BGP in
Datacenter

Da
ta

ce
nt

er

Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 5

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that
should be globally reachable.

Cluster with services that should
be accessible only internally.

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
Da

ta
ce

nt
er

Internet
X and Y announce to
Internet what is from

G* (prefix).
X and Y block what is

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 5

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
Da

ta
ce

nt
er

Internet
X and Y announce to
Internet what is from

G* (prefix).
X and Y block what is

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 5

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

Particularly Challenging for Humans:
Reasoning about Policy-Compliance under Failures

Example: BGP in
Datacenter
Da

ta
ce

nt
er

Internet
X and Y announce to
Internet what is from

G* (prefix).
X and Y block what is

from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 5

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F
If link (G,X) fails and traffic from G is rerouted via Y
and C to X: X announces (does not block) G and H

as it comes from C. (Note: BGP.)

We’re Falling Behind the Curve:
Increasing Complexity, Software from the 90s

• Anecdote Wall Street bank: outage of a datacenter
• Lost revenue measured in 1 mio$/min

• Quickly, an emergency team was assembled with
experts in compute, storage and networking:

• The compute team: reams of logs, written experiments to
reproduce and isolate the error

• The storage team: system logs were affected, workaround
programs.

• “All the networking team had were two tools invented
over twenty years ago to merely test end-to-end
connectivity. Neither tool could reveal problems with the
switches, the congestion experienced.”

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

There is Hope: Software-Defined Networks
• Automation and abstraction
• Directly program routing behavior (i.e., push forwarding tables)
• Open interfaces: „the Linux of networking“

Network policy
defined programatically

7

Remark (for the Network Experts…)
• Networks currently become programmable in the

control plane and the data plane
– Control plane: network-wide algorithms (e.g., routing)
– Data plane: router/switch level algorithms (e.g.,

forwarding, filtering)

• Motivation in both cases: software usually trumps
hardware in terms of innovation speed

• Software can be fast:
– Our Tofino switch: operates at 6.5 Tb/s
– Order of magnitude faster than our faculty’s Internet

connection: can switch entire Netflix catalogue in 20sec
– While running a 4000 line program on any packet...
– .. and not being more costly or consume more power

Example: VxLAN

8

Remark (for the Network Experts…)
• Networks currently become programmable in the

control plane and the data plane
– Control plane: network-wide algorithms (e.g., routing)
– Data plane: router/switch level algorithms (e.g.,

forwarding, filtering)

• Motivation in both cases: software usually trumps
hardware in terms of innovation speed

• Software can be fast:
– Our Tofino switch: operates at 6.5 Tb/s
– Order of magnitude faster than our faculty’s Internet

connection: can switch entire Netflix catalogue in 20sec
– While running a 4000 line program on any packet...
– .. and not being more costly or consume more power

Example: VxLAN

... and: the automation
trend is not limited to SDN.

Why Innovation Was Slow

Switch OS

Driver

OSPF BGP etc.

© Nick McKeown

Needed steps to add VxLAN:
• Add control of VxLAN protcol
• Change driver to add/remove entries

into VxLAN table in switch ASIC
• Update ASIC

At heart: devices running an OS
(e.g. based on Linux or UNIX)

On top: user space processes
implementing control

Below: driver communicating to add and
delete entries into a forwarding chip

VXLAN

Doable in weeks!

Doable in weeks!

Took 4 years to add
feature to ASIC!

Now Networking is Catching Up

Computers

Similar to other IT trends: can now write high-level program and
compile it to domain specific processor.

CPU

Java
Compiler

Graphics

GPU

OpenCL
Compiler

DSP

Matlab
Compiler
Matlab
Compiler

Machine
Learning

TPU

TensorFlow

Compiler

Networking

PISA/Tofino

P4
Compiler

Signal
Processing

© Nick McKeown

Roadmap

• A Static Problem: Policy Compliance
Under Failures
– AalWiNes: Fast Automated What-if Analysis

for Networks (INFOCOM 2018, ACM CoNEXT 2018,
ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015,

ICALP 2018, PERFORMANCE 2021)

Background: Rerouting Under Failures

Two approaches to react to link failures
• In the control plane: just re-invoke (shortest path)

routing protocol
– Always re-establishes connectivity but slow

• In the data plane: pre-defined local failover rules
– Orders of magnitude faster

v1 v2

v3 v4

Our focus!

11

Restoration in control plane takes time -> packet drops!

2021-02-24 19(c) Marco Chiesa, video shot taken from “Lemmings”
designed and developed by DMA Design

routing
restoration

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

13

How (MPLS) Networks Work

Default routing of
two flows

• Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

13

flow 2

How (MPLS) Networks Work

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

13

Default routing of
two flows

• Forwarding based on top label of label stack
push swap swap pop

pop

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

14

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

14

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal

swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30:
route around (v2,v3)

14

Fast Reroute Around 1 Failure

Default routing of
two flows

• Forwarding based on top label of label stack (in packet header)

12

22

10
20

11
21

Pop
Normal

swap

• For failover: push and pop label

If (v2,v3) failed,
push 30 and

forward to v6.

31|11
31|21

What about multiple link failures?

2 Failures: Push Recursively
v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30:
route around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

Push 30

Push 40

10
20

11
21

15pop pop

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

15

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

15

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Original Routing

One failure: push 30:
route around (v2,v3)

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Two failures:
first push 30: route

around (v2,v3)

Push recursively 40:
route around (v2,v6)

10
20

11
21

15

But masking links one-by-
one can be inefficient:

(v7,v3,v8) could be shortcut
to (v7,v8).

2 Failures: Push Recursively

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size
may grow arbitrarily!

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and

conditional failover rules.

16

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

16

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Non-reachability: Is it ensured that

traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

16

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint ensurance: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via
Iceland (expensive!).

16

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS

16

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures =
(𝑛𝑛𝑘𝑘) possibilities

16

Responsibilities of a Sysadmin
Sysadmin responsible for:
• Reachability: Can traffic from ingress

port A reach egress port B?
• Loop-freedom: Are the routes implied

by the forwarding rules loop-free?
• Policy: Is it ensured that traffic from A

to B never goes via C?
• Waypoint enforcement: Is it ensured

that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C
E.g. IDS

… and everything even under multiple failures?!

k failures =
(𝑛𝑛𝑘𝑘) possibilities

16
Generalization: service chaining!

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Approach: Automation and Formal Methods

17

Approach: Automation and Formal Methods

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

17

Use cases: Sysadmin issues queries
to test certain properties, or do it
on a regular basis automatically!

Router configurations
(Cisco, Juniper, etc.)

Pushdown Automaton and
Prefix Rewriting Systems

AalWiNes

31
Online demo: https://demo.aalwines.cs.aau.dk/
Source code: https://github.com/DEIS-Tools/AalWiNes

Query:
regular

expression

Witness Dozens of
networks

18

https://demo.aalwines.cs.aau.dk/
https://github.com/DEIS-Tools/AalWiNes

YES
(Polynomial time!)

2 failures

Example
Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: 3 regular expressions
(initial and final header, route)
k=2 [] s1 >> s5 >> s7 []

19

Why AalWiNes is Fast (Polytime):
Automata Theory

Julius Richard Büchi

1924-1984

Swiss logician

• For fast verification, we can use the result by Büchi: the
set of all reachable configurations of a pushdown
automaton a is regular set

• We hence simply use Nondeterministic Finite Automata
(NFAs) when reasoning about the pushdown automata

• The resulting regular operations are all polynomial time

20

AalWiNes

Part 1: Parses query
and constructs Push-
Down System (PDS)
• In Python 3

Part 2: Reachability
analysis of
constructed PDS
• Using Moped tool

21

Resp. our new weighted extension and
much faster implementation in C++.

• Network: a 7-tuple

Network Model

Nodes

Links

Incoming
interfaces

Outgoing
interfaces

Set of labels in
packet header

22

Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is: and

Network Model

Interface
function

22

• Network: a 7-tuple

• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers,
outgoing interfaces together with modified headers.

Network Model

Routing
function

22

out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing

• Example: routing (in)finite sequence of tuples

Node
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these
links are down.

23

v1

h1

v2

h2 h3

in1 in2

Case Study: NORDUnet

• Regional service provider
• 24 MPLS routers geographically

distributed across several countries
• Running Juniper operating system
• More than 30,000 labels
• Ca. 1 million forwarding rules in our

model
• For most queries of operators:

answer within seconds

24

Generalizes to Quantitative Properties
• AalWiNes can also be used to test quantitative properties

• If query is satisfied, find trace that minimizes:
• Hops
• Latency (based on a latency value per link)
• Tunnels

• Approach: weighted pushdown automata
• Fast poly-time algorithms exist also for weighted pushdown automata (area of dataflow analysis)
• Indeed, experiments show: acceptable overhead of weighted (quantitative) analysis

26

Transitions annotated
with weights.

Roadmap

• A Static Problem: Policy Compliance
Under Failures
– AalWiNes: Fast Automated What-if Analysis

for Networks (INFOCOM 2018, ACM CoNEXT 2018,
ACM CoNEXT 2019, TACAS 2021)

• A Dynamic Problem: Scheduling
Consistent Network Updates
– Latte and quantitative extensions (PODC 2015,

ICALP 2018, PERFORMANCE 2021)

More Adaptable Networks

• Software-defined networking also enables networks to be more adaptable

• Attractive for:
– Fine-grained traffic engineering (e.g., at Google)
– Accounting for changes in the demand

(spatio-temporal structure)
– Security policy changes
– Service relocation
– Maintenance work
– Link/node failures
– …

5

untrusted
hosts

trusted
hosts

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

In NFV: Not necessarily deployed at edge!

Introduces a New Challenge: Consistent Update

28

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Introduces a New Challenge: Consistent Update

28

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted
hosts

trusted
hosts

Introduces a New Challenge: Consistent Update

28

Question: How To Update Loop-Free?

insecure
Internet

secure
zone

29

In 2 Rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Background: How To Enforce Waypoint?

insecure
Internet

secure
zone

30

In 2 Rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

Loop-Free and Waypoint?
3 Rounds!

insecure
Internet

secure
zone

insecure
Internet

secure
zone

R1:

R2:

insecure
Internet

secure
zoneR3:

1

2

2

1 1

1

1

w

s t

u v

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Flow 1

w

s t

u v

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Flow 1
Flow 2Can you find an update schedule?

w

s t

u v

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Flow 1
Flow 2Can you find an update schedule?

w

s t

u v

e.g., cannot update
red: congestion! Need
to update blue first!

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

Round 1: prepare

No flow! No flow!

No flow!

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

Round 2

flow! No flow!

No flow!

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 3

Capacity 2: ok!

3

No flow!

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

Capacity 2: ok!

3

4

4. blue@w

Accounting for Quantitative Aspects

34

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

3

4

4. blue@w

Note: this (non-trivial)
example was just a DAG,

without loops!

Accounting for Quantitative Aspects

34

• per-destination

• shortest paths DAGs

• equal-split

Latte: Shortest Consistent Update Schedules
• A first approach: fast updates by accounting for temporal properties

– E.g., different packet types have different processing times
– Requires a fixed update order (e.g., produced by NetSynth)
– Limited to loop-freedom and waypoint enforcement, and scheduling latency (no congestion)

• Based on petri nets: powerful modeling language for distributed systems
– Configurations: tokens located at places

• Our extension: Timed-Arc Colored Petri Nets (TACPN)
– Tokens also contain: color information (e.g., different packet types) and time information (e.g.,

modeling age)
– Places and input arcs have time constraints for each color

35

• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to inject packets:1

Initially: token at
this place

Jump to place S0 and
generate packet of

arbitrary type

Packets can be of
different types

(timings): colors

35

• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to model switches:2
If token up here:

packets go old path

If token down here: switch
updated to new path

36

• per-destination

• shortest paths DAGs

• equal-split

Example: Encoding Network Updates in TACPNs

Gadget to model switches:2
If token up here:

packets go old path

If token down here: switch
updated to new path

Different timing
constraints for packets

36

Example: Encoding Network Updates in TACPNs
Gadget to model switch update:
How to change between initial and final switch configuration

3

Starting here, the update can
take time between min and max

37

Example: Encoding Network Updates in TACPNs

Connecting the pieces: initialization of update sequence for all n switches4

After updating Switch S1 (delay C1),
go to Switch S2, etc.

38

Analysis

The constructed nets can be analyzed efficiently via
their unfolding into existing timed-arc Petri nets.

Preserves bisimilarity!

39

Improved Latency of Update Schedules

• Network topologies from the Topology Zoo
• Experiments run on a 64-bit Ubuntu 18.04 laptop

40

Improved Latency of Update Schedules

Up to route length 16, optimal update
time can be computed.

Compared to conservative delays as produced
by NetSynth: over 90% improvement.

• Network topologies from the Topology Zoo
• Experiments run on a 64-bit Ubuntu 18.04 laptop

Too many updates can be performed
concurrently: could be tackled with

static analysis (future work).

40

Support Beyond „Simple Solutions“

s dv1 v2 v3

• No loop-free solution with waypoint: cannot update any edge
• But could first update s to v2, then v1,v2,v3, and finally s again to v3

45

Conclusion
• Finally: networks are moving from manual to more automated operations
• Supported by emerging programmable networks and their solid theoretical

foundations and languages
• Automata-theoretical approaches can be used to perform fast what-if

analysis of the policy compliance (e.g., P-Rex, AalWiNes, etc.)
• More adaptive network operations further require tools for consistent

network update scheduling (e.g., Latte, QSynth)

Efficient solutions to automatically verify and improve (synthesize) network
configurations perhaps #1 open research challenge in networking.
• E.g., control plane verification and hybrid, complex network functions

(IDS), quantitative aspects, performance aspects and scalability…

Hence looking for collaborations.
46

Further Reading
The AalWines project
https://aalwines.cs.aau.dk/ Netverify.fun

TAPAAL.net

47

• per-destination

• shortest paths DAGs

• equal-split

References
Resilient Capacity-Aware Routing
Stefan Schmid, Nicolas Schnepf and Jiri Srba.
27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), Virtual
Conference, March 2021.
AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona, Spain,
December 2020.
Latte: Improving the Latency of Transiently Consistent Network Update Schedules
Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE) and
ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion/Crete,
Greece, December 2018.
Congestion-Free Rerouting of Flows on DAGs
Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.
45th International Colloquium on Automata, Languages, and Programming (ICALP), Prague, Czech Republic, July 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.

https://www.univie.ac.at/ct/stefan/tacas21.pdf
https://www.univie.ac.at/ct/stefan/conext20.pdf
https://www.univie.ac.at/ct/stefan/perf20latte.pdf
https://www.univie.ac.at/ct/stefan/conext18.pdf
https://www.univie.ac.at/ct/stefan/icalp18.pdf
https://www.univie.ac.at/ct/stefan/infocom18prefixnet.pdf

Questions?

	Towards Self-Driving Networks: Automated What-if Analysis �and Synthesis for Dependable Networks
	Communication Networks
	Requirements vs Reality
	Even Tech-Savvy Companies Struggle
	No Surprise: Networks Are Complex
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	Particularly Challenging for Humans: �Reasoning about Policy-Compliance under Failures
	We’re Falling Behind the Curve:�Increasing Complexity, Software from the 90s �
	There is Hope: Software-Defined Networks�
	Remark (for the Network Experts…)
	Remark (for the Network Experts…)
	Why Innovation Was Slow
	Now Networking is Catching Up
	Roadmap
	Background: Rerouting Under Failures
	Restoration in control plane takes time -> packet drops!
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	How (MPLS) Networks Work
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	Fast Reroute Around 1 Failure
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	2 Failures: Push Recursively
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Responsibilities of a Sysadmin
	Approach: Automation and Formal Methods
	Approach: Automation and Formal Methods
	AalWiNes
	Example
	Why AalWiNes is Fast (Polytime):�Automata Theory
	AalWiNes
	Network Model
	Network Model
	Network Model
	Routing
	Case Study: NORDUnet
	Generalizes to Quantitative Properties
	Roadmap
	More Adaptable Networks
	Introduces a New Challenge: Consistent Update
	Introduces a New Challenge: Consistent Update
	Introduces a New Challenge: Consistent Update
	Question: How To Update Loop-Free?
	In 2 Rounds!
	Background: How To Enforce Waypoint?
	In 2 Rounds!
	Loop-Free and Waypoint?�3 Rounds!
	Slide Number 66
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Accounting for Quantitative Aspects
	Latte: Shortest Consistent Update Schedules
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Example: Encoding Network Updates in TACPNs
	Analysis
	Improved Latency of Update Schedules
	Improved Latency of Update Schedules
	Support Beyond „Simple Solutions“
	Conclusion
	Further Reading
	References
	Questions?

