
Algorithms for Software-Defined
Distributed Systems

Stefan Schmid

TU Berlin & Telekom Innovation Labs (T-Labs)

Decoupling

SDN outsources and
consolidates control
over multiple devices to
(logically) centralized
software controller

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

 2

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller Platform

Flexible Distributed Systems: Programmable...

Decoupling

SDN outsources and
consolidates control
over multiple devices to
(logically) centralized
software controller

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

 3

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller Platform

Benefit 1: Decoupling! Control plane can evolve
independently of data plane: innovation at
speed of software development.

Benefit 2: Simpler network management
through logically centralized view: network
management is an inherently non-local task.
Simplified formal verification.

Flexible Distributed Systems: Programmable...

Decoupling

SDN outsources and
consolidates control
over multiple devices to
(logically) centralized
software controller

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

Ctrl

 4

Global Network View

Control

Programs

Control

Programs

Control

Programs

Controller Platform

Benefit 3: Standard API OpenFlow is about generalization!
• Generalize devices (L2-L4: switches, routers, middleboxes)
• Generalize routing and traffic engineering (not only

destination-based)
• Generalize flow-installation: coarse-grained rules and

wildcards okay, proactive vs reactive installation
• Provide general and logical network views to the

application / tenant

Flexible Distributed Systems: Programmable...

❏ Virtualization allows to abstract:
❏ Hardware: compute, memory, storage, network resources

❏ Or even entire distributed systems (including OS)

❏ Decouples the application from the substrate

❏ Introduces flexibilities for resource allocation
❏ Improved resource sharing (esp. in commercial clouds)

❏ Seamless migration

 5

Flexible Distributed Systems: ... and Virtualized

Need to virtualize
the entire system:
otherwise risk of
interference on
other resources
(network, CPU,
memory, I/O) :
unredictable
performance

Challenges

❏ Great…, but: SDN and virtualization are enablers, not
solutions! What to do with them and how?

❏ Example: Virtualization for better resource sharing
❏ Many flexibilities to embed virtual machines

❏ But: often not enough to provide the expected performance!

App 1: Mobile Service App 2: Big Data Analytics

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

For predictable performance: full virtualization!

Many Algorithmic Challenges

❏ How to maximize the resource utilization/sharing?
❏ E.g., how to embed a maximal number of virtual Hadoop clusters?

❏ And still ensure a predictable application performance?
❏ How to meet the job deadline in MapReduce application?

❏ How to guarantee low lookup latencies in data store?

❏ It’s not only about resource contention! Skew due to high demand
also occurs in well-provisioned systems

❏ How to exploit allocation flexibilities to even mask and
compensate for unpredictable events (e.g., failures)?
❏ A key benefit of virtulization!

It’s a Great Time to Be a Scientist
”We are at an interesting inflection point!”

Keynote by George Varghese
at SIGCOMM 2014

Confluence: innovation!

Programmability and
virtualization

Algorithms

1. Kraken: Predictable cloud application performance

 through adaptive virtual clusters

2. C3: Low tail latency in cloud data stores through

 replica selection

3. Panopticon: How to introduce these innovative

 technologies in the first place? Case study: SDN

4. STN, Offroad, Peacock: How to render distributed

 systems more adaptive without shooting in your foot?
 10

Challenges of More Flexible Distributed Systems

1. Kraken: Predictable cloud application performance

 through adaptive virtual clusters

2. C3: Low tail latency in cloud data stores through

 replica selection

3. Panopticon: How to introduce these innovative

 technologies in the first place? Case study: SDN

4. STN, Offroad, Peacock: How to render distributed

 systems more adaptive without shooting in your foot?
 11

Challenges of More Flexible Distributed Systems

1. Kraken: Predictable cloud application performance

 through adaptive virtual clusters

2. C3: Low tail latency in cloud data stores through

 replica selection

3. Panopticon: How to introduce these innovative

 technologies in the first place? Case study: SDN

4. STN and Offroad: How to render distributed systems

 more adaptive without shooting in your foot?
 12

Challenges of More Flexible Distributed Systems

Cloud Computing + Networking?!
Network matters!

❏ Example: Batch Processing Applications such as Hadoop
❏ Communication intensive: e.g., shuffle phase

❏ Example Facebook: 33% of execution time due to communication

❏ For predictable preformance in shared cloud: need
explicit bandwidth reservations!

 13

❏ How to max utilization? A network embeddig problem!

Let’s Exploit Allocation Flexibilities to Maximize Utilization

 14

Let’s Exploit Allocation Flexibilities to Maximize Utilization

 15

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

Let’s Exploit Allocation Flexibilities to Maximize Utilization

 16

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

Let’s Exploit Allocation Flexibilities to Maximize Utilization

 17

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Let’s Exploit Allocation Flexibilities to Maximize Utilization

 18

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit VM
placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

?

Let’s Exploit Allocation Flexibilities to Maximize Utilization

 19

s1

t1
s2

t2

Start simple: exploit flexible
routing between given VMs

❏ Integer multi-commodity flow
problem with 2 flows?

❏ Oops: NP-hard

Forget about paths: exploit VM
placement flexibilities!

❏ Most simple: Minimum Linear
Arrangement without capacities

❏ NP-hard 

?

Thank you for your attention!

Theory vs Practice

Goal in theory:

Embed as general as possible guest graph
to as general as possible host graph

Reality:

Datacenters, WANs, etc. exhibit
much structure that can be
exploited! But also guest
networks come with simple
specifications

 21

Virtual Clusters

n1 n2

b2
b1

❏ A prominent abstraction for batch-processing
applications: Virtual Cluster VC(n,b)
❏ Connects n virtual machines to a «logical» switch with

bandwidth guarantees b

❏ A simple abstraction

 22

Rost, Fuerst, Schmid

CCR 2015

How to embed a Virtual Cluster in a Fat-Tree?

❏ Example: dynamic programming

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

 23

How to embed a Virtual Cluster in a Fat-Tree?

❏ Example: dynamic programming

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

OPT

OPT?

 24

How to embed a Virtual Cluster in a Fat-Tree?

t = 0: solve leaves!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

How to optimally embed x
VMs here, x ∈ {0, ..., n}?

Cost = 0 or ∞!

 25

How to embed a Virtual Cluster in a Fat-Tree?

t = 1: solve height 1!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

Cost[x] = miny Cost[y] + Cost[x-y]

 + cross-traffic + connections to v

v

 26

How to embed a Virtual Cluster in a Fat-Tree?

t = 1: solve height 1!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

Cost[x] = miny Cost[y] + Cost[x-y]

 + cross-traffic + connections to v

v

Or just account on upward link
(number of leaving links!)

How to embed a Virtual Cluster in a Fat-Tree?

t = 2: solve height 2!

Dynamic Program = optimal
solutions for subproblems
can efficiently be combined
into an optimal solution for
the larger problem!

 28

How to embed a Virtual Cluster in a General Graph?

How to embed?

Guest Graph

Host Graph

 29

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

 (or simply: min-cost flow of volume n)

 30

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

 (or simply: min-cost flow of volume n)

 31

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

 (or simply: min-cost flow of volume n)

enough to embed n
VMs

capacity =
floor(available
resources / unit
demand)

 32

How to embed a Virtual Cluster in a General Graph?

Algorithm:
- Try all possible locations for virtual switch

- Extend network with artificial source s and sink t

- Add capacities

- Compute min-cost max-flow from s to t

 (or simply: min-cost flow of volume n)

Guaranteed integer
if links are integer!
(E.g., successive
shortest paths)

 33

Predictable Performance with Kraken

❏ This algorithm is used in our system Kraken

❏ Gives compute and network guarantees… but reality is more
complicated:

❏ Static resource reservations are inefficient: want to change
reservations / virtual clusters!

❏ It is also hard to predict resource requirements, stragglers,
failures, job executions: want to be online

❏ Kraken allows to upgrade and downgrade resources in an
online fashion, while providing minimal isolation guarantees

 34

The need for adjustments

Constant reservations would be wasteful:

 35

Bandwidth utilization of a TeraSort job over time.

In red: Kraken’s bandwidth reservation.
(Tasks inform Hadoop controller prior to shuffle phase; reservation with Linux tc.)

The need for online adjustments

❏ Temporal resource patterns are
hard to predict

❏ Resource allocations must be
changed online

 36

 Completion times of jobs in the
presence of speculative execution
(left) and the number of speculated
tasks (right)

Bandwidth utilization of 3 different runs of
the same TeraSort workload (without

interference)

 >20% variance

 >50% variance
in killed tasks

Kraken: Online Reconfigurations

❏ Kraken provides:
❏ Predictable performance through bandwidth reservations

❏ Resource-minimal embeddings

❏ Support for online resource adjustments

❏ Support for migration

❏ Upgrades may require migrations:

 37

Fuerst, Schmid,

Suresh, Costa

SIGMETRICS 2015

Kraken: Predictable Performance

❏ Kraken is immune to interference (from iperf) :

 38

 Kraken (in Hadoop-YARN) with iperf cross-traffic

There is no infinite lunch:
QoS also Requires Admission Control

 39

Time

❏ Which ones to accept?

❏ Online primal-dual approach

Infrastructure

Requests

Even, Medina,

Schaffrath, Schmid

TCS 2013

Online Admission Control: General Model

❏ Traffic models

Customer Pipe

Traffic matrix:
Bandwidth per
VM pair (u,v)

Hose Model

Per VM
bandwidth:
polytope of traffic
matrices.

Aggregate Ingress

ingress outgress ingress
Only ingress
specified: e.g.,
support multicast
etc.

❏ Routing models

Tree

Steiner tree
embedding

Single Path

Unsplittable
paths

Multi-Path

Splittable paths
(more capacity)

Relay costs: e.g., depending on packet rate

Online Admission Control: Primal-Dual
Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Formulate the packing
(dual) LP: Maximize profit

(Note: dynamic LP!)

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

s.t. constraints

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm
primal-dual framework

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

optimal embedding!

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Embedding cost vs profit?

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

If cheap: accept and
update primal variables
(always feasible solution)

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Else reject

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Computationally hard!

Online Admission Control: Primal-Dual

Competitive Analysis

Does not know t’>t.
Competitive ratio:
 r = Cost(ON)/Cost(OFF)

Primal and Dual

Algorithm

Computationally hard!

Use your favorite
approximation algorithm! If
competitive ratio ρ and
approximation r, overall
competitive ratio ρ*r.

Online Admission Control: Primal-Dual

1. Kraken: Predictable cloud application performance

 through adaptive virtual clusters

2. C3: Low tail latency in cloud data stores through

 replica selection

3. Panopticon: How to introduce these innovative

 technologies in the first place? Case study: SDN

4. STN, Offroad, Peacock: How to render distributed

 systems more adaptive without shooting in your foot?
 51

Challenges of More Flexible Distributed Systems

 52

Latency-Critical Applications

❏ Another critical requirement besides bandwidth,
especially in cloud data stores is latency
❏ Today’s interactive web applications require fluid response time

❏ Degraded user experience directly impacts revenue

❏ Tail matters...
❏ Web applications = multi-tier,

 large distributed systems

❏ 1 request involves 10(0)s

 data accesses / servers!

❏ A single late read may

 delay entire request

 53

How to cut tail latency?

❏ How to guarantee low tail in shared cloud? A non-
trivial challenge even in well-provisioned systems
❏ Skews in demand, time-varying service times, stragglers, ...

❏ No time to make make rigorous optimizations or reservations

❏ Idea C3: Exploit replica selection!
❏ Many distributed DBs resp. key-value stores have redundancy

❏ Opportunity often overlooked so far

❏ Our focus: Cassandra (1-hop DHT, server = client)
❏ Powers, e.g., Ebay, Netflix, Spotify

❏ More sophisticated than MongoDB or Riak

 54

C3: Exploit Replica Selection

❏ Great idea! But how? Just go for «the best»?

{request}
? ?

 55

Careful: «The best» can change

❏ Not so simple!
❏ Need to deal with heterogenous and time-varying service times

❏ Background garbage collection, log compaction, TCP, deamons

{request}
? ? 4 ms

5 ms

80 ms

Careful: Herd Behavior

❏ Potentially high fan-in and herd behavior!

❏ Observed in Cassandra Dynamic Snitching (DS)
❏ Coarse time intervals and I/O gossiping

❏ Synchronization and stale information

Request

? ? ?
Request

Request

A coordination / control theory problem!

 57

C3 in a Nutshell

❏ 4 Principles:
❏ Stay informed: piggy-back queue

state and service times

❏ Stay reactive and don’t commit:
use backpressure queue

❏ Leverage heterogeity:
compensate for service times

❏ Avoid redundancy

❏ Mechanism 1: replica ranking
❏ Penalize larger queues

Client Server

{ qs , µs }

❏ Mechanism 2: rate control
❏ Goal: match service rate and

keep pipeline full

❏ Cubic, with saddle region

Suresh, Canini,

Schmid, Feldmann

NSDI 2015

 58

Performance Evaluation

❏ Methodology:
❏ Amazon EC2
❏ disk vs SSD

❏ BigFoot testbed

❏ Simulations

❏ Lower tail latency
❏ 2-3x for 99.9%

❏ ... and lower load (and variance)!

❏ Higher read throughput...

1. Kraken: Predictable cloud application performance

 through adaptive virtual clusters

2. C3: Low tail latency in cloud data stores through

 replica selection

3. Panopticon: How to introduce these innovative

 technologies in the first place? Case study: SDN

4. STN, Offroad, Peacock: How to render distributed

 systems more adaptive without shooting in your foot?
 60

Challenges of More Flexible Distributed Systems

SDN Use Cases Today

Decoupling

Many use cases discussed today, e.g. in:

• Enterprise networks

• Datacenters

• WANs

• IXPs

• ISPs

Existing deployments!

 61

How to deploy SDN cost effectively?

SDN Deployment

Datacenter: Easy
• SDN can be deployed at software

edge (terminate links at Open
vSwitch)

• 2 Control Planes: ECMP Fabric

 62

WAN: «Easy»
• Google B4: small network

• Can be deployed at end of long-
haul fiber (replace IP core router)

SDN Deployment

Datacenter: Easy
• SDN can be deployed at software

edge (terminate links at Open
vSwitch)

• 2 Control Planes: ECMP Fabric

 63

WAN: «Easy»
• Google B4: small network

• Can be deployed at end of long-
haul fiber (replace IP core router)

Problem: first benefits
only at “flag day” (only
control plane
incremental)

But how to deploy SDN in enterprise?

o Large and complex networks, budgets limited

o Idea: Can we incrementally deploy SDN into
enterprise campus networks?

o And what SDN benefits can be realized in a
hybrid deployment?

 64

Decoupling

Can we deploy SDN at enterprise edge?

 65
The edge is large, and not in software!

TOOL
Determine the partial

SDN deployment

SDN ARCHITECTURE
Operate the network as a

(nearly) full SDN

Panopticon

 66

Levin, Canini, Schmid,

Schaffert, Feldmann

ATC 2014

Get Functionality with Waypoint Enforcement

A

B

C

D

E

F
Access control

Insight #1:
≥ 1 SDN switch →

Policy enforcement

IDS

Middlebox
traversal

 67

Larger Deployment = More Flexibility

A

B

C

D

E

F

Traffic
load-

balancing

Insight #1:
≥ 1 SDN switch →

Policy enforcement

Insight #2:
≥ 2 SDN switches →
Fine-grained control

 68

A

B

C

D

E

F

1. Restrict traffic by using VLANs

Panopticon: Building the Logical SDN Abstraction

A

B

C

D

E

F

B C D E F

A

“Logical SDN”

 70

Panopticon: Building the Logical SDN Abstraction

2. Build logical SDN

“Logical SDN”

PANOPTICON

SDN Platform

App
1

App
2

App
3

B C D E F

A

PANOPTICON provides the abstraction of a (nearly)
fully-deployed SDN in a partially upgraded network

A

B

C

D

E

F

Good or Bad Impact on Traffic?

1. Congestion

2. Harvest unutilized
network capacity

 72

1. Kraken: Predictable cloud application performance

 through adaptive virtual clusters

2. C3: Low tail latency in cloud data stores through

 replica selection

3. Panopticon: How to introduce these innovative

 technologies in the first place? Case study: SDN

4. STN, Offroad, Peacock: How to render distributed

 systems more adaptive without shooting in your foot?
 73

Challenges of More Flexible Distributed Systems

Correct Operation is Important!

Example: trend to move the infrastructure to the cloud (e.g., the CIA).

What if your traffic was not
isolated from other tenants during
periods of routine maintenance?

 74 (c) Nate Foster

Example: Outages

Decoupling

Even technically sophisticated companies are struggling to build
networks that provide reliable performance.

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

 75

(c) Nate Foster

Example: Security-Critical Updates

attacker

security critical area

old route r1

Example: Security-Critical Updates

attacker

security critical area

old route r1

Waypoint

Enforcement

Example: Security-Critical Updates

attacker

security critical area

old route r1

Waypoint

Enforcement

new route r2

Example: Security-Critical Updates

security critical area

old route r1

Waypoint

Enforcement

new route r2

Controller
Updates

How to update networks consistently?

❏ Idea: Use tagging and 2-phase commit
❏ Problematic: header space, TCAM space, middleboxes

❏Better solution: Update network in rounds! [7]
❏ Round = subset of nodes are updated

❏ Restrict concurrency s.t. consistency maintained

❏ How many rounds are needed?

[7] Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies. Arne
Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. 13th ACM Workshop on Hot Topics in Networks (HotNets), Los
Angeles, California, USA, October 2014.

Solution: Round 1

attacker

security critical area

old route r1

Waypoint

Enforcement

new route r2

Controller
Updates

Solution: Round 2

attacker

security critical area

old route r1

Waypoint

Enforcement

new route r2

Controller
Updates

Solution

attacker

security critical area

old route r1

Waypoint

Enforcement

new route r2

Controller
Updates

❏ How many rounds are needed?

❏ How to also avoid loops? Related to

Feedback Arc Set Problems

❏ What properties conflict?

❏ NP-hard but efficient algorithms exist!

1

2
2

Ludwig, Rost, Fourcard, Schmid

HotNets 2014

Ludwig, Marcinkowski, Schmid

PODC 2015

Distributed Control: for redundancy, multi-user, …

Decoupling

 84

Install

ACK/NAK

Install

ACK/NAK

M
id

d
le

w
ar

e

C
o

m
p

o
se

&

In
st

al
l

Problem: Conflict free, per-packet
consistent policy composition and
installation

Holy Grails: Linearizability (Safety),
Wait-freedom (Liveness)

Control should be distributed!

STN: A transactional interface

Canini, Kuznetsov, Levin Schmid

INFOCOM 2015

Before failover:

Decoupling

• Link failures today are not
uncommon [1]

• Modern networks provide
robust routing mechanisms

• i.e., routing which reacts to
failures

• example: MPLS local and global
path protection

Challenge: Fast Robust Routing Mechanisms

After failover:

 85

• Important that failover happens
fast = in-band

• Reaction time in control plane can be
orders of magnitude slower

• For this reason: OpenFlow Local
Fast Failover Mechanism

• Supports conditional forwarding rules
(depend on the local state of the link:
live or not?)

• Gives fast but local and perhaps
“suboptimal” forwarding sets

• Controller improves globally later…

Fast In-band Failover

data plane

ctrl plane

 86

• Important that failover happens
fast = in-band

• Reaction time in control plane can be
orders of magnitude slower

• For this reason: OpenFlow Local
Fast Failover Mechanism

• Supports conditional forwarding rules
(depend on the local state of the link:
live or not?)

• Gives fast but local and perhaps
“suboptimal” forwarding sets

• Controller improves globally later…

Fast In-band Failover

data plane

ctrl plane

 87

However, not much is known about how to use
the OpenFlow fast failover mechanism.
E.g.: How many failures can be tolerated
without losing connectivity?

• Important that failover happens
fast = in-band

• Reaction time in control plane can be
orders of magnitude slower

• For this reason: OpenFlow Local
Fast Failover Mechanism

• Supports conditional forwarding rules
(depend on the local state of the link:
live or not?)

• Gives fast but local and perhaps
“suboptimal” forwarding sets

• Controller improves globally later…

Fast In-band Failover

data plane

ctrl plane

 88

However, not much is known about how to use
the OpenFlow fast failover mechanism.
E.g.: How many failures can be tolerated
without losing connectivity?

How to use mechanism is a non-trivial problem even if underlying
network stays connected: (1) conditional failover rules need to be
allocated ahead of time, without knowing actual failures, (2) views at
runtime are inherently local.
How not to shoot in your foot with local fast failover (e.g., create
forwarding loops)?

• Offroad: already with today’s Openflow, provable connectivity can
be implemented in-band

• Even without per-switch state

• SmartSouth: already with today’s Openflow, many additional
functionality could in principle be implemented in-band

• E.g., anycast, sampling, snapshots, blackhole detection, ...

• Trend for «Openflow 2.0»: improve functionality of Openflow
switches further

• Registers, bitmasking, no longer field-specific, ...

Offroad and SmartSouth

 89

Schiff, Borokhovich, Schmid

HotSDN 2014, HotNets 2014

Conclusion

• Programmable and virtualized systems: opportunities for
improved resource allocation and utilization

• But also challenges in terms of resource interference and
predictable application performance

• Making the network a first class citizen can help to improve
performance

• High potential but also risks of a more dynamic control

Thank you!

And thanks to my co-authors, mainly: Marco Canini, Paolo Costa, Carlo Fürst, Petr
Kuznetsov, Dan Levin, Arne Ludwig, Matthias Rost, Jukka Suomela, Lalith Suresh

References

[7] Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies. Arne
Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid. 13th ACM Workshop on Hot Topics in Networks (HotNets), Los
Angeles, California, USA, October 2014.

[6] Panopticon: Reaping the Benefits of Incremental SDN Deployment in Enterprise Networks. Dan Levin, Marco Canini,
Stefan Schmid, Fabian Schaffert, and Anja Feldmann. USENIX Annual Technical Conference (ATC), 2014.

[1] Scheduling Loop-free Network Updates: It's Good to Relax! Arne Ludwig, Jasiek Marcinkowski, and Stefan Schmid. ACM Symposium on Principles of Distributed
Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

[2] Beyond the Stars: Revisiting Virtual Cluster Embeddings. Matthias Rost, Carlo Fuerst, and Stefan Schmid. ACM SIGCOMM Computer Communication Review (CCR),
July 2015.

[3] A Distributed and Robust SDN Control Plane for Transactional Network Updates, Marco Canini, Petr Kuznetsov, Dan Levin, and Stefan Schmid. IEEE INFOCOM
2015.

[4] OpenSDWN: Programmatic Control over Home and Enterprise WiFi. Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, Stefan Schmid, and Anja Feldmann.
ACM Sigcomm Symposium on SDN Research (SOSR), Santa Clara, California, USA, June 2015.

[5] C3: Cutting Tail Latency in Cloud Data Stores via Adaptive Replica Selection. Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI), Oakland, California, USA, May 2015.

[5] Exploiting Locality in Distributed SDN Control. Stefan Schmid and Jukka Suomela. ACM SIGCOMM HotSDN, 2013.

[6] AeroFlux: A Near-Sighted Controller Architecture for Software-Defined Wireless Networks. Julius Schulz-Zander, Nadi Sarrar, and Stefan Schmid. Open Networking
Summit (ONS), 2014.

[7] A Provable Data Plane Connectivity with Local Fast Failover: Introducing OpenFlow Graph Algorithms. Michael Borokhovich, Liron Schiff, and Stefan Schmid. ACM
SIGCOMM HotSDN, 2014.

[8] Reclaiming the Brain: Useful OpenFlow Functions in the Data Plane. Liron Schiff, Michael Borokhovich, and Stefan Schmid. 13th ACM Workshop on Hot Topics in
Networks (HotNets), 2014.

Backup Slides

 92

Flavors of VNet Embedding Problems (VNEP)

Minimize embedding footprint of a
single VNet :

Maximize profit over time:

Minimize max load of multiple
VNets or collocate to save energy:

Time

spread or
collocate?

Endpoints fixed:

Flavors of VNet Embedding Problems (VNEP)

Minimize embedding footprint of a
single VNet :

Maximize profit over time:

Minimize max load of multiple
VNets or collocate to save energy:

Time

spread or
collocate?

Endpoints fixed:

Hard Problem: Already embedding on a line, computing the
footprint and load optimal embedding of a single VNet is NP-

hard (e.g., minimum linear arrangement)

Great opportunities?: Already for a line host graph,
computing the footprint and load optimal embedding of a

single VNet is NP-hard (e.g., minimum linear arrangement).

… and: Generalization of Online Call Control for entire
networks, plus embedding problem on top!

Cannot directly apply minor theory!

Planar Graph H: K5 and K3,3 minor-free…

… but possible to embed G=K5!

It is possible to embed a guest graph G on a host graph H, even though G is not
a minor of H:

 95

Online Access Control (1)

Time

❏ Assume: end-point locations given

❏ Different routing and traffic models

❏ Price and duration

❏ Which ones to accept?

❏ Online Primal-Dual Framework (Buchbinder and Naor)

Infrastructure

VNets

 96

Solving the VNEP

❏ Formulate a Mixed Integer Program!

❏ Leverage additional structure!

❏ Use online primal-dual approach

❏ Discussion:
❏ Virtual network embedding a potential threat?

❏ Adding migration support

❏ Beyond graph structures

 97

Security Aspects

MinCut?
Topology?

Knitting Expand links Repeat

Find dense parts first! But careful:
A cannot be embedded in B.
B cannot be embedded in A.
But A can be embedded in BB.

Algorithm

Different from minor relation:
Can embed cliques in planar
graphs.

 98

Migration

 99

❏ Service or CloudNet migration

❏ Access cost: latency

❏ Migration cost: service interruption
/ bandwidth

❏ Variant of Uniform Metrical Task
System (graph-based access)

❏ Allows for O(log n / loglog n)
solutions (unlike MTS)

Amortized migration:

Lower bound: Online function tracking

F(x)

 99 99 99

Migration: Example

❏ Single service

❏ Migration Cost m

❏ Access Cost 1

❏ Goal: minimize sum of both?

active

inactive

on service!

 100

Realm of competitive analysis!

Migration: Example

active

inactive

on service!

 101

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

Migration: Example

active

inactive

on service!

 102

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

Migration: Example

active

inactive

on service!

 103

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

@ t = 0:

Migration: Example

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

active

inactive

 104

on service!

@ t = 1:

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

Migration: Example

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

active

inactive

on service!

 105

@ t = 1:

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

Migration: Example

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

active

inactive

on service!

 106

@ t = 2:

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

Migration: Example

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

active

inactive

on service!

 107

@ t = 2:

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

Migration: Example

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

active

inactive

on service!

 108

@ t = 3: epoch ends!

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

Migration: Example

❏ O(log n) competitive ratio only

❏ O(log n / loglog n) not elegant (yet)

active

inactive

on service!

 109

Analysis

Offline algorithm OFF has cost >m/2 per epoch:

1. True if OFF migrates at least once.

2. If OFF does not migrate: any single location has access cost >m/2.

Online algorithm ON has cost at most O(m log n) per epoch:

1. Access costs per phase at most m: counters

2. Migration cost per phase: m

3. How many phases? Due to center strategy, at least 1/8-th of active nodes

become passive

Deterministic Algo: Amortize!
1. Access cost counters at each node (if service there)

2. When counter exceeds m, deactivate nodes with

counters > m/2, migrate to active node in center of

active component: minimal sum of distances

3. When no node left, epoch ends. Reset and restart.

Solving the VNEP

❏ Formulate a Mixed Integer Program!

❏ Leverage additional structure!

❏ Use online primal-dual approach

❏ Discussion:
❏ Virtual network embedding a potential threat?

❏ Adding migration support

❏ Beyond graph structures

 110

Beyond Graph Specifications

❏ Example: Multicast with in-network processing

❏ The topology becomes subject to optimization as well

❏ Example: Cost efficient multicast or aggregation

n unicasts
(43 edges, 0 nodes)

Multicast / Steiner tree
(16 edges, 9 nodes)

Best of both worlds?

Joint optimization!

Substrate:

❏ Example: Multicast with in-network processing

❏ The topology becomes subject to optimization as well

❏ Example: Cost efficient multicast or aggregation

n unicasts
(43 edges, 0 nodes)

Multicast / Steiner tree
(16 edges, 9 nodes)

Joint optimization: Virtual
Steiner Arborescence

(26 edges, 2 nodes)

Substrate: Beyond Graph Specifications

Beyond Graph Specifications

❏ Approach: Single-commodity MIP and path decomposition
❏ Multi-commodity: 1,200,000 integer variables

❏ Single-commodity: 6,000 integer variables

❏ But lose information

?

 113

“(Network) Virtualization: The Killer
Application for SDN” (Nick McKeown)

The Internet has changed radically over the last decades

Historic goal: Connectivity between a small set of super-computers

Applications: File transfer and emails among scientists

Situation now: Non-negligible fraction of the world population is

constantly online

New requirements:

• More traffic, new demands on reliability and

predictability

• Thus: use infrastructure more efficiently, use in-

network caches: TE beyond destination-based

routing, …

• Many different applications: Google docs vs

datacenter synchronization vs on-demand video

• SDN allows us to schedule and route different

applications according to their needs

 114

Rigorous Solutions for the Geneal
Embedding Problem: MIP

Recipe:

❏ A (linear) objective function (e.g., load or footprint)

❏ A set of (linear) constraints

❏ Feed it to your favorite solver (CPLEX, Gurobi, etc.)

Details:
❏ Introduce binary variables map(v,s) to

map virtual nodes v on substrate node s

❏ Introduce flow variables for paths
(splittable or not?)

❏ Ensure flow conservation: all flow
entering a node must leave the node,
unless it is the source or the destination

map(v,s)
v

s

 115

UCC 2012

Rigorous Solutions for the Geneal
Embedding Problem: MIP

Recipe for VNEP formulation :

❏ A (linear) objective function (e.g., load or footprint)

❏ A set of (linear) constraints

❏ Feed it to your favorite solver (CPLEX, Gurobi, etc.)

Details:
❏ Introduce binary variables map(v,s) to

map virtual nodes v on substrate node s

❏ Introduce flow variables for paths
(splittable or not?)

❏ Ensure flow conservation: all flow
entering a node must leave the node,
unless it is the source or the destination

map(v,s)
v

s

 116

Mixed Integer Programs (1)

❏ MIPs can be quite fast
❏ For pure integer programs, SAT solvers likely faster

❏ However, that’s not the end of the story: MIP ≠ MIP
❏ The specific formulation matters!

❏ For example: many solvers use relaxations
❏ Make integer variables continuous: resulting linear programs (LPs)

can be solved in polynomial time!

❏ How good can solution in this subtree (given fixed variables) be at
most? (More flexibility: solution can only be better!)

❏ If already this is worse than currently best solution, we can cut!

❏ Relaxations can also be used as a basis for heuristics
❏ E.g., round fractional solutions to closest integer?

 117

Mixed Integer Programs (2)

Branch & bound tree:

Relax: possible to obtain
better solution than we
already have?

best so far
best

 118

Mixed Integer Programs (3)

VNet:

Physical Network:

 119

❏ Recall: Relaxations useful if they give good bounds

❏ However it’s hard to formulate a MIP for VNEP which
yields useful relaxations!

❏ What happens here?

Mixed Integer Programs (3)

VNet:

Physical Network:

map(v,s)=.5

map(v,s)=.5

 120

❏ Recall: Relaxations useful if they give good bounds

❏ However it’s hard to formulate a MIP for VNEP which
yields useful relaxations!

❏ What happens here?

Mixed Integer Programs (3)

VNet:

Physical Network:

map(v,s)=.5

map(v,s)=.5

Flow = 0

 121

❏ Recall: Relaxations useful if they give good bounds

❏ However it’s hard to formulate a MIP for VNEP which
yields useful relaxations!

❏ What happens here?

Mixed Integer Programs (3)

VNet:

Physical Network:

map(v,s)=.5

map(v,s)=.5

Flow = 0

Relaxations do not provide good
bounds: allocation 0! Also not

useful for rounding...

 122

❏ Recall: Relaxations useful if they give good bounds

❏ However it’s hard to formulate a MIP for VNEP which
yields useful relaxations!

❏ What happens here?

Example 1: Embedding

Where to allocate my virtual machines?

 123

Tentant 1

Tentant 2

❏ For a predictable performance, try to avoid
interference! Keep it local!

❏ Or make explicit bandwidth reservations! And
keep it local to keep reservations small.

❏ but avoid static bandwidth reservations and
make resource reservations in online fashion.

