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Communication Networks

Critical infrastructure of digital society
• Popularity of datacentric applications: health, 

business, entertainment, social networking, 
AI/ML, etc.

• Evident during ongoing pandemic: online 
learning, online conferences, etc.

• Much traffic especially to, from, and inside
datacenters

Increasingly stringent dependability requirements!

Facebook datacenter
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Restoration in control plane takes time -> packet drops!

2021-09-02 4Video shot taken from “Lemmings” 
designed and developed by DMA Design

routing 
restoration



The FRR Problem

Phase 1: Rule installation
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The FRR Problem

Phase 1: Rule installation Phase 2: Failures and routing

Without coordination!if x fwd to y 13



The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

Default route
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The FRR Problem

• Pre-installed local-fast failover rules
– Can depend on local failures and, e.g., destination, 

inport, source

• At runtime, rules are just ”executed”

s

t

Advantage: no need to wait 
for reconvergence.

With global 
knowledge: simpler!

Credits: Klaus-Tycho Förster 14



What information is locally available in a 
switch for handling a packet?

Credits: Marco Chiesa 15



Locally Available Information:
The Forwarding Table: Match -> Action

Forwarding 
table

match action

Credits: Marco Chiesa 15



Locally Available Information:
The Packet Header

Forwarding 
table

match actionheader

Credits: Marco Chiesa 15



Locally Available Information:
The Inport of the Received Packet

Forwarding 
table

match actionheader

int1

int0

int3

int2

Credits: Marco Chiesa 15



Forwarding 
table

match actionheader

Locally Available Information:
The Outgoing Port Depends on Failed Links

int1

int0

int3

int2

Credits: Marco Chiesa 15



Raises an Interesting Question

Can we pre-install local fast failover rules 
which ensure reachability under multiple 

failures? In particular: How many failures can 
be tolerated by static forwarding tables?
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Resilience Criteria

Ideal resilience

Given a k-connected graphs, we
can tolerate any k-1 link failures.

Perfect resilience

Any source s can always reach any
destination t as long as the
unterlying network is physically
connected.

Can this be achieved? Assume undirected link failures.
20
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Perfect resilience is impossible to 
achieve in general.

Resilience Criteria
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Relevant Neighbors

38

• Routing table of node 𝑖𝑖: matches in-ports of 𝑖𝑖 to 
out-ports of 𝑖𝑖

– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!

– Without local failures: just 𝑣𝑣2, 𝑣𝑣3 for i, since 
𝑣𝑣1 does not give extra connectivity

– With additional failures 𝑣𝑣1 becomes 
relevant, since 𝑣𝑣1 might be only choice to 
reach destination 𝑡𝑡

• Note: 𝑣𝑣1 is unaware of these non-incident failures!
• Same for 𝑣𝑣3 



• Routing table of node 𝑖𝑖: matches in-ports of 𝑖𝑖 to 
out-ports of 𝑖𝑖

– ... depending on the incident failures

• But not all neighbors are relevant: only if
potentially required to reach destination!

– Without local failures: just 𝑣𝑣2, 𝑣𝑣3 for i, since 
𝑣𝑣1 does not give extra connectivity

– With additional failures 𝑣𝑣1 becomes 
relevant, since 𝑣𝑣1 might be only choice to 
reach destination 𝑡𝑡

• Note: 𝑣𝑣1 is unaware of these non-incident failures!
• Same for 𝑣𝑣3 

High-level definition of relevant: From the local view-point of the node 𝑖𝑖, a relevant neighbor 
might be only neighbor to reach destination (without taking a detour over a current neighbor).

Relevant Neighbors
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How to Achieve Perfect Resilience?

• Necessary: need to try all 
relevant neighbors
– Here, if local link to 𝑣𝑣2 broken: 
𝑣𝑣1 and 𝑣𝑣3

• That is, if packet
– comes from 𝑣𝑣3: eventually try 𝑣𝑣1
– comes from 𝑣𝑣1: eventually try 𝑣𝑣3
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Impossibility: On Planar Graphs
Some observations: 
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation
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Impossibility: On Planar Graphs

8

All neighbors of all nodes are
relevant (even without failures).

Considered node 1 will not 
see any local failures.

Some observations: 
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Idea of the counter example:

So we must fix a 
permutation for node 1. 41



Impossibility: On Planar Graphs

Proof idea, with three cases: 
• If the dashed links fail (non-local to 

node 1), in any forwarding pattern, 
packets will be stuck in one of the blue 
loops…

• … even though there is at least one 
remaining path to the target

Some observations: 
• Additional failures only add relevant neighbors to nodes
• Any node of degree 2 of G after failures must forward packets with incoming port p to port p'
• If all neighbors are relevant, the forwarding function of a node must be a cyclic permutation

Go through all possible 
permutations @1 and give

counter example. 42



Impossibility: On Planar Graphs

For node 1: 
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet arrives from 2, 
due to cyclic permutation, it can only be forwarded to either 
3 or 4. Leads to loops in scenarios (b) (4 goes to 5, 2 can only 
go to 4) and (a) (3 goes to 5, 2 can only go to 3), respectively.

Arriving on 
inport 5, 

forwarded
to 2. 
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Impossibility: On Planar Graphs

For node 1: 
5->2 implies
(5,2,3,4) (b)
(5,2,4,3) (a)

Possible cyclic permutations: when a packet then 
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Link needed: 
otherwise 5 would

not be relevant!



A Pity: Planar Graphs Are Important

• Internet Topology Zoo and 
Rocketfuel topologies

– 88% of the graphs are planar
– However:

• Almost a third (32%) belong to the family 
of cactus graphs

• Roughly half of the graphs (49%) are 
outerplanar

• … and they work 
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Where Can Perfect Resilience Be Achieved?

For example on outerplanar graphs:
• Via geometric routing, well studied in sensor networks etc.
• Embed graph in the plane s.t. all nodes are on the outer face

– Note: If a link l belongs to the outer face of a planar graph G, it also belongs to the outer face for all 
subgraphs of G

• Apply right-hand rule to forwarding (skipping failures)
– Ensures packets use only the links of the outer face and do not change the direction despite failures

• Strategy traverses all nodes on the outer face

• Also works for any graph which is outerplanar without the source (e.g., K4)
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Some Observations
• 𝐾𝐾_5, 𝐾𝐾_3,3: no perfect resilience

• Perfect resiliency on graph G -> any subgraph G‘ of G also 
allows for perfect resiliency
– Idea: Take routing on G, fail edges to create G‘, 

routing must still work 

• Contraction works as well, by a simulation argument
– A bit technical

• Combined: Perfect resilience on graph G -> any minor G‘ 
of G as well
– But since 𝐾𝐾_5, 𝐾𝐾_3,3 not: non-planar graphs not

perfectly resilient

u v

uv
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What we know about perfect resilience

Possible:
• On all outerplanar graphs [right-hand rule]
• On every graph that is outerplanar without the 

destination (e.g. non-outerplanar planar 𝐾𝐾_4 )

Impossible:
• On some planar graphs
• Every non-planar graph
• Perfect resilience must hold on minors

8

u v uv

Foerster et al. On the Feasibility of Perfect Resilience 
with Local Fast Failover. SIAM Symposium on Algorithmic 
Principles of Computer Systems (APOCS), 2021.



• per-destination

• shortest paths DAGs

• equal-split

A Recent Survey:
A Survey of Fast-Recovery Mechanisms in Packet-Switched Networks
Marco Chiesa, Andrzej Kamisinski, Jacek Rak, Gabor Retvari, and Stefan Schmid.
IEEE Communications Surveys and Tutorials (COMST), 2021.

Thank you!

https://www.univie.ac.at/ct/stefan/frr-survey.pdf
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Questions?
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