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Benefit 1: Decoupling! Control plane can evolve 
independently of data plane: innovation at 
speed of software  development.  

Benefit 2: Simpler network management 
through logically centralized view: network 
management is an inherently non-local task. 
Simplified formal verification.  

Flexible Distributed Systems: Programmable... 
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Benefit 3: Standard API OpenFlow is about generalization! 
• Generalize devices (L2-L4: switches, routers, middleboxes) 
• Generalize routing and traffic engineering (not only 

destination-based) 
• Generalize flow-installation: coarse-grained rules and 

wildcards okay, proactive vs reactive installation 
• Provide general and logical network views to the 

application / tenant 

Flexible Distributed Systems: Programmable... 



 

❏ Virtualization allows to abstract: 
❏ Hardware: compute, memory, storage, network resources 

❏ Or even entire distributed systems (including OS) 

 

❏ Decouples the application from the substrate 

 

❏ Introduces flexibilities for resource allocation 
❏ Improved resource sharing (esp. in commercial clouds) 

❏ Seamless migration 
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Flexible Distributed Systems: ... and Virtualized 



Need to virtualize 
the entire system: 
otherwise risk of 
interference on 
other resources 
(network, CPU, 
memory, I/O) : 
unredictable 
performance 

Challenges 
 

❏ Great…, but: SDN and virtualization are enablers, not 
solutions! What to do with them and how? 

 

❏ Example: Virtualization for better resource sharing 
❏ Many flexibilities to embed virtual machines 

❏ But: often not enough to provide the expected performance! 



App 1: Mobile Service App 2: Big Data Analytics 

Realization and Embedding 

Virtualization and Isolation 

Quality-of-Service 

& Resource 

Requirements 

Computational 

& Storage 

Requirements 

 

For predictable performance: full virtualization! 



Many Algorithmic Challenges 
 

❏ How to maximize the resource utilization/sharing? 
❏ E.g., how to embed a maximal number of virtual Hadoop clusters? 

 

❏ And still ensure a predictable application performance? 
❏ How to meet the job deadline in MapReduce application?  

❏ How to guarantee low lookup latencies in data store? 

❏ It’s not only about resource contention! Skew due to high demand 
also occurs in well-provisioned systems  

 

❏ How to exploit allocation flexibilities to even mask and 
compensate for unpredictable events (e.g., failures)? 
❏ A key benefit of virtulization! 



It’s a Great Time to Be a Scientist 
”We are at an interesting inflection point!” 

Keynote by George Varghese  
at SIGCOMM 2014 

Confluence: innovation! 

Programmability and 
virtualization 

Algorithms 



 

1. Kraken: Predictable cloud application performance   

    through adaptive virtual clusters 

 

2. C3: Low tail latency in cloud data stores through  

    replica selection 

 

3. Panopticon: How to introduce these innovative  

    technologies in the first place? Case study: SDN 

 

4. STN, Offroad, Peacock: How to render distributed   

    systems more adaptive without shooting in your foot? 
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Challenges of More Flexible Distributed Systems 



Cloud Computing + Networking?!  
Network matters!  

❏ Example: Batch Processing Applications such as Hadoop 
❏ Communication intensive: e.g., shuffle phase 

❏ Example Facebook: 33% of execution time due to communication 

❏ For predictable preformance in shared cloud: need 
explicit bandwidth reservations! 
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❏ How to max utilization? A network embeddig problem! 



Let’s Exploit Allocation Flexibilities to Maximize Utilization 
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Start simple: exploit flexible 
routing between given VMs 
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Start simple: exploit flexible 
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❏ Oops: NP-hard 

 
 

Forget about paths: exploit VM 
placement flexibilities! 

❏ Most simple: Minimum Linear 
Arrangement without capacities 

 

? 
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Start simple: exploit flexible 
routing between given VMs 

❏ Integer multi-commodity flow 
problem with 2 flows? 

❏ Oops: NP-hard 

 
 

Forget about paths: exploit VM 
placement flexibilities! 

❏ Most simple: Minimum Linear 
Arrangement without capacities 

❏ NP-hard  

 

? 



Thank you for your attention! 



Theory vs Practice 
 

 
 

 

Goal in theory: 

Embed as general as possible guest graph 
to as general as possible host graph 

 

 

Reality: 

Datacenters, WANs, etc. exhibit 
much structure that can be 
exploited! But also guest 
networks come with simple 
specifications 
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Virtual Clusters 

n1 n2 

b2 
b1 

 

❏ A prominent abstraction for batch-processing 
applications: Virtual Cluster VC(n,b) 
❏ Connects  n virtual machines to a «logical» switch  with 

bandwidth guarantees b 

❏ A simple abstraction 
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Rost, Fuerst, Schmid 

CCR 2015 



How to embed a Virtual Cluster in a Fat-Tree? 
 

 
 

❏ Example: dynamic programming 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem! 
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How to embed a Virtual Cluster in a Fat-Tree? 
 

 
 

❏ Example: dynamic programming 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem! 
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OPT? 
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How to embed a Virtual Cluster in a Fat-Tree? 
 

 

 

t = 0: solve leaves! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem! 

 

 
 

 

 

 

How to optimally embed x 
VMs here, x ∈ {0, ..., n}? 

Cost = 0 or ∞! 
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How to embed a Virtual Cluster in a Fat-Tree? 
 

 

 

t = 1: solve height 1! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem! 

 

 
 

 

 

 

Cost[x] = miny Cost[y] + Cost[x-y]  

                +  cross-traffic + connections to v 
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Or just account on upward link 
(number of leaving links!) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



How to embed a Virtual Cluster in a Fat-Tree? 
 

 

 

t = 2: solve height 2! 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dynamic Program = optimal 
solutions for subproblems 
can efficiently be combined 
into an optimal solution for 
the larger problem! 
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How to embed a Virtual Cluster in a General Graph? 
 

  

How to embed? 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Guest Graph 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Host Graph 
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How to embed a Virtual Cluster in a General Graph? 
 

 

 

Algorithm:  
- Try all possible locations for virtual switch 

- Extend network with artificial source s and sink t 

- Add capacities  

- Compute min-cost max-flow from s to t  

          (or simply: min-cost flow of volume n) 
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enough to embed n 
VMs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

capacity = 
floor(available 
resources / unit 
demand)  
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How to embed a Virtual Cluster in a General Graph? 
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- Try all possible locations for virtual switch 

- Extend network with artificial source s and sink t 

- Add capacities  

- Compute min-cost max-flow from s to t  
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Guaranteed integer 
if links are integer! 
(E.g., successive 
shortest paths) 
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Predictable Performance with Kraken 

 

❏ This algorithm is used in our system Kraken  

 

❏ Gives compute and network guarantees… but reality is more 
complicated: 

❏ Static resource reservations are inefficient: want to change 
reservations / virtual clusters! 

❏ It is also hard to predict resource requirements, stragglers, 
failures, job executions: want to be online 
 

 

❏ Kraken allows to upgrade and downgrade resources in an 
online fashion, while providing minimal isolation guarantees 
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The need for adjustments 
 

Constant reservations would be wasteful: 

                          35 

Bandwidth utilization of a TeraSort job over time. 

In red: Kraken’s bandwidth reservation.  
(Tasks inform Hadoop controller prior to shuffle phase; reservation with Linux tc.) 



The need for online adjustments 

 

❏ Temporal resource patterns are 
hard to predict 

 

❏ Resource allocations must be 
changed online 
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  Completion times of jobs in the 
presence of speculative execution 
(left) and the number of speculated 
tasks (right) 

Bandwidth utilization of 3 different runs of 
the same TeraSort workload (without 

interference) 

  >20% variance 

  >50% variance 
in killed tasks 



Kraken: Online Reconfigurations  

 

❏ Kraken provides: 
❏ Predictable performance through bandwidth reservations 

❏ Resource-minimal embeddings 

❏ Support for online resource adjustments 

❏ Support for migration 

 

❏ Upgrades may require migrations: 
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Fuerst, Schmid, 

Suresh, Costa 

SIGMETRICS 2015 



Kraken: Predictable Performance   

 

❏ Kraken is immune to interference (from iperf) : 
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 Kraken (in Hadoop-YARN) with iperf cross-traffic 

 

 



There is no infinite lunch:  
QoS also Requires Admission Control 
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Time 

 

 

❏ Which ones to accept? 

❏ Online primal-dual approach  

Infrastructure 

Requests  

Even, Medina, 

Schaffrath, Schmid 

TCS 2013 



Online Admission Control: General Model 

 

❏ Traffic models 

 

 

Customer Pipe 

Traffic matrix: 
Bandwidth per 
VM pair (u,v) 

Hose Model 

Per VM 
bandwidth: 
polytope of traffic 
matrices. 

Aggregate Ingress 

ingress outgress ingress 
Only ingress 
specified: e.g., 
support multicast 
etc. 

 

❏ Routing models 

 

 

Tree 

Steiner tree 
embedding 

Single Path 

Unsplittable  
paths 

Multi-Path 

Splittable paths 
(more capacity) 

 

Relay costs: e.g., depending on packet rate 



Online Admission Control: Primal-Dual 
Competitive Analysis 

Does not know t’>t. 
Competitive ratio: 
     r = Cost(ON)/Cost(OFF) 
 

Primal and Dual  

Algorithm 
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     r = Cost(ON)/Cost(OFF) 
 

Primal and Dual  

Algorithm 

Formulate the packing 
(dual) LP: Maximize profit 

(Note: dynamic LP!) 

Online Admission Control: Primal-Dual 
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Competitive Analysis 

Does not know t’>t. 
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optimal embedding! 

Online Admission Control: Primal-Dual 



Competitive Analysis 

Does not know t’>t. 
Competitive ratio: 
     r = Cost(ON)/Cost(OFF) 
 

Primal and Dual  

Algorithm 

Embedding cost vs profit? 

Online Admission Control: Primal-Dual 
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If cheap: accept and 
update primal variables 
(always feasible solution) 

Online Admission Control: Primal-Dual 



Competitive Analysis 

Does not know t’>t. 
Competitive ratio: 
     r = Cost(ON)/Cost(OFF) 
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Else reject 

Online Admission Control: Primal-Dual 



Competitive Analysis 

Does not know t’>t. 
Competitive ratio: 
     r = Cost(ON)/Cost(OFF) 
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Algorithm 

Computationally hard! 

Online Admission Control: Primal-Dual 



Competitive Analysis 

Does not know t’>t. 
Competitive ratio: 
     r = Cost(ON)/Cost(OFF) 
 

Primal and Dual  

Algorithm 

Computationally hard! 

Use your favorite 
approximation algorithm! If 
competitive ratio ρ and 
approximation r, overall 
competitive ratio ρ*r.  

 

Online Admission Control: Primal-Dual 



 

1. Kraken: Predictable cloud application performance   

    through adaptive virtual clusters 

 

2. C3: Low tail latency in cloud data stores through  

    replica selection 

 

3. Panopticon: How to introduce these innovative  

    technologies in the first place? Case study: SDN 

 

4. STN, Offroad, Peacock: How to render distributed   

    systems more adaptive without shooting in your foot? 
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Challenges of More Flexible Distributed Systems 
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Latency-Critical Applications 
 

 

 

❏ Another critical requirement besides bandwidth, 
especially in cloud data stores is latency 
❏ Today’s interactive web applications require fluid response time  

❏ Degraded user experience directly impacts revenue  

 

❏ Tail matters... 
❏ Web applications = multi-tier,  

       large distributed systems 

❏ 1 request involves 10(0)s  

 data accesses / servers! 

❏ A single late read may 

       delay entire request 
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How to cut tail latency? 

 

 

 

 

❏ How to guarantee low tail in shared cloud? A non-
trivial challenge even in well-provisioned systems 
❏ Skews in demand, time-varying service times, stragglers, ...  

❏ No time to make make rigorous optimizations or reservations 

 

❏ Idea C3: Exploit replica selection! 
❏ Many distributed DBs resp. key-value stores have redundancy  

❏ Opportunity often overlooked so far 

 

❏ Our focus: Cassandra (1-hop DHT, server = client) 
❏ Powers, e.g., Ebay, Netflix, Spotify 

❏ More sophisticated than MongoDB or Riak 
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C3: Exploit Replica Selection  

 

❏ Great idea! But how? Just go for «the best»? 

 

{request} 
? ?  
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Careful: «The best» can change 
  

❏ Not so simple!  
❏ Need to deal with heterogenous and time-varying service times 

❏ Background garbage collection, log compaction, TCP, deamons 

 

{request} 
? ?  4 ms 

5 ms 

80 ms 



Careful: Herd Behavior 
 

❏ Potentially high fan-in and herd behavior! 

❏ Observed in Cassandra Dynamic Snitching (DS) 
❏ Coarse time intervals and I/O gossiping 

❏ Synchronization and stale information 

 

 

Request 

? ? ?  
Request 

Request 

A coordination / control theory problem! 
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C3 in a Nutshell 
 

❏ 4 Principles:  
❏ Stay informed: piggy-back queue 

state and service times 

❏ Stay reactive and don’t commit: 
use backpressure queue 

❏ Leverage heterogeity: 
compensate for service times 

❏ Avoid redundancy 

 

❏ Mechanism 1: replica ranking 
❏ Penalize larger queues 

 

 

 

 

 

 

 

 

 

Client Server 

{  qs , µs  } 

 

❏ Mechanism 2: rate control 
❏ Goal: match service rate and 

keep pipeline full 

❏ Cubic, with saddle region 

Suresh, Canini, 

Schmid, Feldmann 

NSDI 2015 
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Performance Evaluation 
 

❏ Methodology:  
❏ Amazon EC2  
❏ disk vs SSD 

❏ BigFoot testbed 

❏ Simulations 

 

❏ Lower tail latency 
❏ 2-3x for 99.9% 

 

 

 

 

 

 

 

 

 

 

❏ ... and lower load (and variance)! 

 

❏ Higher read throughput... 
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Challenges of More Flexible Distributed Systems 



SDN Use Cases Today 

Decoupling 

Many use cases discussed today, e.g. in:  

• Enterprise networks 

• Datacenters 

• WANs 

• IXPs 

• ISPs 

Existing deployments! 

 61 

How to deploy SDN cost effectively? 



SDN Deployment 

Datacenter: Easy 
• SDN can be deployed at software 

edge (terminate links at Open 
vSwitch) 

• 2 Control Planes: ECMP Fabric 

 

 62 

WAN: «Easy» 
• Google B4: small network 

• Can be deployed at end of long-
haul fiber (replace IP core router) 



SDN Deployment 

Datacenter: Easy 
• SDN can be deployed at software 

edge (terminate links at Open 
vSwitch) 

• 2 Control Planes: ECMP Fabric 
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WAN: «Easy» 
• Google B4: small network 

• Can be deployed at end of long-
haul fiber (replace IP core router) 

Problem: first benefits 
only at “flag day” (only 
control plane 
incremental) 



But how to deploy SDN in enterprise? 

o Large and complex networks, budgets limited 

 

o Idea: Can we incrementally deploy SDN into 
enterprise campus networks? 

 

o And what SDN benefits can be realized in a 
hybrid deployment? 
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Decoupling 

Can we deploy SDN at enterprise edge?  

 65 
The edge is large, and not in software! 



TOOL 
Determine the partial 

SDN deployment 

SDN ARCHITECTURE 
Operate the network as a 

(nearly) full SDN 

Panopticon 
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Levin, Canini, Schmid, 

Schaffert, Feldmann 

ATC 2014 



Get Functionality with Waypoint Enforcement 

A 

B 

C 

D 

E 

F 
Access control 

Insight #1: 
≥ 1 SDN switch → 

Policy enforcement 

IDS 

Middlebox 
traversal 
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Larger Deployment = More Flexibility 

A 

B 

C 

D 

E 

F 

Traffic 
load-

balancing 

Insight #1: 
≥ 1 SDN switch → 

Policy enforcement 

Insight #2: 
≥ 2 SDN switches →  
Fine-grained control 
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A 

B 

C 

D 

E 

F 

1. Restrict traffic by using VLANs 

Panopticon: Building the Logical SDN Abstraction 



A 

B 

C 

D 

E 

F 

B C D E F 

A 

“Logical SDN” 
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Panopticon: Building the Logical SDN Abstraction 

2. Build logical SDN 



“Logical SDN” 

PANOPTICON 

SDN Platform 

App 
1 

App 
2 

App 
3 

B C D E F 

A 

PANOPTICON provides the abstraction of a (nearly) 
fully-deployed SDN in a partially upgraded network 



A 

B 

C 

D 

E 

F 

Good or Bad Impact on Traffic? 

1. Congestion 

2. Harvest unutilized 
network capacity 
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Challenges of More Flexible Distributed Systems 



Correct Operation is Important! 

Example: trend to move the infrastructure to the cloud (e.g., the CIA). 

 

What if your traffic was not 
isolated from other tenants during 
periods of routine maintenance? 

 74 (c) Nate Foster 



Example: Outages 

Decoupling 

Even technically sophisticated companies are struggling to build 
networks that provide reliable performance.  

We discovered a misconfiguration on this 
pair of switches that caused what's called a 
“bridge loop” in the network. 

A network change was […] executed 
incorrectly […] more “stuck” volumes and 
added more requests to the re-mirroring 
storm 

Service outage was due to a series of internal 
network events that corrupted router data tables 

Experienced a network connectivity issue […] 
interrupted the airline's flight departures, 
airport processing and reservations systems 
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(c) Nate Foster 



Example: Security-Critical Updates 

attacker 

security critical area 

old route r1 
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Example: Security-Critical Updates 

security critical area 

old route r1 

Waypoint 

Enforcement 

new route r2 

Controller 
Updates 



How to update networks consistently? 

 

❏ Idea: Use tagging and 2-phase commit 
❏ Problematic: header space, TCAM space, middleboxes 

 

❏Better solution: Update network in rounds! [7] 
❏ Round = subset of nodes are updated 

❏ Restrict concurrency s.t. consistency maintained 

❏ How many rounds are needed?  

 

 

 

 

 

 

 

[7] Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies. Arne 
Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. 13th ACM Workshop on Hot Topics in Networks (HotNets), Los 
Angeles, California, USA, October 2014. 



Solution: Round 1 

attacker 

security critical area 

old route r1 

Waypoint 

Enforcement 

new route r2 

Controller 
Updates 



Solution: Round 2 

attacker 

security critical area 

old route r1 

Waypoint 

Enforcement 

new route r2 

Controller 
Updates 



Solution 

attacker 

security critical area 

old route r1 

Waypoint 

Enforcement 

new route r2 

Controller 
Updates 

❏ How many rounds are needed? 

❏ How to also avoid loops? Related to 

Feedback Arc Set Problems 

❏ What properties conflict?  

❏ NP-hard but efficient algorithms exist! 

1 

2 
2 

Ludwig, Rost, Fourcard, Schmid  

HotNets 2014 

Ludwig, Marcinkowski, Schmid 

PODC 2015 



Distributed Control: for redundancy, multi-user, … 
 

Decoupling 
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Install 

ACK/NAK 

 

Install 

ACK/NAK 

 

M
id

d
le

w
ar

e
 

C
o
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se

&
 

In
st

al
l 

Problem: Conflict free, per-packet 
consistent policy composition and 
installation 

Holy Grails: Linearizability (Safety), 
Wait-freedom (Liveness) 

Control should be distributed! 

STN: A transactional interface 

Canini, Kuznetsov, Levin Schmid 

INFOCOM 2015 



Before failover: 

Decoupling 

• Link failures today are not 
uncommon [1] 

 

• Modern networks provide 
robust routing mechanisms 

• i.e., routing which reacts to 
failures 

• example: MPLS local and global 
path protection 

Challenge: Fast Robust Routing Mechanisms 

After failover: 
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• Important that failover happens 
fast = in-band 

• Reaction time in control plane can be 
orders of magnitude slower 

 

• For this reason: OpenFlow Local 
Fast Failover Mechanism 

• Supports conditional forwarding rules 
(depend on the local state of the link: 
live or not?) 

 

• Gives fast but local and perhaps 
“suboptimal” forwarding sets 

• Controller improves globally later… 

Fast In-band Failover 

data plane 

ctrl plane 
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• Important that failover happens 
fast = in-band 
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Fast In-band Failover 
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However, not much is known about how to use 
the OpenFlow fast failover mechanism.  
E.g.: How many failures can be tolerated 
without losing connectivity?  



• Important that failover happens 
fast = in-band 

• Reaction time in control plane can be 
orders of magnitude slower 

 

• For this reason: OpenFlow Local 
Fast Failover Mechanism 

• Supports conditional forwarding rules 
(depend on the local state of the link: 
live or not?) 

 

• Gives fast but local and perhaps 
“suboptimal” forwarding sets 

• Controller improves globally later… 

Fast In-band Failover 

data plane 

ctrl plane 
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However, not much is known about how to use 
the OpenFlow fast failover mechanism.  
E.g.: How many failures can be tolerated 
without losing connectivity?  

How to use mechanism is a non-trivial problem even if underlying 
network stays connected: (1) conditional failover rules need to be 
allocated ahead of time, without knowing actual failures, (2) views at 
runtime are inherently local.  
How not to shoot in your foot with local fast failover (e.g., create 
forwarding loops)? 



• Offroad: already with today’s Openflow, provable connectivity can 
be implemented in-band  

• Even without per-switch state 

 

• SmartSouth: already with today’s Openflow, many additional 
functionality could in principle be implemented in-band 

• E.g., anycast, sampling, snapshots, blackhole detection, ...  

 

• Trend for «Openflow 2.0»: improve functionality of Openflow 
switches further 

• Registers, bitmasking, no longer field-specific, ...  

Offroad and SmartSouth  
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Schiff, Borokhovich, Schmid 

HotSDN 2014, HotNets 2014 



Conclusion 

• Programmable and virtualized systems: opportunities for 
improved resource allocation and utilization 

 

• But also challenges in terms of resource interference and 
predictable application performance 

 

• Making the network a first class citizen can help to improve 
performance 

 

• High potential but also risks of a more dynamic control 

 

 

 

 

 

Thank you! 

And thanks to my co-authors, mainly: Marco Canini, Paolo Costa, Carlo Fürst, Petr 
Kuznetsov, Dan Levin, Arne Ludwig, Matthias Rost, Jukka Suomela, Lalith Suresh 
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Flavors of VNet Embedding Problems (VNEP) 

Minimize embedding footprint of a 
single VNet : 

Maximize profit over time: 

Minimize max load of multiple 
VNets or collocate to save energy: 

Time 

spread or 
collocate? 

Endpoints fixed: 



Flavors of VNet Embedding Problems (VNEP) 

Minimize embedding footprint of a 
single VNet : 

Maximize profit over time: 

Minimize max load of multiple 
VNets or collocate to save energy: 

Time 

spread or 
collocate? 

Endpoints fixed: 

Hard Problem: Already embedding on a line, computing the 
footprint and load optimal embedding of a single VNet is NP-

hard (e.g., minimum linear arrangement) 

Great opportunities?: Already for a line host graph, 
computing the footprint and load optimal embedding of a 

single VNet is NP-hard (e.g., minimum linear arrangement). 

… and: Generalization of Online Call Control for entire 
networks, plus embedding problem on top! 



Cannot directly apply minor theory! 

Planar Graph H: K5 and K3,3 minor-free… 

… but possible to embed G=K5! 

It is possible to embed a guest graph G on a host graph H, even though G is not 
a minor of H: 
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Online Access Control (1) 

Time 

 

 

❏ Assume: end-point locations given 

❏ Different routing and traffic models 

❏ Price and duration 

❏ Which ones to accept? 

❏ Online Primal-Dual Framework (Buchbinder and Naor) 

Infrastructure 

VNets 
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Solving the VNEP 
 

 

❏ Formulate a Mixed Integer Program! 

 

❏ Leverage additional structure! 

 

❏ Use online primal-dual approach 

 

❏ Discussion: 
❏ Virtual network embedding a potential threat? 

❏ Adding migration support 

❏ Beyond graph structures 
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Security Aspects 

MinCut? 
Topology? 

Knitting Expand links Repeat 

Find dense parts first! But careful: 
A cannot be embedded in B. 
B cannot be embedded in A. 
But A can be embedded in BB. 

Algorithm 

Different from minor relation: 
Can embed cliques in planar 
graphs. 
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Migration 

                          99 

 

 

❏ Service or CloudNet migration 

❏ Access cost: latency 

❏ Migration cost: service interruption 
/ bandwidth 

❏ Variant of Uniform Metrical Task 
System (graph-based access) 

❏ Allows for O(log n / loglog n) 
solutions (unlike MTS) 

 

Amortized migration: 

 

Lower bound: Online function tracking 

F(x) 
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Migration: Example  

 

❏ Single service 

❏ Migration Cost m 

❏ Access Cost 1 

❏ Goal: minimize sum of both? 

active 

inactive 

on service! 
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Realm of competitive analysis!  



Migration: Example  

 

 

active 

inactive 

on service! 
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❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 



Migration: Example  

 

 

active 

inactive 

on service! 
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Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 

 

 

❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 
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Deterministic Algo: Amortize!  
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❏ O(log n / loglog n) not elegant (yet) 

@ t = 0: 
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❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 

active 

inactive 
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on service! 

@ t = 1: 

Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 



Migration: Example  

 

❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 

active 

inactive 

on service! 
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@ t = 1: 

Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 



Migration: Example  

 

❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 

active 

inactive 

on service! 
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@ t = 2: 

Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 



Migration: Example  

 

❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 

active 

inactive 

on service! 
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@ t = 2: 

Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 



Migration: Example  

 

❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 

active 

inactive 

on service! 
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@ t = 3: epoch ends! 

Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 



Migration: Example  

 

❏ O(log n) competitive ratio only 

❏ O(log n / loglog n) not elegant (yet) 

active 

inactive 

on service! 
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Analysis 
 

Offline algorithm OFF has cost >m/2 per epoch: 
 

1. True if OFF migrates at least once. 

2. If OFF does not migrate: any single location has access cost >m/2. 
 

Online algorithm ON has cost at most O(m log n)  per epoch: 
 

1. Access costs per phase at most m: counters 

2. Migration cost per phase: m 

3. How many phases? Due to center strategy, at least 1/8-th of active nodes 

become passive 

Deterministic Algo: Amortize!  
1. Access cost counters at each node (if service there) 

2. When counter exceeds m, deactivate nodes with 

counters > m/2, migrate to active node in center of 

active component: minimal sum of distances 

3. When no node left, epoch ends. Reset and restart. 



Solving the VNEP 
 

 

❏ Formulate a Mixed Integer Program! 

 

❏ Leverage additional structure! 

 

❏ Use online primal-dual approach 

 

❏ Discussion: 
❏ Virtual network embedding a potential threat? 

❏ Adding migration support 

❏ Beyond graph structures 
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Beyond Graph Specifications 
 

❏ Example: Multicast with in-network processing 

❏ The topology becomes subject to optimization as well 

❏ Example: Cost efficient multicast or aggregation 

 

                

                

n unicasts 
(43 edges, 0 nodes)  

Multicast / Steiner tree 
(16 edges, 9 nodes) 

Best of both worlds? 

Joint optimization! 

Substrate: 



 

❏ Example: Multicast with in-network processing 

❏ The topology becomes subject to optimization as well 

❏ Example: Cost efficient multicast or aggregation                 

                

n unicasts 
(43 edges, 0 nodes)  

Multicast / Steiner tree 
(16 edges, 9 nodes) 

Joint optimization: Virtual 
Steiner Arborescence 

(26 edges, 2 nodes) 

Substrate: Beyond Graph Specifications 



Beyond Graph Specifications 
 

❏ Approach: Single-commodity MIP and path decomposition 
❏ Multi-commodity: 1,200,000 integer variables 

❏ Single-commodity: 6,000 integer variables 

❏ But lose information 

                

                

? 
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“(Network) Virtualization: The Killer 
Application for SDN” (Nick McKeown) 

The Internet has changed radically over the last decades 

Historic goal: Connectivity between a small set of super-computers 

Applications: File transfer and emails among scientists 

Situation now: Non-negligible fraction of the world population is 

constantly online 

New requirements: 

• More traffic, new demands on reliability and 

predictability  

• Thus: use infrastructure more efficiently, use in-

network caches: TE beyond destination-based 

routing, … 

• Many different applications: Google docs vs 

datacenter synchronization vs on-demand video 

• SDN allows us to schedule and route different 

applications according to their needs 
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Rigorous Solutions for the Geneal 
Embedding Problem: MIP 

 

 

Recipe: 

❏ A (linear) objective function (e.g., load or footprint) 

❏ A set of (linear) constraints 

❏ Feed it to your favorite solver (CPLEX, Gurobi, etc.) 

 
 

Details: 
❏ Introduce binary variables map(v,s) to 

map virtual nodes v on substrate node s 

❏ Introduce flow variables for paths 
(splittable or not?) 

❏ Ensure flow conservation: all flow 
entering a node must leave the node, 
unless it is the source or the destination 

map(v,s) 
v 

s 
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UCC 2012 



Rigorous Solutions for the Geneal 
Embedding Problem: MIP 

 

 

Recipe for VNEP formulation : 

❏ A (linear) objective function (e.g., load or footprint) 

❏ A set of (linear) constraints 

❏ Feed it to your favorite solver (CPLEX, Gurobi, etc.) 

 
 

Details: 
❏ Introduce binary variables map(v,s) to 

map virtual nodes v on substrate node s 

❏ Introduce flow variables for paths 
(splittable or not?) 

❏ Ensure flow conservation: all flow 
entering a node must leave the node, 
unless it is the source or the destination 

map(v,s) 
v 

s 
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Mixed Integer Programs (1)  

 

❏ MIPs can be quite fast 
❏ For pure integer programs, SAT solvers likely faster 

❏ However, that’s not the end of the story: MIP ≠ MIP 
❏ The specific formulation matters! 

❏ For example: many solvers use relaxations 
❏ Make integer variables continuous: resulting linear programs (LPs) 

can be solved in polynomial time!  

❏ How good can solution in this subtree (given fixed variables) be at 
most? (More flexibility: solution can only be better!) 

❏ If already this is worse than currently best solution, we can cut! 

❏ Relaxations can also be used as a basis for heuristics 
❏ E.g., round fractional solutions to closest integer? 
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Mixed Integer Programs (2)  

 

 

 

Branch & bound tree: 

 

 

Relax: possible to obtain 
better solution than we 
already have? 

best so far 
best 
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Mixed Integer Programs (3) 

 

VNet: 

 

Physical Network: 
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❏ Recall: Relaxations useful if they give good bounds 

❏ However it’s hard to formulate a MIP for VNEP which 
yields useful relaxations! 

❏ What happens here? 



Mixed Integer Programs (3) 

 

VNet: 

 

Physical Network: 

map(v,s)=.5 

map(v,s)=.5 
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❏ Recall: Relaxations useful if they give good bounds 

❏ However it’s hard to formulate a MIP for VNEP which 
yields useful relaxations! 

❏ What happens here? 



Mixed Integer Programs (3) 

 

VNet: 

 

Physical Network: 

map(v,s)=.5 

map(v,s)=.5 

Flow = 0 
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❏ Recall: Relaxations useful if they give good bounds 

❏ However it’s hard to formulate a MIP for VNEP which 
yields useful relaxations! 

❏ What happens here? 



Mixed Integer Programs (3) 

 

VNet: 

 

Physical Network: 

map(v,s)=.5 

map(v,s)=.5 

Flow = 0 

Relaxations do not provide good 
bounds: allocation 0! Also not 

useful for rounding... 
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❏ Recall: Relaxations useful if they give good bounds 

❏ However it’s hard to formulate a MIP for VNEP which 
yields useful relaxations! 

❏ What happens here? 



Example 1: Embedding 
 

Where to allocate my virtual machines?  
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Tentant 1 

 

 

Tentant 2 

 

 

 

❏ For a predictable performance, try to avoid 
interference! Keep it local! 

❏ Or make explicit bandwidth reservations! And 
keep it local to keep reservations small. 

❏ .... but avoid static bandwidth reservations and 
make resource reservations in online fashion. 

 

 

 


