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Abstract—Software-Defined Networks (SDNs) introduce inter-
esting new opportunities in how network routes can be defined,
verified, and changed over time. Despite the logically-centralized
perspective offered, however, an SDN still needs to be considered
a distributed system: rule updates communicated from the
controller to the individual switches traverse an asynchronous
network and may arrive out-of-order. This can lead to (temporary
or permanent) inconsistencies and triggered much research over
the last years. We in this paper initiate the study of algorithms
for consistent network updates in “timed SDNs”—SDNs in which
individual node updates can be scheduled at specific times. While
technology enabling tightly synchronized SDNs is emerging, the
resulting algorithmic problems have not been studied yet.

This paper presents, implements and evaluates Chronus, a
system which provides provably congestion- and loop-free net-
work updates while avoiding the flow table space headroom
required by existing two-phase update approaches. We formulate
the Minimum Update Time Problem (MUTP) as an optimization
program and propose two polynomial-time algorithms which lie
at the heart of Chronus: a decision algorithm to check feasibility
and a greedy algorithm to find a good update sequence. Extensive
experiments on Mininet and numerical simulations show that
Chronus can substantially reduce transient congestion and save
over 60% of the rules compared to state of the art.

Index Terms—SDN, network updates, clock synchronization,
congestion-free, loop-free.

I. INTRODUCTION

SOftware-Defined Networks (SDNs) outsource and consol-
idate the control over switches to a logically centralized

software. This introduces interesting opportunities to optimize
and innovate communication networks: SDNs allow to evolve
the control plane independently from the data plane, and
introduce many flexibilities in terms of traffic engineering,
efficient failover, and network virtualization. Moreover, net-
work policies can in principle be specified and verified in an
automated manner [9].

However, despite the centralization of the control plane,
an SDN needs to be regarded as a distributed system. The
communication between the controller(s) and the switches
occurs over a network: the times and orders in which update
commands sent by the controller arrive and take effect at the
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different switches may be hard to predict. The resulting out-
of-order arrival can cause various inconsistencies, not only
in terms of forwarding correctness, but also in terms of
performance and security (policy compliance). For example,
the fact that network updates do not take effect atomically [18]
in the data plane may lead to congestion during the update,
which in turn leads to packet loss and poor performance [6].

This is problematic, as network updates are expected to
happen frequently in software-defined networks, for several
reasons, including an increasingly more fine-grained traffic
engineering [7] (to minimize the maximal link load, an
operator may decide to reroute parts of the traffic along
different links), adaptive changes in security policies and
function virtualization [13] (e.g., traffic from one subnetwork
may have to be rerouted via a flexibly allocated and virtual-
ized middlebox before entering another subnetwork), network
maintenance [11], [12] (e.g., in order to replace a faulty router,
it can be necessary to temporarily reroute traffic), fast reaction
to link failures [20] (e.g., fast network update mechanisms
are required to react quickly to link failures and determine a
failover path).

The problem of consistent network updates has received
much attention over the last years and existing network update
algorithms can roughly be classified into two categories: (1)
two-phase update protocols and (2) node ordering protocols.
Oversimplifying things slightly, the former approaches have
the advantage that they are simple and relatively fast; how-
ever, they come with the drawback that they require pack-
et tagging, which implies overheads in terms of additional
forwarding rules to match these tags (additional flow table
space headroom) and which causes problems in the presence
of middleboxes [19]. The latter approaches have the advantage
that they do not require packet tagging, but it has been shown
that the corresponding scheduling algorithms come with strict
tradeoffs in terms of the levels of transient consistency they
provide and update time.

In this paper we initiate the algorithmic study of a promising
new approach to update networks consistently, which has the
potential to overcome the drawbacks of the two approaches
above. Our work is motivated by the advent of systems such
as Time4 [15], [17] which promise a more predictable and
synchronous data plane, allowing the coordination of network
updates using accurate time, in the order of microseconds [16].
We introduce a natural and new optimization problem for
timed SDNs as we aim to find a network update schedule
which minimizes the overall network update time, while en-
suring loop-freedom and congestion-freedom at any moment
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in time. More specifically, this paper makes the following
contributions:

We introduce a novel problem motivated by the advent
of more synchronous networks: we ask for accurate time
schedules—specifying update time points for each switch—
such that the total update time is minimized and congestion-
and loop-freedom are ensured at any moment in time. We
formulate this problem as an optimization program and prove
its hardness.

Our second contribution is Chronus, a system and set of
algorithms to solve MUTP. Our Chronus scheme does not
require additional forwarding rules during the update and
hence can be effectively applied to scenarios where the flow
table space is limited. We first propose a decision algorithm
to check the existence of a feasible congestion- and loop-free
update sequence in polynomial time. Furthermore, based on
the time-extended network model, we propose a fast greedy
algorithm to tackle MUTP.

Our third contribution is a concrete implementation and
evaluation of Chronus. In particular, we develop a prototype
of Chronus on Mininet using OFSoftSwitch and Dpctl [1] as
Openflow switches and the controller. Extensive experiments
and numerical simulations show that Chronus can substan-
tially reduce transient congestion and save over 60% of the
forwarding rules compared to state of the art.

II. AN OPTIMIZATION FRAMEWORK

A. A Motivating Example

We consider a Software-Defined Network (SDN) where a
controller updates the forwarding rules at the switches when-
ever a route changes. Fig. 1(a) illustrates a simple example:
there are six switches v1, . . . , v6 and the link capacity is one
unit. The transmission delay of each link is assumed to be
one time unit in this example. That is, if one unit of flow
leaves switch u at time t on the link 〈u, v〉, one unit of
flow arrives at switch v at time t + 1. The demand of the
“dynamic flow” is one unit, which is routed from the source
v1 to the destination v6. The initial routing is depicted as a
solid line and the final routing is depicted as a dashed line.
The notion of dynamic flow used in this paper is inspired
by [4]. In a dynamic flow, the utilization of a link varies over
time. Going back to our example in Fig. 1(b), assume we first
only update v2: hence, the subsequent flow is routed directly
to v6 through the link 〈v2, v6〉. Note that at this point, due
to the link propagation delay, the old flow is still on the path
〈v2, v3, v4, v5, v6〉 and will arrive at v6 after four time units.
Before that, the congestion will happen if we route new flow
on this path.

Prior work on the network update problem usually relies
on one of two fundamental update techniques: two-phase
updates [18] and order replacement updates [8], [14].
A possible order replacement update sequence is shown in
Fig. 1(b) → (c) → (d). In the first round, v2 is updated. And
then v3, v4 and v5 are updated and finally v1 is updated in the
last round. In the second round, due to the asynchronous nature
of the data plane, the new routing configuration for v4 may
become functional earlier than that for v3. Thus a transient

TABLE I
KEY NOTATIONS IN THIS PAPER.

F The set of dynamic flow f
V The set of switches v
E The set of links 〈u, v〉
G The directed network graph G = (V, E)
ti The time point. ti+1 > ti
T The set of time point. T = {t0, t1, . . . , tn}
FT The set of flows in the time-extended network
VT The set of switches v(t), where v ∈ V and t ∈ T
ET The set of links 〈u(ti), v(tj)〉
GT The time-extended network GT = (VT , ET )
Cu,v The capacity of link 〈u, v〉
P (f) The set of possible path in the time-extended network
pinit The initial path for the dynamic flow f
pfin The final path for the dynamic flow f
d The demand of the dynamic flow f
n The number of the switches. n = |V|

σu,v The transmission delay for the link 〈u, v〉.
Ot The dependency relation set at t, where t ∈ T .

forwarding loop occurs since the flow passing through v4 will
be routed back to v3 and then again arrive at v4. Similarly, if
the new routing configuration for v5 is functional earlier than
that for v3 and v4, the old flow on the path 〈v2, v3, v4, v5〉
will pass through the link 〈v2, v6〉 from 〈v5, v2〉. Note that
v1 is already updated in the first round and the new flow
from v1 will pass through 〈v2, v6〉. Here the new flow and
old flow together will result in a transient congestion on the
link 〈v2, v6〉 as the sum of flow demand is two units, which are
beyond the one unit link capacity. As for two-phase updates,
it doubles the number of forwarding rules during the update
and hence cannot be applied to scenarios where the flow table
space is limited.

The timed updates can effectively solve this problem.
Fig. 1(e) → Fig. 1(f) → Fig. 1(g) → Fig. 1(h) shows a
congestion- and loop-free timed update sequence. Switch v2
is updated at t0. And then v3 is updated at t1. Next v1 and v4
are updated simultaneously at t2. Finally, v5 is updated at t3.
The congestion- and loop-free condition are ensured at any
moment in time. Fig. 2(d) shows the timed updates process
in the time-extended network, which will be discussed soon.
This timed update plan can be acceptable in practice because
the updates can be scheduled accurately on the order of one
microsecond [16]. In addition, we only modify the action in
the flow table during the update process, which neither requires
packet tagging nor increases additional flow table space, and
thus overcome the drawback of two-phase updates.

B. Dynamic Flow Model And Problem Formulation

Before formulating the problem, we first present our net-
work model. A network is a directed graph G = (V, E), where
V is the set of switches and E the set of links with capacities
Cu,v and transmission time σu,v for each link 〈u, v〉 ∈ E . The
graph contains two paths: pinit and pfin. The former is the old
routing path which is depicted as a solid line in our example
and the latter is the new routing path depicted as a dashed
line. Both of pinit and pfin have the common source V + and
destination V −. For convenience, we summarize important
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v1 v2 v3 v4 v5 v6

Initial path and final path

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

Round 1 Round 2 Round 3

v1 v2 v3 v4 v5 v6

Time t0

v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6 v1 v2 v3 v4 v5 v6

Time t1 (t1=t0+1) Time t2 (t2=t1+1) Time t3 (t3=t2+1)

Fig. 1. Illustration of the network update problem considered in this paper. In this example topology, v1 is the source and v6 is the destination of both the
old (initial) route and the new route. The initial routing is illustrated as a solid line, while the final routing is represented as a dashed line. The red links (both
solid and dashed) represent that the load on the link is greater than zero, which indicates that the dynamic flow is passing through this link. The black links
(solid and dashed) represent the load on the link is zero. In our example, the link capacity and the link propagation delay is assumed to be one unit. The
order replacement update sequence is: Fig. 1(b) → (c) → (d), while a congestion- and loop-free timed update sequence is: Fig. 1(e) → (f) → (g) → (h).
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(a) The time-extended network model for all possible updates. The solid lines
represent the initial routing path, while the dashed lines represent the final
routing path. The link capacity and propagation delay are both one unit.
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(b) If all the switches are updated at t0, there would be three forwarding
loops: 〈v2(t−1), v3(t0)), v5(t1), v2(t2)〉, 〈v3(t−1), v4(t0)), v3(t1)〉 and
〈v2(t−3), v3(t−2), v4(t−1), v5(t0), v2(t1)〉.
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(c) If we update v1 and v2 at t0 and then update v3, v4 and v5 at t1, the
capacity of the link 〈v4(t1), v3(t2)〉 cannot accommodate the flows from v1
and v3 at t0 and the congestion occurs.
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(d) We first update switch v2 at t0, and update v3 at t1. Then we update v1
and v4 at t2. Finally we update v5 at t3. The whole procedure is congestion-
and loop-free.

Fig. 2. Illustration of the different timed update sequences in the time-extended network.

notations in Table I. Let us introduce four related notations
first.

Definition 1: Dynamic flow [4]: A dynamic flow on G is
a function f : E ×T → Z+ (Z+ represents the set of positive
integers) that satisfies the following conditions:

∑
(u,v)∈E+(v),t−σu,v≥0

xu,v(t− σu,v)−
∑

(u,v)∈E−(v)

xu,v(t)

=


−d v = V −,∀t ∈ T
0 ∀v ∈ V − {V −, V +},∀t ∈ T
d v = V +,∀t ∈ T

(1)

The dynamic flow conservation condition (1) indicates that
if one unit of flow leaves switch u at t−σu,v on link 〈u, v〉, one
unit of flow arrives v at t. Here d is the flow demand, which
is a positive integer. The time T is measured in discrete steps,
where T = {1, 2, . . . , t}. xu,v(t) characterizes the load at t,
which cannot go beyond the link capacity at each moment in
time.

0 ≤ xu,v(t) ≤ Cu,v,∀〈u, v〉 ∈ E ,∀t ∈ T (2)

Condition (2) ensures that the link capacity Cu,v cannot be
violated for ∀t ∈ T .

Definition 2: Loop-free condition: If one unit of flow is
routed through switch v at t, then it should not be routed
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through the switch v at t′, where t′ > t.
Definition 3: Congestion-free condition: The congestion-

free condition holds if and only if Condition (2) always holds
for ∀t ∈ T throughout the update process.

Our model and approach can be visualized nicely with a
time-extended network concept: a network in which there is a
copy of each switch for every time step ti ∈ T and the links
are redrawn between these copies to express their transmission
delay. Succinctly:

Definition 4: The time-extended network: The time-
extended network GT is a directed graph G with switches
v(t) for all v ∈ V and t ∈ T . For each link 〈u, v〉 ∈ E
with transmission delay σu,v and capacity Cu,v , the network
GT has link 〈u(t), v(t+ σu,v)〉 with capacity Cu,v .

The time-extended network captures the dynamic process
of flow transmission in the network. Fig. 2(a) gives a time-
extended network example of Fig. 1(a), where t−1, . . ., t−4
and t−5 represent the history time steps, t0 represents the
current time step, t1, t2, · · · represent the future time steps.
We can only update the switches in the current and future
time step and cannot update them in the history steps. The
reason why we illustrate history steps there is that we require
to check the existence of the forwarding loops defined in (2).
In Fig. 2(a), the flow on the link 〈v1(t0), v2(t1)〉 starts at
current time step t0, while the flow on the link 〈v2(t0), v3(t1)〉,
. . ., 〈v5(t0), v6(t1)〉 starts at history time step t−1, · · · , t−4,
respectively. For simplicity, we do not draw the links in the
time-extended network once the update is done.

Based on the above model and definition, we formulate
minimum update time problem (MUTP) as an integer linear
program (3) in the time-extended network, where the initial
(solid line) and final (dashed line) routing paths are given.
We seek to find an optimal timed update sequence so as to
minimize the total update steps such that the congestion- and
loop-free condition always hold at any moment in time. The
path set P (f) is pre-computed such that all paths are loop-free
defined in (2). Calculating all possible paths can be done in
polynomial time as the in-degree and out-degree in the time-
extended network are at most two. The resulting path set P (f)
are the input in our formulation.

minimize |T | (3)

subject to
∑
f∈FT

d
∑

p∈P (f):〈u(ti),v(tj)〉∈p

xf,p ≤ Cu(ti),v(tj),

∀〈u(ti), v(tj)〉 ∈ ET , ti, tj ∈ T (3a)∑
p∈P (f)

xf,p = 1, ∀f ∈ FT , (3b)

xf,p ∈ {0, 1}, ∀f ∈ FT ,∀p ∈ P (f). (3c)

The formulation of the minimum update time problem is
shown in (3). The objective aims to minimize the number
of elements in set T , i,e., the successive time steps dur-
ing the update. The LHS of constraint (3a) characterizes
the load of total flows at link 〈u(ti), v(tj)〉, which must
be less than or equal to its capacity in order to meet the
congestion-free condition defined in (3). The optimization

variable xf,p indicates whether flow f is routed through path p
in the time-extended network. This also determines that which
switch should be updated at which time point. For example,
as illustrated in Fig. 2(d), two flows starting at t−1 and
t2 are routed through the path 〈v1(t−1), v2(t0), v6(t1)〉 and
〈v1(t2), v4(t3), v3(t4), v5(t5), v2(t6), v6(t7)〉. Accordingly, we
update v2 and v1 at t0 and t2, respectively. Constraint (3b)
represents the flow can only be routed through one path in the
time-extended network. The variable xf,p in Constraint (3c)
equals one if and only if the flow is routed through path p,
and equals zero otherwise.

C. Hardness Analysis

We establish the hardness of MUTP below.
Theorem 1: Computing a shortest congestion- and loop-

free update sequence is NP-complete, already for a constant
number of update rounds.

We refer the reader to our prior work [14] for a rigorous NP-
hardness proof. Here we only give an intuition. We construct
a polynomial reduction from the SAT problem [5] to our
problem. Given a SAT boolean formula consisting of six
boolean variables x1, x2, · · · , x5 and x6 and seven clauses:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) ∧ (¬x1 ∨
x5) ∧ (¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x6). The objective
is to find a variable assignment that satisfies each clause. This
problem can be reduced to the instance of MUTP, which is
constructed as shown in Fig. 3. For each variable xi in the
formula we introduce one node named xi in our instance. A
true assignment for variable xi corresponds to the update in
the first time step. A false assignment corresponds to that in
the second time step. There are three colors of nodes: white,
gray and black. For gray nodes, we do not require to update
them. For black nodes yi, we can only update them in the
second time step as the forwarding loop happens if any of
them is updated firstly. As for white nodes xi, we require to
determine which nodes are updated in the first time step and
which in the second time step.

Now we explain the meaning of each SAT clause. The
clause (x1 ∨ x2 ∨ x3) indicates that at least one of the node
x1, x2 and x3 requires to be updated in the first time step.
Otherwise, a forwarding loop 〈u, v, x1, x2, x3, y1, u〉 happens
once y1 is updated in the second time step. Similarly, we have
clauses (x3 ∨ x4 ∨ x5) and (x4 ∨ x5 ∨ x6) to guarantee the
loop-freedom. The clause (¬x2 ∨ x5) represents that if x2
is updated in the first time step, x5 also should be updated
together with x2. Otherwise, a forwarding loop 〈x2, x5, y3, x2〉
happens which is depicted in the red line in Fig. 3. Similarly,
we have clause (¬x1 ∨ x5) and (¬x3 ∨ x6). The congestion-
freedom is guaranteed by the clause (¬x1 ∨ ¬x2). It char-
acterizes that x1 and x2 cannot be updated simultaneously,
as the load of incoming flows from x1, x2 and x4 is three
units, which is beyond the link capacity. Therefore, a feasible
variable assignment corresponds to a congestion- and loop-
free update sequence within two time steps. The assignment
results indicate that which white nodes should be updated in
the first time step and which nodes in the second.
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x1 x2 x3 x4 x5 x6vu y1 y2 y3 y4 y5

Fig. 3. An example for the formula (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ x5) ∧ (x4 ∨ x5 ∨ x6) ∧ (¬x1 ∨ x5) ∧ (¬x2 ∨ x5) ∧ (¬x1 ∨ ¬x2) ∧ (¬x3 ∨ x6). The
formula satisfiable problem corresponds to a feasible congestion- and loop-free update sequence within two time steps. The flow demand is one unit. The
capacity of each link is two units. The delay of each link is one time unit. Black and white nodes need to be updated, while gray nodes do not need to be
updated.

III. A DECISION ALGORITHM

In this section, we design a decision algorithm to check the
existence of a feasible update sequence. The detailed process is
shown in Algorithm 1. We first explain the high level working
of this algorithm. We construct a binary tree (all solid links) to
perform node updates step by step, where the root in the top
is the destination and the source node is located at the bottom
of left or right branch. If the source node belongs to the left
branch, we update one of the nodes whose outgoing dashed
line points from the left to the right branch. Then the source
node belongs to the right branch and accordingly the flow is
routed through a new path when the update is complete. Next
we update one node whose dashed line points from the right
to the left branch. We iteratively update the node from one
branch to the other until all the nodes are updated. Note that
the update operation from one branch to the other can always
guarantee the loop-free condition, and thus we only need to
check the congestion-free condition in our algorithm.

In Algorithm 1, the default root node is the destination V −,
which has no capacity constraint (line 1). We use V # to denote
a set of nodes which have already been updated. The search
process starts from the top to the bottom and adds the nodes
one by one into V # (lines 5-10). If V # is not empty, we merge
them into one node V ′ and record the minimum link capacity
between them as V ′.cons (lines 12-13). Next we find node
k through the incoming dashed line of V ′. By comparing the
sum of link delays between new path 〈k, V ′〉 and the old path
p′, we determine if the update of k is feasible or not (lines
14-19). After that we construct path candidate sets Pvi (new
path) and Qvi (old path) in order to update a node vi whose
outgoing dashed line points from one branch to the other. We
select the path p ∈ Pvi with the minimum path delay given its
delay is larger than in the old path q (lines 20-22). If the path
p does not exist and V ′.cons cannot accommodate the old
and the new flow simultaneously, a false variable is returned
(lines 23-24). Otherwise, we update the node on the path p.
The process is repeated until all the switches are updated. A
detailed example is illustrated in Fig. 4.

Based on the explanation above, we have the following
theorem.

Theorem 2: Algorithm 1 can check the feasibility of prob-
lem (3) in polynomial time if each link’s transmission delay
is identical.

Proof: Without loss of generality, we use the example in
Fig. 5 to prove our theorem.

Case 1 (the update operation in line 18): As shown in
Fig. 5(a), if the update of v violates the congestion-free

Algorithm 1 Checking the existence of a congestion- and
loop-free timed update sequence
Input: The directed network G; the initial path P init and the final

path P fin; φ(p): the sum of link delay in path p.
Output: A boolean variance that indicates whether there exists a

congestion- and loop-free update sequence or not.
1: v = V −, v.cons = +∞
2: t = 0
3: repeat
4: V # = ∅
5: while v.in.dashedline.source = ∅ do
6: if v.in.solidline.source is not unique then
7: break //the loop terminates if more than one node point

to v through solid line
8: u = v.in.solidline.source //the outgoing solid line of u

points to v
9: V # = V # ∪ {u}

10: v = u
11: if V # 6= ∅ then
12: Merge all the nodes in V # into one node, denoted as V ′

13: V ′.cons = argmin〈u,v〉∈V# Cu,v //indicate the bottle-
neck capacity

14: k = V ′.in.dashedline.source
15: p′ = 〈k, k.out.solidline.destination, . . . , V ′〉
16: if k is active and σk,V ′ ≤ φ(p′) and V ′.cons < 2d then
17: return false//indicate that the update operation of node

k will violate the congestion-free condition
18: Update k at t
19: t = t+ σk,V ′
20: Pvi = {〈vi, vj , . . . , V ′〉|〈vi, vj〉 ∈ P fin}
21: Qvi = {〈vi, vi.out.solidline.destination, . . . , V ′〉}
22: p = argminp∈Pvi

,q∈Qvi
|φ(p)≥φ(q) φ(p)

23: if p = ∅ and V ′.cons < 2d then
24: return false
25: for each node z ∈ p do
26: Update z at t
27: t = t+ φ(p)
28: until all the switches are updated
29: return true

condition, both (4) and (5) hold at the same time:

V ′.cons < 2 · d (4)

φ(〈v, V ′〉) < φ(〈v, vj , vk, . . . , vi, V ′〉) (5)

Suppose there exists a path p∗ such that the condition
φ(〈v, V ′〉) > φ(p∗) holds, p∗ must contain at least a upward
dashed link as any updates for downward links between v
and V ′ will result in a forwarding loop at current routing
configuration. We assume this upward dashed link is 〈vj , vi〉
and accordingly p∗ is 〈v, vj , vi, V ′〉. This indicates that the
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Fig. 5. Illustration of three network update scenarios shown in Algorithm 1.

update time for vj should be earlier than that of v. If the
update is feasible, either (6) or (7) holds:

Cvj ,V ′ ≥ 2 · d (6)

φ(〈vj , vk, . . . , vi〉) ≤ φ(〈vj , vi〉) (7)

However, the condition (6) cannot be established as (4) holds.
Thus condition (7) must be established. Combining (5) and
(7), we obtain,

φ(〈v, V ′〉) < φ(〈v, vj , vi, V ′〉)

This demonstrates that if the update of v is infeasible at current
time step, it is infeasible at any time step.

Case 2 (the update operation in line 26): As shown in
Fig. 5(b), suppose the update time of vx is earlier than that of
vm, we have (8) holds from line 22 of Algorithm 1.

φ(〈vx, vk, vq, V ′〉) < φ(〈vm, vy, vn, · · · , vk, vq, V ′〉) (8)

If the update of v violates the congestion-free condition,
both (4) and (9) hold.

φ(〈v, vx, vk, vq, V ′〉) > φ(〈v, vp, V ′〉) (9)

Combining (8) and (9), we derive that,

φ(〈v, vp, V ′〉) < φ(〈v, vx, vm, vy, vn, · · · , vk, vq, V ′〉)

The inequation above indicates that the update of v is still
infeasible even though the update time of vm is earlier than
that of vx. Similarly, the same as the case shown in Fig. 5(c).

IV. A GREEDY ALGORITHM

We now design a greedy algorithm on the time-extended
network to tackle MUTP. We explain how the algorithm works
using the example in Fig. 2. At each time step, we plan to
update as many switches as possible so as to minimize the total
update time. In Fig. 2(a), assume all the switches (the destina-
tion switch v6 does not require to be updated) are updated at
t0, three forwarding loops will happen as shown in Fig. 2(b),
which violates the loop-freedom condition. Assume we update
v1 and v2 at t0 as shown in Fig. 2(c), it is also impossible as the
capacity of link 〈v4(t1), v3(t2)〉 cannot accommodate the flows
from v1 and v3 simultaneously, which violates the congestion-
free condition. To guarantee this, we use the dependency set
to capture the update order among switches. According to
the different link capacity constraints in the time-extended
network, we construct the dependency relation set at each time
step as shown in Fig. 6. The detailed calculation process will
be explained in Algorithm 3. We can observe the dependency
relation set at t0 is {(v2 → v4 → v3 → v1 → v5)}, where we
can only update v2. After that at t1, the dependency relation
set is {(v3 → v1 → v5), (v4)}. We can update v3 and v4 at the
same time step and this cannot violate link capacity constraint.
However, a forwarding loop would happen if v4 is updated.
The procedure of checking forwarding loops is described in
Algorithm 4. Therefore, only v3 is updated at t1. At next time
step t2, we re-calculate the dependency relation set and it is
{(v1 → v5), (v4)}. We update v1 and v4 simultaneously at t2
and finally we update the last one v5 at t3. The whole update
procedure is shown in Fig. 2(d).

At the beginning of Algorithm 2, we construct V∗, which
represents the set of switches that require to be updated (line
1). The initial time set T contains current time step t0, history
time steps {t−σ, · · · , t−1} and future time step t1. We will add
one future time step ti at each loop until all the switches are
updated or the update is infeasible (lines 5-19). Based on the
time step set T , we construct the time-extended network (line
3). Furthermore, we calculate the dependency relation set Ot,
which is obtained from Algorithm 3 and will be discussed
soon. If Ot contains a cycle, the algorithm terminates that
indicates there does not exist a congestion-free update order
(lines 7-8). Otherwise, we can update the switches according
to the order in each dependency relation (lines 9-14). At the
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Algorithm 2 Assigning a update time point for each switch
Input: The directed network G; the initial path P init and the final

path P fin; the number of switches n.
Output: A solution {vi, tj} which indicates that vi is updated at tj .

1: Construct set V∗, which contains the switches required to be
updated

2: T = {t−σ, . . . , t−1, t0, t1}, where σ =
∑n−1
k=1 σvk,vk+1

3: Construct the time-extended network GT
4: t = t0, i = 1
5: repeat
6: Apply Algorithm 3 to obtain dependency relation set Ot at t

among the switches in set V∗
7: if Ot contains a dependency cycle then
8: return ∅ //indicate congestion-free update is infeasible
9: for each o ∈ Ot do

10: Pick the first element v̂ from o
11: Apply Algorithm 4 to check whether there exists a for-

warding loop if switch v̂ is updated at t
12: if there is no forwarding loop then
13: Update switch v̂ at t
14: V∗ = V∗ − v̂
15: t = ti
16: i++
17: T = T ∪ {ti} //add time step ti to T
18: Re-construct GT based on T
19: until Ot = ∅

same time, we apply Algorithm 4 to check the possibility of
forwarding loops (line 11). If the occurrence of the forwarding
loop is impossible, we update v̂ at t and remove v̂ from V∗
(lines 12-14). Finally we add one further time step ti to re-
construct the time-extended network and enter into the next
loop (lines 16-18).

Algorithm 3 Finding a dependency relation set
Input: The time-extended network GT ; time point t
Output: A dependency relation set Ot

1: for each vi ∈ V∗ do
2: if vi.include = true then
3: continue
4: v = vi(t).out.dashedline.destination //the outgoing

dashed line of vi(t) points to v
5: t′ = t+ σvi,v
6: v′ = v(t′).in.solidline.source //the outgoing solid line of

v′ points to v(t′)
7: ṽ = v(t′).out.solidline.destination
8: if Cv,ṽ < 2 · d then
9: Ot = Ot ∪ {(v′ → vi)}

10: v′.include = true
11: vi.include = true
12: Merge the dependency relation set with the common element.

The procedure of determining the dependency relation set
is shown in Algorithm 3. Let V∗ be the set of switches that
requires to be updated. We start from a arbitrary switch vi ∈
V∗. If vi is updated at t, the flow will be routed through the
link 〈vi(t), v(t′)〉 in the time-extended network, where t′−t =
σvi,v (lines 4-5). And then we find v′ and ṽ, which are the
last hop and next hop switch of v(t′) respectively (lines 6-7).
If the capacity of link 〈v, ṽ〉 cannot accommodate the flows
from vi and v′, we establish the dependency relation between
them (lines 8-9) and will not take them into account in the

next loop (lines 10-11). When the loop terminates (lines 1-
11), we merge the dependency relation set with the common
element (line 12). For example, we can merge {v1 → v2} and
{v2 → v3} into {v1 → v2 → v3} since both of them have the
common element v2.

t0 t1 t2 t3

v5

v1

v3

v4

v2 v4

v5

v1

v3 v4

v5

v1 v5

Fig. 6. Illustration of the resulting dependency relation set in the example of
the time-extended network shown in Fig. 2(a). The red dotted circle represents
that the switch is updated at current time step.

Taking Fig. 2(a) as an example, if we plan to update v1
at t0, we firstly need to find v4 at t1 in the time-extended
network. Once v4(t1) is found, we go back to its last hop
v3(t0) through the incoming solid edge of v4(t1). If the link
capacity 〈v4(t1), v5(t2)〉 cannot accommodate the two flows
simultaneously, we establish a dependency relation v3 → v1,
which means that the update time of v3 should be earlier than
that of v1, otherwise the congestion-free condition will be
violated.

Algorithm 4 Checking the forwarding loops
Input: The switch v; update time t
Output: A boolean variance which indicates if there exists a for-

warding loop when v is updated at t.
1: v∗ = v(t).out.dashedline.destination
2: repeat
3: v̂ = v(t).in.solidline.source
4: if v∗ = v̂ then
5: return true//indicate a forwarding loop forms
6: until v̂ = V +

7: return false

Algorithm 4 describes how to check the existence of a
forwarding loop. We search the possible forwarding loops in
the time-extended network. v(t) represents the switch v at time
step t, whose outgoing dashed line points to v∗ (line 1). We
look back through the incoming solid line of v(t) and find the
switch v̂ (line 3). This searching procedure is repeated until
the source switch V + is found. If v∗ is equal to v̂ during
the searching procedure, it returns a true boolean variable that
indicates a forwarding loop exists and the update operation
of v at t is impossible (lines 4-5). If the condition (line 4)
never holds during this procedure, a false boolean variable is
returned that indicates the update is feasible (line 7).

Based on the analysis above, we have the following:
Theorem 3: The timed update sequence {vi, tj} obtained

from Algorithm 2 is congestion- and loop-freedom if it exists.

V. LARGE-SCALE SIMULATIONS

We conduct extensive simulations and experiments to eval-
uate our algorithms. In this section we report our performance
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network.

evaluation using large-scale simulations. In the next section
we present our Mininet implementation results.

A. Setup

We use a large-scale linear network topology in our simu-
lations. The initial routing path is fixed and the final routing
path is chosen randomly (i.e., the final path is based on
random routing). The initial and the final routing paths have
the common source and destination. We run the algorithms
on Intel i5-2400 quad-core processor. Each data point is an
average of at least 30 runs.

B. Benchmark Schemes

• OR: The order replacement updates [14] that minimize
the number of rounds (i.e., the interactive between switch-
es and the controller) and avoid the forwarding loops.

• TP: The two-phase updates [18] that we use VLAN ID
as version number in our experiments.

• Chronus: Our greedy algorithm as shown in Algorithm 2.
• OPT: The optimal solution of the integer program (3)

obtained using the branch and bound method.
As discussed in Sec. I, the order replacement updates and
two-phase updates both do not take network capacity and link
transmission delay into account. Thus they cannot be used to
solve our problem defined in (3).

C. Basic Performance

We first investigate the percentage of congestion cases by
comparing 500 different update instances in each run. In
Fig. 12, the number of switches varies from 100 to 600 at the
increment of 100 for each run. We find that Chronus performs
very close to OPT with just slightly more congestion cases
during updates. Specifically, when the number of switches
is 600, more than 65% update instances using Chronus and
OPT are congestion-free, while it is only 15% for OR.
This demonstrates that Chronus in general leads to a small
degree of congestion and significantly outperforms OR by

around 60%. Fig. 13 shows the number of congested links
comparison in the time-extended network. We can see that,
as the number of switches increases, OR yields significantly
more congested links compared to Chronus. Specifically, the
number of congested links for OR and Chronus is 57 and
18, respectively, when the number of switches is 350, where
Chronus can decrease the number of congested links by more
than 65%.

Fig. 14 shows the CDFs of link utilization across all the
links in the time-extended network for different schemes. For
this simulation we fix the number of switches at 500. Intuitive-
ly, congestion happens when the utilization is larger than one.
We can see that Chronus outperforms OR by around 20%. We
now look at the rule space overhead of Chronus compared with
TP. Fig. 11 shows the maximum link utilization within 20 time
steps in the time-extended network. We define the congestion
time step as the case that the maximum link utilization is
larger than one. Essentially the number of congestion time
steps measures the the duration of congestion. We can observe
that there are in total 12 congestion time steps for OR, and only
5 for Chronus. Specifically, OR has 4 consecutive congestion
time steps from 4 to 8, and Chronus only has 2 from 15 to
17.

The box plot in Fig. 15 shows the number of rules for
Chronus and the blue solid point shows that for TP. We do
not show the results using TP when the number of switches
is larger than 400 since its result is beyond the maximum
value of y-axis. We can see that the number of rules for TP
increases more significantly than Chronus, as the number of
switches increases. Specifically, the average number of rules
using TP and Chronus is 596 and 190 respectively, when the
number of switches is 300. We observe that Chronus can save
over 60% rules than TP on average as shown in Fig. 15.
Note that these results become inaccurate for switches that
apply longest prefix matching or wild-card rules. However,
such rules are increasingly being substituted with exact match
rules in SDN [8].

Finally we evaluate the running time and update time. The
running time of Chronus, OR and OPT is illustrated in Fig. 7.
We do not include TP as it does not require to calculate the
update sequence. We can observe that the running time of OR
and OPT are both less than 60 seconds for up to 2K switches.
When the number of switches is larger than 4K, OR and OPT
do not complete within 60 seconds and the amount of their
required time is orders of magnitude longer than Chronus.
Chronus’s running time is less than 60 seconds even when the
number of switches is 6K. Fig. 8 shows the CDFs of update
time when the number of switches is fixed at 40. We can
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TABLE II
OPENFLOW MESSAGES USED IN CHRONUS.

Message Parameter Description
OFPBCT_OPEN_REQUEST bundle_id Open a bundle using bundle_id

OFPT_BUNDLE_ADD_MESSAGE bundle_id, modi 1, · · · , modi n Add modifications to the bundle with bundle_id
OFPBCT_CLOSE_REQUEST bundle_id Close the bundle with bundle_id
OFPBCT_COMMIT_REQUEST bundle_id, t Commit the bundle with a specific time point t
OFPBCT_COMMIT_REPLY bundle_id The switch sends commit reply messages to the controller
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see that most updates using Chronus finish within 15 seconds
and OPT takes 13 seconds. The update time of Chronus can
achieve near optimal compared to OPT.

VI. IMPLEMENTATION

In order to conduct experiments, complementing our sim-
ulations, we developed a prototype in Mininet 2.2.1 [10], a
high fidelity network emulator for SDN. We use an Intel PC
i5-2400 with quad-core processor. Mininet is configured to
use OFSoftSwitch and Dpctl [1] as Openflow switches and
the controller. The clock of all switches are synchronized
by default in Mininet, and thus we do not require to run
the Network Time Protocol (NTP). We use the scheduled
bundles message [2] to guarantee accurate timing. Due to
the single machine limitation of Mininet, we adopt a linear
network topology with 10 switches. The forwarding rules are
installed and updated via Dpctl API. We use InPort and
vlan_id as a matching field to perform routing forwarding.

We now describe how to perform accurate timing for our
algorithms. The procedure is shown in Algorithm 5. We first
obtain a solution to MUTP using the greedy algorithm (line 1).
Next we record the current clock as t0 (lines 2). Then we se-
quentially examine every switch and update the corresponding
forwarding rules. We first send a OFPBCT_OPEN_REQUEST
message to open a bundle (line 4), and then send a sequence
of OFPT_BUNDLE_ADD_MESSAGE messages to modify the
rules (line 5). Modifications are stored into a temporary staging
area without taking effect. Next we close the bundle (line 6).
Finally when the bundle is committed, the modifications will
be applied to the switch at a specific time point t0 + tj + θ
(line 7). The threshold θ used here is to prevent that the pre-
defined update time t0 + tj becomes a past time point as a
result of the bundle message installation delay. We set θ to be
2 seconds in our experiments. The openflow messages used in
our algorithm are shown in Table II.

For completeness we explain the implementation of two-
phase updates and order replacement updates in our implemen-
tation. The two-phase update relies on packet tagging. We use
vlan_id in packet headers to index stages. In the first phase,

Algorithm 5 Performing the timed network updates
Input: The directed network G; the initial path pinit and the final

path pfin; threshold θ;
Output: Update sequence of switch rules.

1: Apply Algorithm 2 and obtain solutions {vi, tj}.
2: Get the current clock t0
3: for each vi ∈ V do
4: The controller starts to open a bundle by sending

OFPBCT_OPEN_REQUEST message, and receives a reply
from the switch

5: The controller sends a sequence of
OFPT_BUNDLE_ADD_MESSAGE messages to update
the rules at switch vi

6: The controller sends OFPBCT_CLOSE_REQUEST message
to close the bundle

7: The controller sends OFPBCT_COMMIT_REQUEST message
with OFPBF_TIME flag and ofp_bundle_prop_time
is set to be t0 + tj + θ, and then receives
OFPBCT_COMMIT_REPLY message

new rules—whose matching fields use the new vlan_id that
corresponds to the second stage—are added. During this phase,
flows are still forwarded according to existing rules as packets
are still stamped with the vlan_id of the first stage. Once the
update is done for all switches, the protocol enters the second
phase where we stamp every incoming packet with the new
vlan_id. At this point the new rules become functional, and
the old rules are removed by the controller. We use the branch
and bound method to obtain the optimal solution of the order
replacement updates. When performing updates in each round,
our algorithm sleeps for a while (using a random number from
the data of [8]), so as to simulate the asynchronous nature of
data plane.
Experiment Results: We measure the difference of flow
completion time (DFCT) with and without the updates for
TCP flows to assess the impact of different update schemes.
The definition of DFCT is described as follows:

DFCT = FCTupdate − FCTnormal

where FCTupdate and FCTnormal represent the flow com-
pletion time with and without network updates. In our ex-
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periments, the TCP window size is 85.3KB by default for
both server and client side. We set the link capacity to 10
Mbps. The link delay is set to be an integer between 100ms to
2000ms. The maximum queue length for each switch is 100.
We perform the same experiment at least 30 runs for both
TP, Chronus and OR, and report the minimum, maximum and
average of DFCT measured by iperf for the flow. Fig. 9
and Fig. 10 show DFCT of two typical flows: short flow and
long-lived flow, where the flow volume is 512KB and 5MB
respectively. We can observe that DFCT of the short flow is
larger than DFCT of the long-lived flow, which indicates that
the network updates have a more significant impact on short
flows. Specifically, the average DFCT of OR, TP and Chrouns
is 1.44s, 1.51s and 3.21s in Fig. 9. OR has more DFCT than
TP and Chrouns. This is because the number of congested
links using OR is greater than that using TP and Chronus,
due to the asynchronous network updates, which results in
more FCTupdate. Chronus takes advantage of accurate timing
to reduce congestion during network updates and thus has a
better FCTupdate than OR. Compared with TP, Chronus is
able to offer almost equivalent performance without additional
flow table space overhead in the switches. Finally we note that
FCTnormal for TP is slightly longer than OR and Chronus
due to packet tagging.

VII. RELATED WORK

We review prior art on network updates in SDNs. Reitblatt
et al. [18] introduced a notion of per-flow consistent and per-
packet consistent network updates. The authors also describe
a two-phase commit protocol to preserve consistency when
transitioning between two different routing configurations.
Ludwig et al. [14] aim to minimize the number of sequential
controller interactions when transitioning from the initial to the
final update stage. The authors prove that finding a shortest
update sequence that avoids forwarding loops is NP-hard.
The authors also introduce a notion of relaxed loop-freedom,
which provides an interesting consistency-runtime tradeoff.
Another work by Ludwig et al. [13] considers consistent
network updates in the presence of middleboxes. However,
these works do not consider transient congestion. SWAN [6]
and zUpdate [12] try to find congestion-free update plans
in WAN and DCN, respectively. SWAN shows that if each
link has a certain slack capacity, a congestion-free update
sequence always exists. This condition is too strong to always
hold in practice. Brandt et al. [3] show that a congestion-
free update sequence still exists even if some links are fully
utilized. Dionysus [8] employs dependency graphs to find a
fast congestion-free update plan according to different runtime
conditions of switches. Mizrahi et al. [15], [17] propose a
time synchronization protocol between the controller and the
data plane, which uses accurate timing to trigger network
updates and reduce congestion. CCG [21] studies how to
safely implement customizable consistency polices in order
to minimize transition delay.

VIII. CONCLUSION

In this paper, we studied the problem of minimizing update
time in timed SDNs. We proposed a decision algorithm to

check the feasibility in polynomial time and a greedy algo-
rithm to solve the problem. Evaluation results show that our
solutions can reduce transient congestion and save flow table
space.
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