
1

Deadline-Aware Multicast Transfers in
Software-Defined Optical Wide-Area Networks

Long Luo, Member, IEEE, Klaus-Tycho Foerster,
Stefan Schmid, Member, IEEE, Hongfang Yu, Member, IEEE.

Abstract—The increasing amount of data replication across
datacenters introduces a need for efficient bulk data trans-
fer protocols which provide certain guarantees, most notably
timely transfer completion. We present DaRTree which leverages
emerging optical reconfiguration technologies, to jointly optimize
topology and multicast transfers in software-defined optical Wide-
Area Networks (WANs), and thereby maximize throughput and
acceptance ratio of transfer requests subject to transfer deadlines.
DaRTree is based on a novel integer linear program relaxation
and deterministic rounding scheme. To this end, DaRTree uses
Steiner trees for forwarding and adaptive routing based on
the current network load. DaRTree provides transfer completion
guarantees without the need for rescheduling or preemption. Our
evaluations show that DaRTree increases the network throughput
and the number of accepted requests by up to 1.7×, especially
for larger WANs. Moreover, DaRTree even outperforms state-
of-the-art solutions when the traffic demands are only unicast
transfers or when the WAN topology cannot be reconfigured.
While DaRTree determines the rate and route to serve a request at
the time of (online) admission control, we show that the acceptance
ratio and throughput can be improved by up to 1.3× even further
when DaRTree updates the rate and route of admitted transfers
also at runtime.

I. INTRODUCTION

With the increasing popularity of online services on many
fronts (health, business, streaming, or social networking), dat-
acenters will continue to grow explosively in the coming
years, both in size and numbers [2]. Datacenters hence be-
come a critical infrastructure of our digital society. This also
introduces increasingly stringent availability and dependability
requirements, which in turn require large-scale data replication
across multiple datacenters. Such replication can result in bulk
transfers ranging from terabytes to petabytes [3]–[7].

These bulk transfers of replication applications are often
one-to-many. For example, for availability, many cloud ser-
vices typically require data or content (e.g., search indices,
video files, and backups) to be dynamically copied from the
datacenter hosting the data to many destination datacenters

Long Luo and Hongfang Yu are with the University of Electronic
Science and Technology, P.R. China (e-mail: longluo.uestc@gmail.com,
yuhf@uestc.edu.cn). Klaus-Tycho Foerster and Stefan Schmid are with Fac-
ulty of Computer Science, University of Vienna, Austria (e-mail: klaus-
tycho.foerster@univie.ac.at, stefan schmid@univie.ac.at). Work performed
while visiting at University of Vienna. A preliminary version of this article
appears in the proceedings of the 27th IEEE/ACM International Symposium
on Quality of Service [1].

This work was partially supported by the National Key Research and
Development Program of China(2019YFB1802803); the PCL Future Greater-
Bay Area Network Facilities for Large-scale Experiments and Applications
(PCL2018KP001). This project has also received funding from the European
Research Council (ERC) under the European Unions Horizon 2020 research
and innovation programme (grant agreement No. 864228, AdjustNet: Self-
Adjusting Networks).

that rely on such replica to run services. Indeed, one-to-many
transfers can dominate the inter-datacenter traffic of large-scale
service companies [8]. Another key characteristic of such one-
to-many transfers is that they require to be completed timely. A
majority of such transfers have a hard deadline for completion
time, while the transfers are not very sensitive to delay and
rate [7, 9]. Other transfers require quick synchronization, e.g.,
of an index of a search service, to provide users with high
search quality [9]–[11]. A recent survey of Wide-Area Network
(WAN) customers at Microsoft showed that 88% of them incur
penalties on missed deadlines [9]. Network operators hence
need to carefully manage these large one-to-many transfers to
make sure they meet their deadlines.

This paper is motivated by two technological opportunities
to improve the efficiency of one-to-many transfers. The first
opportunity is related to emerging innovative traffic engineer-
ing mechanisms, as enabled by Software-Defined Networks
(SDNs), which allow to improve large data transfers. An SDN
does not only support more flexible changes of routes and rates,
which can be exploited to admit more traffic while ensuring
that deadlines are met [3]–[5, 7, 10], but it also allows to
go beyond today’s unicast approach (e.g., Amoeba [7]) to
one-to-many bulk data transfers: SDNs (e.g., using OpenFlow
group tables [12] or P4 [13]) support efficient communication
primitives such as anycast [14] or multicast [15]–[19]. Com-
munication along a multicast trees is particularly interesting
for bulk-data transfers as it can save bandwidth by avoiding
redundant transmissions.

The second opportunity is related to emerging optical tech-
nologies, which allow to optimize also the physical layer,
through reconfigurations at runtime [20]–[23]: recent optical
WAN technology allows to update the network topology by
flexibly and rapidly shifting wavelengths to neighboring fibers.
Wavelength assignments, the vehicle to send data across fibers,
hence become reconfigurable. In turn, this enables demand-
aware network topologies, which adjust the network’s capacity
to current traffic demands [20, 21]. Notwithstanding, SDN is
the practical enabler of these dynamic technologies [20].

However, today we do not have a good understanding of how
to exploit such technologies toward efficient multicast transfers.
While recent work highlights the potential of reconfigurations,
these solutions are still limited to unicast transfers [20, 21], and
hence are not well suited for multicast transfers.
Contributions. In this paper, we initiate the study of how
to jointly optimize bulk multicast transfers subject to strict
deadlines, leveraging both SDN-enabled forwarding trees and

2

reconfigurable topologies in our DaRTree1 approach. DaRTree
is based on a deterministic MILP rounding scheme and comes
with several attractive properties. In particular, we show that
while DaRTree combines multicast transfer and topology recon-
figuration optimizations, DaRTree outperforms state-of-the-art
of approaches already for just one of these optimizations:

• Even under a workload which consists only of uni-
cast transfers, DaRTree outperforms prior work such as
Owan [20] (which is based on local search heuristics
to reconfigure the WAN), by efficiently relaxing and
rounding an integer program formulation.

• Even if the WAN topology is static, i.e., wavelengths can-
not be reconfigured, DaRTree outperforms prior multicast
approaches like MTree [17] as well. DaRTree generates
multicast Steiner trees with the current network load in
mind, i.e., performs adaptive routing.

• Our extensive simulations on real-world topologies show
that the joint optimization of DaRTree greatly improves
on the state of the art. We can increase the network
throughput and the number of accepted requests by up
to 1.7×, in particular for larger real-world topologies.

• Moreover, DaRTree can also adapt to different transfer
request utility functions, maintaining efficient computation
times and improving the weighted acceptance ratio.

• DaRTree does not rely on rescheduling or preemption, and
always guarantees deadlines, by being reservation-based.
In case rates and routes may be adapted over time, we
utilize DaRTreeJoint, which optimizes the network and
transfers in every timeslot, while maintaining deadline
completion for all admitted transfers. Our simulations
show that DaRTreeJoint improves the acceptance ratio and
throughput by another factor of up to 1.3×, depending on
the scenario.

Example. Consider the four node WAN in Fig. 1, where each
node can use up to five unit-capacity wavelengths in total to
connect to its neighbors2 over fiber. Initially, we have one
wavelength (black edge) connecting s and v, two wavelengths
between v and d1, d2, respectively, and three between d1, d2.
The objective is to improve the network throughput and accept
more requests with tight deadlines.

Assume that there is a data transfer request from s to two
receivers d1, d2. As there is a bottleneck between s and v, a
unicast transfer as in Plan A in Fig. 1(a), using e.g. Amoeba [7],
takes twice as long as a multicast transfer as in Plan B in
Fig. 1(b), using e.g. MTree [17]. Both methods can be sped up
by reconfiguring the wavelengths across this WAN, as shown
in Fig. 1(c). Now, unicast transfers finish in half the time using
Plan C (see Fig. 1(d)) that may be found by Owan proposed
in [20]. Our approach DaRTree, combining both multicasting
and reconfiguration, completes in 0.5 time units as shown in
Plan D in Fig. 1(e). As seen in Fig. 1(f), only DaRTree can
accept the request if its deadline is 0.5 time units, and all other

1DaRTree stands for Deadline-aware Reconfigurable Trees.
2E.g., the node v can connect to all other nodes, but s only to v.

s

v

d1 d2

0.5 0.5

(a) Plan A

s

v

d1 d2

1.0

1.0 1.0

(b) Plan B

s

v

d1 d2

(c) Reconfiguration

s

v

d1 d2

1.0 1.0

(d) Plan C

s

v

d1 d2

2.0

(e) Plan D

PlanA

Time

1
1

0.5
Plan C
PlanD

PlanB
2

(f) Completion time

Fig. 1. Example for the power of multicast transfers and topology reconfig-
uration. Initially, the wavelengths (black edges) are configured as shown in
Fig. 1(a), where each wavelength connecting two nodes can send 1 unit of data
per time unit. When the node s wants to replicate a volume of 1 data units to
both d1 and d2, the transmission speed is limited to 1 unit at node v. As such, 2
seconds are needed according to Plan A using unicast transfers (Fig. 1(a)) and
1 second with Plan B using multicast transfers along Steiner trees (Fig. 1(b)).
However, when the wavelengths are reconfigured as in Fig. 1(c), the transfer
times are halved: 1 time unit with Plan C using unicast transfers (Fig. 1(d))
and just 0.5 time units according to Plan D with multicast transfers (Fig. 1(e).

approaches have to reject it or miss its deadline, they only meet
deadlines of 1 to 2 time units.
Organization. We first review related work in §II, then provide
some background on reconfigurable WANs and introduce our
model in §III, followed by an overview of our approach in
§IV, and an offline problem formalization in §V. We present
DaRTree in details in §VI and then cover DaRTreeJoint in §VII,
which may adapt transfer rates and routing. After reporting on
simulation results in §VIII, we conclude in §IX.

II. RELATED WORK

Following the emergence of software-defined networking
technologies, many problems in the networking field have
been rethought and reoptimized. Traffic engineering for inter-
datacenter WANs, as a classic problem, has received increasing
attention in networking research as the number of datacenters
and the inter-datacenter traffic demands are growing at an
unprecedented rate. In particular, many works have investi-
gated how to improve the traffic engineering for wide-area
networks under an SDN architecture [3]–[7, 10, 16, 17, 20,
21, 24]. Earlier work focused on network-wide objectives such
as minimizing network utilization and maximizing network
throughput [3, 4]. Recent work considers more fine-grained
objectives, like meeting deadlines of bulk data transfers [5, 7,
10, 16, 17, 20, 24] and minimizing the completion time of
data transfers [6, 21]. In this context, most work focuses on
unicast transfers, with some more recent work also considering
multicast transfers.
Unicast Transfers: Unicast transfers in inter-datacenter net-
work have been the focus of much attention [5, 7, 10, 20, 21].
These works adopt k-shortest paths to deliver traffic and
control the transmission rate along these paths to optimize the
unicast transfers. Tempus [5] aims to allocate transfers fairly by
delivering the maximum same deadline-met data fraction for
all transfers. Amoeba [7] performs online admission control

3

and focuses on guaranteeing the deadlines for a maximum
number of transfers. Luo et at. [10] propose a competitive
online algorithm to maximize the system utility of delivering
transfers with either hard or soft deadlines. All the above works
do not take multicast transfers into consideration.
Multicast Transfers: With the exponential growth of geo-
replication, there has also been a spike in interest to de-
sign algorithms explicitly for multicast data transfers in inter-
datacenter WANs [6, 16, 17, 24]. DDCCast [16] proposes to
satisfy the transfer deadlines by delivering data over a forward-
ing tree. QuickCast [6] considers multiple forwarding trees and
focuses on reducing mean completion times of elastic multicast
transfers by taking into account forwarding tree selection and
rate-allocation. Ji et al. [17] focus on providing deadline
promises to as many transfers as possible by controlling the
transfer transmission rate over non-adaptive routing trees.

Luo et al. [24] aim to maximize the number of deadline-
satisfied transfers by allowing the receivers that have already
completed to send replica to other uncompleted receivers. There
also exists a group of works [8, 25]–[29] that adopt a store-and-
forward mechanism to optimize inter-datacenter bulk traffic by
using additional storage capacities of servers in intermediate
datacenters, which is not investigated by this work and many
related works. All above proposals consider transfers over
unreconfigurable networks.
Reconfigurable Networks: The power of dynamic inter-
datacenter WAN reconfiguration was recently showcased by
Owan [20, 21]. In order to satisfy deadlines for unicast transfers
respectively reduce their completion time, Owan jointly recon-
figures the network topology by a local search heuristic and
controls the transmission rate along k-paths. Our approach on
the other hand utilizes multicast routing along k-Steiner trees
and leverages an efficiently relaxed optimization program to
assign wavelengths. The also exists work on bandwidth-variable
links [23, 30] and abstractions in reconfigurable WANs [31],
and on multicast [32, 33] in reconfigurable datacenters [34],
which are however all orthogonal to our setting.

III. BACKGROUND AND PRELIMINARIES

We first give a technological background on reconfigurable
WANs, which we integrate into our formal model, closely
following the assumptions of prior work in this area [20, 21].

Background on Reconfigurable WANs. We focus on mul-
ticast bulk transfers in WANs connecting multiple datacenter
networks (DCNs), empowered by SDN to centrally control the
networking devices. However, it can also directly be applied
by ISPs that offer bulk transfer services to clients [20].

A reconfigurable WAN consists of Reconfigurable Optical
Add/Drop Multiplexers (ROADMs), which in turn are con-
nected by optical fiber cables. The optical fibers are used to
transmit wavelengths, whose number and capacity depends
on the technology. For example, using Wavelength Division
Multiplexing (WDM) and On-Off Keying (OOK), 40 wave-
lengths at 10 Gbps can be supported simultaneously [35].
Newer technologies can support e.g. 88 or more wavelengths

using dense WDM, at higher data rates of 40/100 Gbps [35, 36].
While these WANs are manually configured by default (e.g., for
initial setup), ROADMs also allow to dynamically reconfigure
the wavelength allocations on the fly in the order of hundreds
of milliseconds [20]. The number of deployed wavelengths
per ROADM is limited by its number of transponders, where
the receiving and sending parts are commonly bundled into
bidirectional wavelengths, but may also be separated [37]. Pre-
vious work highlighted the potential of reconfigurable WANs,
but so far focused on (single-hop [21, 38]) unicast transfers
in inter-datacenter networks [20]. We go beyond these works
by incorporating multicast transfers in multi-hop networks and
providing an efficient algorithmic framework based on integer
program relaxation and rounding.

Preliminaries. We model a reconfigurable WAN by an undi-
rected graph G = (V,E), where the nodes V represent
ROADMs connected to DCNs and the edges E are the fibers
connecting them. Each fiber e ∈ E has a maximum number of
wavelengths Ce ∈ N it can carry and each node v ∈ V can send
Csv ∈ N and receive Crv ∈ N wavelengths via its transponders
in total, respectively. In order to model the proper wavelength
assignment via transponders to the fibers, we introduce two
directed (virtual) links L for each fiber e ∈ E, in opposing
directions: a link l ∈ L from u to v on e can be assigned
at most min{Csu, Crv , Ce} wavelengths. We focus on an online
system, where transfer requests arrive the network dynamically.
Each transfer request R is specified by a source s ∈ V , a set of
receivers d ⊆ V , the volume (size) f of to-be-transferred data,
the time tarr to start and the deadline tdl of completion time.

IV. OVERVIEW OF DaRTree

Abstractly, DaRTree is an online scheduler for bulk multi-
cast transfers in reconfigurable SDN-based wide-area networks
(e.g., based on OpenFlow [12] or P4 [13]). It orchestrates
the topology, routing and transmission rate for requested data
transfers without prior knowledge of the future requests.

The controller maintains a global view of the network
topology and all ongoing transfer requests. It operates in a
discrete slotted time system, where each timeslot has a size
of several minutes (e.g., 5 minutes). Transfer requests appear
at the beginning of every timeslot in an online fashion. When
new transfer requests arrive from clients, DaRTree performs
admission control in order to determine which of them can
be accepted, given the transfer deadline and network capacity
constraints. Once a request is admitted, DaRTree guarantees
the completion of a transfer request before its deadline, in
order to avoid utility loss and further penalties. To this end,
DaRTree utilizes efficient algorithms to orchestrate deadline-
aware wavelength assignment, routing, and rate allocation for
accepted transfers. Before each timeslot, the controller recon-
figures the network-layer topology by enforcing ROADMs to
change their wavelength allocation, configure routing trees by
updating forwarding rules in switches (e.g., using network
update mechanisms [39]), and informs clients of the sending
rates of their data transfers.

4

As noted in this context by Jin et al., “A time slot is much
longer than the time to reconfigure the network and adjust
sending rates, i.e., a few minutes vs. hundreds or thousands of
milliseconds.” [20] Moreover, as the volume of transfers in the
context of inter-datacenters is often in the order of terabytes
to petabytes [3]–[7], transfers usually last from minutes to
hours. The reconfiguration delay imposed by DaRTree is hence
negligible, analogously to the propagation delay.

Lastly, in order to not disturb the small fraction of interactive
traffic, which is sensible to delays yet stable and predicable over
short time periods [7], DaRTree can reserve a corresponding set
of wavelengths and only reallocates the remaining wavelengths
for optimizing large data transfers.
Algorithm overview. We focus on multicast transfers that
have strict deadlines on their completion times. In order
to maximize the total system utility, we aim to admit the
maximum number of deadline-meeting transfers by jointly
optimizing the network topology together with the routing
and rate allocation dynamically. We provide two versions of
algorithms in DaRTree, depending on the requirements of the
clients. In the first reservation-based version, DaRTree fixes
the transfer rate and routes for each request in their first
timeslot, i.e., the clients can already plan ahead for the whole
lifetime of the transfer, as the resources are reserved. In the
second version, coined DaRTreeJoint the deadline completion
of each admitted transfer is guaranteed as well, but the rates
and routes might change in each timeslot. As such, we can
admit more requests, but the clients need to be more flexible.
More precisely, DaRTree relies on the following ideas:

1) When a new batch of requests arrives, we compute a
set of k Steiner trees for the routing for each transfer.
This computation is separated from the wavelength and
rate allocation part, to speed up the computation time
of DaRTree. However, DaRTree is not oblivious to the
network utilization in this step: the routing trees are
created in a load-adaptive manner.

2) Next, we formulate the wavelength and rate allocation
problem for transfers as a mixed integer linear program.
In order to relax MILP constraints, we set a small amount
of wavelengths aside, to obtain feasible solutions. These
spare resources are optimized according to the chosen
Steiner trees.

3) We then maximize the number of requests admitted in the
current timeslot. In order to provision for future requests,
we spread the resource usage over a longer time, instead
of greedily filling the network for the next few timeslots.

4) Lastly, we admit the maximum number of requests pos-
sible for this timeslot and obtain a feasible wavelength
allocation with the spare resources. We would like to em-
phasize that all allocation details made by current timeslot
for these accepted transfer requests stay fixed: they may
not be modified or preempted in future timeslots, and are
in particular not impacted by topology reconfiguration.

Our second version, DaRTreeJoint, differs from DaRTree in
the sense that the allocations are not fixed for the whole lifetime

of the transfer request. Rather, in each timeslot, we recompute
the routing and wavelength allocation, under the constraint that
each admitted transfer can still meet its deadline. Herein we can
leverage known network update techniques [20, 40] to perform
consistent cross-layer updates during topology reconfiguration,
e.g., via optimization formulations or dependency graphs.

TABLE I. Key notations used in the problem formulation
Network model

V the set of all datacenters (i.e., the nodes)
E the set of all inter-datacenter fibers (i.e., the edges)
L the set of all inter-datacenter directed link connections
Csv,t the maximum number of wavelengths that node v ∈ V can send

at time t via fibers connecting to it
Crv,t the maximum number of wavelengths that node v ∈ V can receive

at time t via fibers connecting to it
Ce,t the maximum number of wavelengths that edge e ∈ E can carry

at time t
c the capacity carried with per wavelength
α the length of a timeslot
Rall the collection of all transfer requests from a global time view
Rcur the collection of newly incoming transfer requests at the beginning

of timeslots t
R′ the collection of all accepted but unfinished transfer requests at the

end of timeslots t
Transfer request R

s the source datacenter
d the set of receivers: d ⊆ V \ {s}
f the volume of to-be-transferred data
tarr the arrival time of request R
tdl the deadline required to complete the data transfer R
K a set of k forwarding trees: K = {κ1, · · · , κk}, each connecting

the source s to all the receivers in d
Internal and decision variables

gl,t the number of wavelength assigned to link l in time t
xR,κ the transmission rate on forwarding tree κ of request R
xR,κ,t the transmission rate on forwarding tree κ of request R at time t
zR binary, whether request R can be completed before deadline
η total weighted assigned number of wavelengths across links and

time slots
ε total number of deadline-satisfied data transfers from Rcur

V. OFFLINE PROBLEM FORMULATION FOR DaRTree

Although we focus on the online multicast transfer problem
in this work, we first introduce its offline version in order to 1)
introduce key notation and 2) provide a mixed integer linear
programming (MILP) formulation which we adapt in the later
sections to efficient online algorithms. Note that in the offline
case, all submitted transfer requests Rall are known a prior. The
key notations are presented in Table I.
Maximizing the number of deadline-meeting transfers. The
objective is to maximize the number of data transfers that can
finish before their deadlines. Let the binary variable zR denote
whether a data transfer R can complete before its deadline,
then the objective can be expressed by (1).

max
∑
R∈Rall

zR (1)

Planning the topology configuration. Planning the network
topology configuration is carried out by adjusting the wave-
lengths assignment among inter-datacenter links. Let integer
variable gl,t ≥ 0 denote the number of wavelengths assigned
to link l in timeslots t. When determining which directed link
should carry how many wavelengths, the wavelength capacity
of nodes and edges should be taken into account. Inequalities

5

(2)-(4) express the wavelength constraints on sender nodes,
receiver nodes, and edges, respectively. Inequalities (5) enforce
the valid values of variables gl,t,∀(l, t).

∀v, t :
∑
l

I(l ∈ Lv,out)gl,t ≤ Csv,t (2)

∀v, t :
∑
l

I(l ∈ Lv,in)gl,t ≤ Crv,t (3)

∀e, t :
∑
l

I(l, e)gl,t ≤ Ce,t (4)

∀l, t : gl,t ∈ N (5)

The indicator I(l ∈ Lv,out) denotes whether the directed link
l is an outgoing link connection of node v, and Lv,out denotes
a set of the outgoing links that connect to node v. I(l ∈ Lv,in)
denotes whether the directed link l is an incoming link of node
v, and Lv,in denotes a set of the incoming links that connect to
node v. Lastly, I(l, e) denotes whether the directed link l goes
through edge (or fiber) e.

Allocating the transmission rate. We assume that each wave-
length carries a capacity of c, hence the capacity of link l
is cgl,t at time t. As this work considers multicast transfers,
we use multiple forwarding trees for delivering the data. More
specifically, we compute k Steiner trees for every transfer and
plan at which rate each tree transmits data, we will describe
the corresponding details later in §VI-A. In the following, let
KR denote a set of Steiner trees, each connecting the source
and all the receivers of data transfer R. Let xR,κ,t denote
the data transmission rate of a tree κ of request R at time t.
(6) then enforces that all the data should be transferred before
the deadline. Inequality (7) states that the traffic load on each
link should not exceed the link capacity at any time, where
I(l ∈ κ) denotes whether a link l is traversed by tree κ, as the
link load should not exceed the capacity. Lastly, Inequalities
(8)-(10) enforce valid ranges for the variables z and x.

Note that maximizing the number of admitted transfers under
deadlines is NP-hard [41], already in fixed topologies. We can
directly transfer hardness results from the fixed to the reconfig-
urable, by enforcing that only one meaningful reconfiguration
exists, we briefly sketch a reduction: equip the original nodes
with an infinite number of wavelengths, but at the same time,
place new nodes on each edge (splitting them in two) that limit
the connecting capacity to the one in the fixed setting.

∀R :

tdl
R∑

t=tarr
R

∑
κ∈KR

αxR,κ,t = zRfR (6)

∀l, t :
∑
R∈Rall

∑
κ∈KR

xR,κ,tI(l ∈ κ) ≤ cgl,t (7)

∀R : zR ∈ {0, 1} (8)

∀R, κ, t /∈ [tarr
R , t

dl
R] : xR,κ,t = 0 (9)

∀R, κ, t ∈ [tarr
R , t

dl
R] : xR,κ,t ≥ 0 (10)

VI. RESERVATION-BASED ALGORITHM DETAILS

We now present the details of the reservation-based transfer
allocation and topology reconfiguration algorithm of DaRTree,
including the adaptive routing component and the wavelength
and rate allocation.

A. Load-Adaptive Multicast Routing

Previous work [17] that computed multiple multicast routing
trees was load-oblivious manner, i.e., did not account for
the current resource consumption. We improve this idea by
weighing the links according to their leftover capacities and
transfer load. In the following, we describe how we adapt link
weights and then give details for the routing tree computation.
Link weight adaption. We initialize the link weight to be the
reciprocal of the leftover capacities. For every link l ∈ L, we
set the initial link weight wl to 1

cl
, where cl is the remaining

amount of capacity that is not used by the admitted data
transfers. The remaining capacity cl of a link l consists of
two parts. The first part is the residual capacity of the total
capacities of the assigned wavelengths minus the capacities
reserved for previously admitted transfers R′. Let cres

l,t and g′l,t
respectively denote such residual capacity and the number of
assigned wavelengths on link l at time t. Then we can calculate
cres
l,t by cg′l,t −

∑
R∈R′,κ,t xR,κ,tI(l ∈ κ). The second part is

the capacity potential of the yet unassigned wavelengths. If
link l is from node u to v on edge e, we can calculate the
maximum number of wavelengths that can be assigned to it
by min(C

s

u,t, C
r

v,t, Ce,t), where C
s

u,t, C
r

v,t, Ce,t denote the
number of unassigned wavelengths node u can send, node
v can receive, and edge e can carry at time t, respectively.
So, the total potential capacities cfree

l,t of unsigned wavelengths
is c × min(C

s

u,t, C
r

v,t, Ce,t) for link l at time t. We thus
calculate the total amount cl of leftover capacities on link l
by

∑
t(c

res
l,t + cfree

l,t).
Tree computation. We now describe our method to compute
multiple Steiner trees in order to balance the traffic load across
the network. We compute the trees on a request by request
basis and the k minimum-weight Steiner trees for each transfer
request on a tree by tree basis. To this end, we iteratively
increase the weight of a link by one if it appears on newly
computed trees. For this link weight update, we use wl to
denote the current weight of link l. Assume that we have found
a new Steiner tree κ′ using current link weight, we increase the
weight wl of link l (e.g., increase wl to wl + 1) if it is on this
tree, namely l ∈ κ′. Then, we feed the updated link weights
to the tree computation algorithm to find the next min-weight
Steiner tree. We repeat this iterative computation process until
we obtained k trees for each transfer request.
Alternatives. One could also consider using link-disjoint
Steiner trees to balance the traffic of data transfers across
network links. However, in experiments, the load-adaptive tree
generation outperformed this approach. The reason is that link-
disjointedness is oblivious to the remaining link capacity. As
such, e.g. routing two trees over a link with a large capacity is
preferable over two links with small remaining capacity.

6

B. Wavelength assignment and rate allocation

We now specify how to compute an efficient wavelength
assignment and rate allocation, in order to guarantee deadline
satisfaction for as many multicast data transfers as possible.
Adapting the objective function. In the offline case with
prior knowledge of all future transfer requests, one can directly
find the global optimal solution that completes the maximum
number of transfers before their deadlines, by solving the
offline formulation. For the online problem on the other hand,
we only know the transfer requests that have been submitted
so far, and not the future ones. In principle, we could adapt
the offline formulation in a greedy fashion to the online case,
by maximizing the number of requests that just arrived at this
timeslot, aiming to finish them as quickly as possible. However,
we observed in preliminary experiments that this approach is
too greedy in realistic workloads. More specifically, it congests
the network in the near future, leaving no space for upcoming
requests. We provide some intuition next.
Don’t be too greedy. We use the example in Fig. 2 to illustrate
that being too greedy is not the best choice. Request R1 appears
at the beginning of the first timeslot (time 0) with a deadline
and size of 6, whereas R2 appears after the first timeslot, with a
size and deadline of 3 and 4, respectively. Fig. 2(a) shows how
to greedily allocate request R1, minimizing its completion time
by assigning it the complete 2 units of capacity for the next 3
timeslots. However, when request R2 arrives, R1 already blocks
nearly all resources, allowing only a single timeslots with 2
units of capacity, not enough to satisfy R2. When we spread out
the resource usage of R1 until its hard deadline, R2 can still be
admitted, see Fig. 2(b). Hence, by scaling back the greediness
of the allocation algorithm, we can admit both requests, instead
of just one. We thus choose to minimize the amount of resource
usage in DaRTree, in order to be prepared for future transfers.
Note that it is never useful to waste resources in the current
timeslot: we therefore maximize the transfer rates for the newly
admitted requests in their first timeslot, as shown in Fig. 2(c).

Algorithm 1 summarizes our algorithm: it performs the
admission control together with the wavelength assignment and
the rate allocation solutions for a batch of transfer requests
(newly submitted to the system).
Minimizing resource consumption. Inspired by the above
example, we propose to allocate each admitted transfer a
minimum rate s.t. it still meets its deadline. We further extend
this idea and keep the number of needed wavelengths small, to
freely allocate them for future requests in the next timeslot.

We thus formulate the wavelength assignment and rate
allocation problem as an optimization objective that minimizes
the wavelengths needed to satisfy the requests. We formulate
this transfer problem as a mixed integer linear program (MILP)
P (η, ε) = {(5), (8), (11)-(19)}, where the objective (11) is to
minimize the total weighted assigned number η of wavelengths
and to maximize the number ε of deadline-satisfied data trans-
fers under the constraints (5), (8), (12)-(19).

Observe that P (η, ε) has two different optimization objec-
tives, minimizing the weighted assigned number η of wave-

lengths across links and time slots, and maximizing the number
ε of deadline-satisfied data transfers from a set Rcur that
includes all transfers arriving at the start of the timeslot.
Moreover, when not all requests can be admitted, we prefer to
use link resources in earlier timeslots. To this end, we introduce
a weight wl,t for wavelengths of link l in timeslots t and set the
value of wl,t to t2. Lastly, in order to obtain tractable runtimes,
we use an iterative solver to find optimized values of η and ε.

F (η, ε) = {min η,max ε} (11)

∀v, t :
∑
l

I(l ∈ Lv,out)gl,t ≤ C
s

v,t (12)

∀v, t :
∑
l

I(l ∈ Lv,in)gl,t ≤ C
r

v,t (13)

∀e, t :
∑
l

I(l, e)gl,t ≤ Ce,t (14)∑
l,t

wl,tgl,t ≤ η (15)∑
R∈Rcur

zR ≥ ε (16)

∀R : (tdl
R − tarr

R)
∑
κ∈KR

αxR,κ = zRfR (17)

∀l, t :
∑

R∈Rcur

∑
κ∈KR

xR,κI(l ∈ κ)I ′(t ∈ [tarr
R , t

dl
R]) ≤ cres

l,t + cgl,t

(18)
∀R, κ : xR,κ ≥ 0 (19)

Iterative solver. In this context, an iterative optimization solver
fixes one of the two η, ε values and optimizes the other
one. Hence, we start with ε = m, the total number of data
transfers submitted in current time, and conduct a search to
find the smallest η for which P (η,m) is feasible (Line 2-
Line 14, Algorithm 1). Ideally, we want to complete all requests
before their deadline—however, the optimization problem may
have no feasible solution if the remaining link capacity is
insufficient. We then decrease the value of ε and recall P (η, ε)
(ε is a constant here). We repeat the above procedure until we
find the minimum number of wavelengths to satisfy ε transfers.
Solving P (η, ε) by deterministic rounding. As the controller
needs to decide the (new) wavelength assignment on every
network link in every timeslot, the problem complexity nat-
urally scales with deadline length and network size. More
specifically, the optimization model contains integer variables
which increase quadratically with transfer deadline and network
scale, which makes it difficult to solve in real time for the
transfers with far deadlines in networks with many links. We
thus resort to a LP relaxation (Line 4, Algorithm 1)) and
(deterministic) rounding algorithm to obtain solutions quickly.
More specifically, we first relax the integer variables gl,t to be
continuous and then solve the program P (η, ε), i.e., we set

gl,t ≥ 0 (20)

Given a fractional solution g∗, we could obtain the integer
wavelength solution ĝ by setting ĝl,t = dg∗l,te,∀l, t.

7

t1

2

2 3

R2 R1

0 4 5

BW

6
(a) The greedy allocation of R1 blocks the completion of R2

until t=4. Only a transfer of size 2 is possible.

2

R2 R1

BW

1 2 30 4 5 6 t

(b) A better allocation: allocating R1 by minimizing
resource usage allows R2 to complete.

2
BW

1 2 30 4 5 6 t

(c) Even more efficient than in Fig. 2(b), by filling
up the capacity of the current timeslot.

Fig. 2. A greedy allocation can easily block future transfers, both requests could be admitted online with resource usage minimization.

Algorithm 1 Fast and efficient transfer allocation and topology
reconfiguration algorithm

Input: A batch of m new transfer requests Rcur = {R1, R2, · · · , Rm},
a set of Steiner trees computed for the routing of these transfers, residual
link capacities cres = {cres

l,t,∀l ∈ L, t}, unassigned wavelengths Cri,t,
C
s
i,t, Ce,t ∀i ∈ V, e ∈ E, t.

Output: Admitted transfers, associated wavelength assignment, rate allo-
cation that satisfies their deadlines.

1: Set aside wavelengths according to the routing trees;
2: Initialize ε = m;
3: while ε > 0 do
4: Build and solve optimization program with constraints from (8), (12)-

(20) and an objective of (11) with given ε;
5: if feasible solution exists then
6: Admit ε new transfers;
7: Obtain the wavelength assignment fractional solution g =
{gl,t, ∀l, t}, the admission decision z = {zR, ∀R}, and the rate allocation
x = {xR,κ, ∀R, κ}

8: Round the fractional wavelength assignment to integral ones: g =
{gl,t =

⌈
gl,t
⌉
, ∀l, t};

9: cres ← UPDATERESIDUALCAPACITY(cres, g,z,x);
10: return Admission decisions of transfer requests (z) and rate

allocation x of admitted transfers.
11: else
12: Decrease ε and set it to be ε− 1;
13: end if
14: end while
15: return Reject current submitted transfers Rcur.

16: function UPDATERESIDUALCAPACITY(cres, g,z,x)
17: for (l ∈ L, t ∈ [minR∈Rcur{tarr

R },maxR∈Rcur{tdl
R}]) do

18: cres
l,t = cres

l,t + cgl,t −
∑
R∈Rcur

∑
κ∈KR

zRxR,κI(l ∈ κ)I′(t ∈
[tarr
R , t

dl
R);

19: end for
20: Fill up the current timeslot with the traffic of current requests Rcur

allocated in future timeslots;
21: end function

However, directly rounding up the fractional solution g may
violate the wavelength constraints (12)-(14) of the integer pro-
gram. To obtain a feasible solution that satisfies the wavelength
capacity constraints, we thus set aside a small amount of
wavelengths ahead of time. Observe that if we were to reserve
a wavelength for every link and reduce the maximum amount
of wavelengths per fiber, we could always round up—but at
the cost of efficiency. We improve this idea by only reserving
wavelengths for links that are traversed by the forwarding trees
of requests that arrived in the current timeslot.

Let K denote the set of routing trees computed for all the
current requests, then we set aside

∑
κ∈K

∑
l∈κ I(l ∈ Lv,out)

and
∑
κ∈K

∑
l∈κ I(l ∈ Lv,in) wavelengths for a node v

to send and receive, respectively. In addition, we set aside∑
κ∈K

∑
l∈κ I(l, e) wavelengths to not violate (14).

Updating the residual link capacity. After obtaining the

solution of the wavelength assignment {gl,t∀l, t} of links across
time slots, the request admission decision {zR,∀R ∈ Rcur},
and the rate {xR,κ,∀R ∈ Rcur, κ ∈ KR} allocated to accepted
requests, it is easy to update the residual capacity {cres

l,t,∀l, t}.
For every link l, its new residual capacity is calculated by
adding all capacities carried by newly assigned wavelengths,
and deducting all capacities reserved for the admitted transfers
(Line 18, Algorithm 1).

C. Transfer requests with non-uniform utility

Up until now, we assumed that every transfer request brings
the system the same or an equal amount of utility when it
finishes before deadline. In other words, by maximizing the
number of deadline-meeting transfers, we can maximize the to-
tal system benefit. However, the real system may gain different
amount of utilities by data transfers generated by applications
or clients with different-level of priority and importance. In
such scenarios, the transfer scheduler should have the ability to
perform admission control with preference in order to maximize
the total system utility by admitting more transfer requests
with larger utility. For simplicity, we use the abstract weight to
denote the potential utility of each transfer request.

We can also employ Algorithm 1 to schedule weighted
transfers requests just with some minor modifications. Let
wR ∈ N+ denote the weight of transfer request R, we can
then adapt Algorithm 1 to weighted requests by replacing
the constraint

∑
R zR ≥ ε with (21) and initializing ε to be∑

R wR. However, due to the possible large value of the request
weight, it may only find the optimal solution after a tedious
amount of iterations with iterative searching (Line 3–Line 14,
Algorithm 1), thus being too time-consuming.∑

R∈Rcur

wRzR ≥ ε (21)

We thus improve the algorithm’s time efficiency via a two-
phase computation. As we will show later, such an approach
improves even upon a standard binary search in the application
setting. In the first phase, we find the maximum number of
deadline-meeting weighted requests by solving an optimization
programming with objective of max ε and constraints of (12)-
(14), (17)-(19), (20) and (21). Then, given the optimal objective
value of ε found in this first phase, we compute the minimum
number of wavelengths needed to achieve this objective, as well
as the fitting rate allocation by solving an optimization program
(similar to Line 4 in Algorithm 1).

Moreover, the two-phase computation can also be applied to
speed up the computation of finding solutions for uniformly
weighted requests. For example, in cases of heavy transfer

8

Algorithm 2 Joint allocation algorithm
Input: A set of newly incoming transfer requests Rcur at the beginning of
current timeslot and a set of unfinished accepted transfers R′

till the end
of last timeslots.
Output: The admission decisions of Rcur, the wavelength assignment and
the rate allocation of requests in R′ and newly accepted requests in Rcur

in timeslots t.
1: Compute load adaptive routing trees for requests in Rcur and R′;
2: Set aside wavelengths according to the routing trees;
3: Raccept ← ∅;
4: if Rcur 6= ∅ then
5: Raccept ← ADMISSIONCONTROL(Rcur,R′).
6: end if
7: x, g ← DEADLINEGURANTEEALLOCATION(Raccept ∪R′

);
8: Round fractional wavelength assignment to be integral: g = {gl =⌈

gl
⌉
, ∀l};

9: Compute the residual capacity of the current timeslot;
10: Fill up the current timeslot with residual capacity to send as much data as

possible.

11: function ADMISSIONCONTROL(Rcur,R’)
12: Solve optimization program with the objective of (22) and constraints

of (2)-(4), (8), (19), (20), and (23)-(25);
13: Obtain the newly accepted requests Raccept = {R|zR = 1, ∀R ∈
Rcur}.

14: end function

15: function DEADLINEGURANTEEALLOCATION(R′′
)

16: Solve linear optimization program with the objective of (26) and
constraints of (19), (27)-(33);

17: Obtain the wavelength assignment g = {gl,∀l} and the rate allocation
x = {xR,κ, ∀(R ∈ R

′′
, κ)} of all accepted requests R′′

.
18: end function

load (e.g., many requests arrive in the same timeslot), we
might find the optimal admission rate only after many iterations
when the admission rate is low (i.e., the network capacities are
insufficient to admit most of these requests). Thus, iteratively
searching from the total number of requests is not time-
efficient. For these cases, we can also apply the two-phase
computation to quickly find the optimal admission rate by
solving a relaxed optimization program. However, in cases
where DaRTree can admit nearly all requests or the number
of arrival is low, the overhead of a two-phase computation
is non-negligible in comparison to an iterative approach. The
reason is that the iterative search only takes few rounds to
check the feasibility of the optimization program, which is
much easier and faster than the two-phase computation that
solves a maximization optimization programming.

VII. REALLOCATION FOR IMPROVED EFFICIENCY

As described before, DaRTree allocates and reserves wave-
lengths and link capacities for the admitted requests upon ar-
rival. This resource reservation can be considered as a calendar,
which is simple for the system to operate and may also be
beneficial for the served clients. However, DaRTree is also
constrained by these reserved resources, reallocation in future
timeslots could yield better system performance.

The efficiency can be improved by jointly scheduling the
already accepted requests together with the newly revealed
ones. To this end, we propose a new version of DaRTree,
DaRTreeJoint, that does not explicitly reserve future resources

for accepted transfer requests. Instead, before the beginning
of every timeslot, it plans wavelength assignment, routing and
rate allocation only for this current timeslot. According to the
allocation results, the controller reconfigures the topology, the
routing, and informs the senders of the transmission rates of the
transfers originating from them. However, we still keep in mind
that all admitted requests have to complete until their deadline.
More specifically, our joint allocation algorithm DaRTreeJoint
consists of the following three parts.

Step 1. We first perform admission control on newly incoming
transfer requests of the current timeslot. Our objective
is to admit the maximum number of newly transfer
requests that can be finished until their deadline. Note
that we must be careful to not violate such a promise to
unfinished transfers accepted in previous timeslots. To
this end, we employ an optimization program, with the
objective of (22) and constraints of (2)-(4), (8), (19),
(20), and (23)-(25) in Line 12 of Algorithm 2, to find
the maximum number of acceptable new requests.

Step 2. Then, we determine the wavelength assignment and
rate allocation in the current timeslot for both the newly
and previously admitted transfers. For the accepted
transfers, we allocate them at least at a minimum rate
that guarantees their deadlines. Meanwhile, to fully use
the network capacity, we maximize the throughput of
the current timeslot by solving a linear optimization
program with an objective of (26) and constraints of
(19), (27)-(33).

Step 3. Finally, we completely utilize the current timeslot by
using yet unallocated (wavelength) capacities.

max
∑

R∈Rcur

zR (22)

∀R ∈ Rcur : (tdl
R − tarr

R)
∑
κ∈KR

αRxR,κ = zRfR (23)

∀R ∈ R
′
: (tdl

R −max(tarr
R , tcur))

∑
κ∈KR

αRxR,κ = f remain
R (24)

∀l, t :
∑

R∈Rcur∪R′

∑
κ∈KR

xR,κI(l ∈ κ)I ′(t ∈ [tarr
R , t

dl
R]) ≤ cgl,t

(25)

max
∑
R∈R′′

∑
κ∈KR

xR,κ (26)

∀v :
∑
l

I(l ∈ Lv,out)gl ≤ Csv (27)

∀v :
∑
l

I(l ∈ Lv,in)gl ≤ Crv (28)

∀e :
∑
l

I(l, e)gl ≤ Ce (29)

∀l : gl ≥ 0 (30)

∀R ∈ R
′′
:
∑
κ∈KR

αxR,κ ≤ f remain
R (31)

9

∀R ∈ R
′′
:
∑
κ∈KR

xR,κ ≥
f remain
R

α(tdl
R −max(tarr

R , tcur))
(32)

∀l :
∑
R∈R′′

∑
κ∈KR

xR,κI(l ∈ κ) ≤ cgl (33)

VIII. EVALUATION

In this section, we present our evaluation results of DaRTree
by comparing it to several state-of-the-art approaches in ex-
tensive simulations. We study multiple different scenarios and
consider different real-world inter-datacenter networks. We next
describe the simulation setup in §VIII-A. We show in §VIII-B
that DaRTree outperforms prior work already for unicast
transfers or for WAN topologies without reconfiguration. We
also show that the integer-relaxation used by DaRTree yields
efficient runtimes. A comprehensive general evaluation is then
performed in §VIII-C and §VIII-D.
A. Simulation Setup

Network Topologies. We run simulations over four real-world
inter-datacenter networks of large cloud service providers.
Table II shows the details about these network topologies.
Following the assumptions in [7], we assign an initial uniform
capacity of 160 Gbps to every link, representing the static
topology configuration. Analogously to the evaluations in [20],
in our experiments, each wavelength can carry 10 Gbps. We
place sender and receiver hardware accordingly. In order to
facilitate meaningful and realistic reconfiguration scenarios, we
allow a link to carry up to 50% more wavelengths than initially
assigned (at the cost of borrowing adjacent wavelengths).
Transfer workloads. We use synthetic models to generate
multicast transfer requests similar to related work [5, 7, 10, 20].
We assume a slotted timeline, where time is measured in the
number of timeslots, where each slot has a length of 5 minutes.
Transfer requests arrive at the system at the beginning of each
timeslot. To generate transfer requests, we model the request
arrival time as a Poisson process, where the arrival rate factor
per timeslot is λ. For an experiment that simulates a time
span of Tspan timeslots, we generate λTspan transfer requests
on average. For each transfer request, we randomly choose a
datacenter as the source and γ(N − 1) other datacenters as the
receivers, where the receiver factor γ ∈ [10%, 100%] and N
is the total number of datacenters in a network. We choose
the deadline for each data transfer from a uniform distribution
between [T , δT], where T is the timeslot length and δ is a
factor used to change the tightness of deadlines. We will refer
to this factor as the deadline factor in the following. To generate
the data size for each transfer, we integrate the average transfer
throughput under an Exponential distribution with a mean of
20 Gbps. Then, we calculate the data size by multiplying the
throughput by the transfer lifespan, e.g., the data size would
be 9TB on average for a transfer with an one hour deadline.
Simulation Environment. We performed all simulations using
a Python script that employs MOSEK [43] as our backend
solver to find the solutions to the optimization models.
Comparison with the state of the art. We compare DaRTree
with the following related works:

Name Description
Internet2
[20]

ISP network with 9 datacenters and 18 inter-DC links.

GScale
[4]

Google’s inter-DC WAN which has 12 datacenters and
19 inter-datacenter links.

Equnix
[42]

An inter-DC WAN from Equnix, which connects 20
datacenters using 141 inter-datacenter links.

IDN [3] Microsoft’s inter-datacenter WAN with 40 datacenters,
each connected to 2-16 other datacenters.

TABLE II. Topologies used in our simulations

• MTree [17] adopts k trees to optimize multicast transfers
in static topologies.

• Amoeba [7] allocates rates over k-paths for each admitted
data transfer and aims to guarantee the deadline for as
many unicast transfers as possible in static topologies.

• Owan [20] also adopts k-paths to deliver data and jointly
controls network topology and transmission rates of paths
to reduce the completion time or satisfy deadlines for
inter-datacenter unicast transfers. Specifically, we use the
algorithm proposed by Owan that optimizes data transfers
with deadlines.

All the compared approaches, excluding Owan, use admission
control for multicast transfers submitted to the system. Owan
on the other hands accepts every incoming transfer and aims to
complete transfers as quickly as possible in order to meet the
deadline. As such, Owan is particularly suited for environments
where a majority of requests can be completed under deadlines,
most of our scenarios fulfil this assumption.

To simulate Owan and Amoeba in our setting, we split each
multicast transfer into multiple unicast transfers. We count the
multicast transfers that are delivered completely to all receivers
in Owan and Amoeba, and denote them as Owan- and Amoeba-
Multicast, respectively. For further comparisons in §VIII-C, we
also allow fractional completion of multicast data transfers for
Owan and Amoeba (e.g. to just 2 of 3 receivers), denoted as
Owan- and Amoeba-Unicast, respectively.
Performance metrics. We evaluate the approaches in a wide
spectrum of performance metrics, such as deadline-met ratio of
multicast (unicast) transfers, throughput of multicast (unicast)
transfers, and runtime.

In §VIII-B and §VIII-C, we consider requests with uniform
weight in comparison of Algorithm 1 (DaRTree for brevity) to
other related approaches. We then conduct further simulations
in §VIII-D to show how DaRTree adapts to the non-uniform
weight (DaRTreeWeight) and what further improvements can
be obtained by reallocating (not aborting) already admitted
requests (Algorithm 2, coined DaRTreeJoint). Table III sum-
marizes the differences among the three DaRTree variants.

B. Unicast, Static WAN, and Runtime Experiments

Unicast transfers: DaRTree vs. Owan. We first evaluate how
DaRTree compares against Owan even if there are just unicast
requests (i.e., all the arriving transfer requests only have one
sender/receiver). To simulate unicast transfers, we randomly
select one datacenter as the receiver for each transfer. We set
the deadline factor δ to six (0.5 hours), which will generate
transfers with a size following an exponential distribution with

10

Property DaRTree DaRTreeWeight DaRTreeJoint
Accepted requests always complete before deadline? Yes Yes Yes
Requests with non-uniform weights? No (uniform weights) Yes No (uniform weights)
Reschedule running requests? No (resource reservation) No (resource reservation) Yes

TABLE III. Comparison between the different versions of DaRTree

(a) Deadline-met ratio comparison (b) Throughput comparison

Fig. 3. DaRTree outperforms Owan even for unicast transfers.

(a) Deadline-met ratio comparison (b) Throughput comparison

Fig. 4. DaRTree outperforms MTree even in static WANs, i.e., without topology
reconfiguration.

a mean of 4.5TB. Each run simulates 2.5 hours (30× 5-minute
timeslots), with a request arrival rate λ randomly chosen from
{1, 2, 3}. Hence, we will on average generate 30 to 90 transfer
requests for each run. We collect the percentage of successfully
admitted requests and the average network throughput. To
evaluate how DaRTree compares to Owan, we compute the
performance gain by dividing the transfer deadline-met ratio
and the network throughput of DaRTree by those of Owan,
respectively.

Fig. 3 reports the CDF of the performance gain in the
transfer deadline-met ratio and the average network throughput
over 50 experiments. Compared to Owan, DaRTree achieves
a higher deadline-met ratio in about 75% experiments in the
Internet2, GScale and Equnix topologies. In the IDN topology,
DaRTree consistently outperforms Owan for every experiment
and improves the deadline-met ratio by 0.3× to 2×. In addition,
the throughput results in Fig. 3(b) show that DaRTree outper-
forms Owan on network throughput in around 80% experiments
over Internet2, GScale and Equnix topologies and improves
the average network throughput by at least 2× and up to
7.8× in the IDN topology. Hence, we can conclude that the
relaxed optimization-based allocation in DaRTree outperforms
the simulated annealing algorithm of Owan in most unicast
experiments.
Static WANs: DaRTree vs. MTree. We next evaluate how
DaRTree compares against MTree if the topology is not re-
configurable, i.e., in static WANs. To this end, we turn off all
functions relating to the reconfiguration part in DaRTree. Fig.

12 24 36 48 60 72 84 96

Deadline Factor

0.25

1

4

16

64

256

C
o

m
p

u
ta

tio
n

 t
im

e
 (

se
co

n
d

s)

12 24 36 48 60 72 84 96

Deadline Factor

0.25

1

4

16

64

256
without relaxation relaxation

(a) Internet2

6 12 18 24 30 36 42 48 54 60

Deadline Factor

4

8

16

32

64

128

256

512

C
o

m
p

u
ta

tio
n

 t
im

e
 (

se
co

n
d

s)

6 12 18 24 30 36 42 48 54 60

Deadline Factor

4

8

16

32

64

128

256

512
relaxationwithout relaxation

(b) IDN

Fig. 5. Computation time comparison of DaRTree with and without relaxation.
Please note that the y-axis is logarithmic.

4(a) plots the CDF of the deadline-met ratio gain of DaRTree.
Compared to the CDFs in Fig. 3, the advantage of DaRTree ver-
sus MTree is less prevalent. However, DaRTree can still admit
around 10% to 40% more transfers than MTree in 25%-55%
of the experiments, with the remaining ones being very close.
Moreover, Fig. 4(b) shows that DaRTree achieves a higher
network throughput for more than 99% of the experiments,
compared to MTree. The point (5.8, 1) in particular highlights
that DaRTree can obtain up to 5.8× higher throughput than
MTree in the IDN network: the reason is that DaRTree uses
load-adaptive routing trees, which distribute traffic more evenly
across the network, even without reconfiguration.
Runtime improvement due to relaxation. We now evaluate
the time efficiency of DaRTree by comparing it with a version
that omits our rounding method and uses integer variables g
to find the solution. Since the deadline is key to determining
the number of variables g, we generate transfers with varying
deadline factors, in the smallest and largest real-world topology.

Fig. 5 plots the computation time for the Internet2 and
the IDN topologies, with 40-80 allocations per algorithm and
deadline factor. Figs. 5(a) and 5(b) show that the computation
time is up to 250 seconds longer for the Internet2 network and
up to 400 seconds longer for the IDN network, respectively.

In contrast, DaRTree maintains a relatively small computa-
tion time, no more than 15 seconds for the Internet2 network
and 30 seconds for the IDN network. In addition, we can also
see that the computation time of both approaches increases as
the deadline factor grows and as the network size scales up. We
thus conclude that the integer relaxation technique in DaRTree

11

significantly reduces computation times.

C. General Performance Evaluation of DaRTree

We now evaluate the impact of the different parameters used
to generate data transfers on the performance of the different
approaches. We parametrize: 1) the request arrival rate factor
λ, 2) the deadline factor δ, and 3) the receiver fraction factor γ.
We conduct five runs for each setting per parameter, in every
topology, and evaluate all approaches in each run. We report on
the average number of data transfers that meet their deadlines
and the average network throughput of these experiments.
Impact of the request arrival rate factor. We now evaluate the
impact of the request arrival rate. We simulate a timespan of 60
timeslots for each run, fix the deadline factor to 6, and randomly
choose {20%, 30%, 50%} of the datacenters as receivers. We
vary the request arrival rate λ from 1 to 5.

Fig. 6 plots the average percentage of data transfers that
can meet their deadlines and the average network throughput
obtained under different request arrival rates over the four
network topologies. Figs. 6(a)-6(d) show that the percentage
of deadline-met data transfers decreases as the request arrival
rate increases for all four approaches. These results are as
expected since both the number of data transfers submitted to
the system and the network traffic load increases as the request
arrival rate grows. However, we can see that DaRTree always
maintains a deadline-met ratio at a high level of 80% to 100%
and outperforms all other approaches. Moreover, DaRTree can
satisfy the deadlines for up to 30% more multicast transfers,
compared to Owan, Amoeba and MTree. We also see that
although Owan and Amoeba achieve a high deadline-met ratio
for unicast transfers, they obtain relatively low deadline-met
ratios for multicast transfers. The reason is that they only focus
on guaranteeing the deadline for each individual unicast transfer
and may fail to satisfy the deadline for all the receivers of the
multicast transfer. Regarding MTree, its transfer deadline-met
ratio drops dramatically as the request arrival rate increases.
It outperforms Owan and Amoeba for deadline satisfaction of
multicast transfers on the Internet2 and the GScale topologies,
but falls behind when the request arrival rate is λ ≥ 2 on both
Equnix and IDN topologies3.

Figs 6(e)-6(h) plot the network throughput of all compared
approaches, normalized by that of DaRTree. We observe that
DaRTree achieves 20%-70% and 40%-70% higher throughput
than MTree, Amoeba and Owan, respectively. Even against
fractional completion, the throughput is 20% to 40% higher.
Impact of the deadline factor. In this part, we evaluate how
the tightness of the deadline impacts the performance of the
approaches. We generate 7TB of data for each transfer and
adjust the deadline factor δ from 5 to 25 to simulate different
deadlines. Fig. 7 plots the percentage of transfers that meet their
deadlines and the average throughput under different deadline
factors. Naturally, more transfers will meet their deadlines as

3We note that a similar performance of Owan and Amoeba was already
visible in [20, Fig. 9], with slightly better results for Owan, which is consistent
with our results in this and the following experiments.

the deadline factor increases due to higher flexibility, as shown
in Fig. 7(a)-7(d). DaRTree admits over 95% of the multicast
transfers, roughly 10% to 30% more than the best of the other
approaches. The results are similar for the throughput gain.
Maybe interestingly, the performance of MTree degrades for
larger topologies, unlike our DaRTree approach.
Receiver factor. In the last set of experiments, we evaluate the
impact of the number of receivers for multicast transfers. To this
end, we generate a constant data size for each transfer and set
it to be 5TB (Internet2), 7TB (GScale), 10TB (Equinix), 14TB
(IDN). Each transfer has a deadline of 6 timeslots (0.5 hours).
To generate transfers with a varying number of receivers, we
set the receiver factor of every multicast transfer to be different
percentages of datacenters. Figs. 8(a)-8(d) show the factor of
improvement on the percentages of transfers that meet their
deadlines. Compared to MTree, DaRTree accepts around 10%-
20% more multicast transfers in the four topologies. Against
Amoeba and Owan, DaRTree satisfies at least 5% and up to
49% more multicast transfers. We can also observe that the
improvement of deadline-met multicast transfers increases as
the number of transfer receivers increases and as the network
scales up. Figs. 8(e)-8(h) show the factor of improvement on
the average network throughput. Compared to MTree, DaRTree
improves the average network throughput by 1.15× to 1.42×.
In relation to Amoeba, DaRTree improves the average through-
put of unicast transfers by up to 1.79× and that of multicast
transfers by up to 7.37×. Lastly, for Owan, DaRTree improves
the average throughput of unicast transfers by 1.16× to 2.24×
and that of multicast transfers by up to 8.63×. The trend
of improvements on network throughput is similar to that of
the deadline-satisfied transfers, remaining roughly identical for
MTree and rising as the number of receivers increases for both
Amoeba and Owan.
Summary. The results from §VIII-B indicate that the perfor-
mance of DaRTree goes beyond simply combining multicast
routing and reconfigurable WANs: in both scenarios, we im-
prove upon prior work, in particular for larger networks. As
we have seen in §VIII-C, leveraging load-adaptive Steiner trees
and a rounding-based optimization significantly outperforms
state of the art approaches in all four simulated real-world
topologies. In particular, we improve the transfer admission
rate and the throughput by up to 1.7× in larger networks. We
next discuss further extensions of DaRTree to more settings.

D. DaRTree for Non-Uniform Weights and Reallocation

Requests with non-uniform weight. To simulate weighted
transfer requests, we assign each data transfer with a weight that
corresponds to its size and deadline. The reasoning behind this
idea is that larger requests should provide more utility, as well
as more urgent requests. More precisely, the weight wR of a
request R is assigned by taking the quotient of the size |dR|fR
of all receivers over its lifespan tdll

R − tarr
R , the duration from

arrival tarr
R until its deadline tdll

R . We compare the normal version
algorithm of DaRTree and the variant, DaRTreeWeight, that
is designed for weighted requests (§VI-C). We evaluate them

12

DaRTreeMax DaRTreeMin DaRTree Mtree Amoeba-Unicast Amoeba-Multicast Owan-Unicast Owan-Multicast

30
40
50
60
70
80
90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(a) Internet2

10
20
30
40
50
60
70
80
90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(b) GScale

50

60

70

80

90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(c) Equnix

40

50

60

70

80

90

100

1 2 3 4 5

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Request Arrival Rate (per timeslot)

(d) IDN

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Request Arrival Rate (per timeslot)

(e) Internet2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Request Arrival Rate (per timeslot)

(f) GScale

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Request Arrival Rate (per timeslot)

(g) Equnix

0.2

0.4

0.6

0.8

1

1 2 3 4 5

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Request Arrival Rate (per timeslot)

(h) IDN

Fig. 6. Impact of the request arrival rate. (a-d) show how many transfers meet their deadline, (e-f) show network throughput, respectively. DaRTreeMin denotes
the minimum value for DaRTree over all runs, whereas DaRTreeMax shows the maximum value over all runs.

DaRTreeMax DaRTreeMin DaRTree Mtree Amoeba-Unicast Amoeba-Multicast Owan-Unicast Owan-Multicast

20

40

60

80

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sf
er

s

Deadline Factor

(a) Internet2

20

40

60

80

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sfe
rs

Deadline Factor

(b) GScale

30
40
50
60
70
80
90

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sfe
rs

Deadline Factor

(c) Equnix

20

40

60

80

100

5 10 15 20 25

%
 o

f D
ea

dl
in

e-
m

et

Tr
an

sfe
rs

Deadline Factor

(d) IDN

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Deadline Factor

(e) Internet2

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Deadline Factor

(f) GScale

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Deadline Factor

(g) Equnix

0.2

0.4

0.6

0.8

1

5 10 15 20 25

Av
er

ag
e

Th
ro

ug
hp

ut

(N
or

m
ai

liz
ed

)

Deadline Factor

(h) IDN
Fig. 7. Impact of the deadline factor. (a-d) show the deadline-met ratio, and (e-f) show the network throughput, respectively. DaRTreeMin denotes the minimum
value for DaRTree over all runs, whereas DaRTreeMax shows the maximum value over all runs.

in the Internet2 topology under different request arrival rates.
In these experiments, the request deadline is randomly chosen
from 10 minutes to 3 hours, by changing the deadline factor
δ, and the receiver factor γ is randomly chosen from 20% to
100%. In addition to the percentage of deadline-met transfers,
throughput and computation time, we also collect the weighted
percentage of deadline-met transfers as

∑
R∈Raccept wR∑
R∈Rall wR

× 100%,
where wR denotes the weight of transfer request R and Raccept,
Rall denote the set of accepted deadline-meeting transfers and
that of all simulated transfers, respectively. Fig. 9(a) shows that

DaRTreeWeight obtains 1%-3% lower percentage of deadline-
met transfers on average, compared to DaRTree. However, we
can see from Fig. 9(b) that it in average obtains a 5% higher
weighted percentage of deadline-met transfers than DaRTree.
Moreover, DaRTreeWeight obtains 5%-15% higher throughput
on average, as shown in the results of Fig. 9(c). These results
are as expected as DaRTreeWeight prefers to admit the transfers
with larger weight (potential of the throughput), which results
in admitting slightly less transfers overall. In contrast, DaRTree
treats every transfer equally and accepts slightly more transfers
with smaller size in turn. We also collect the runtime of the

13

w.r.t.Mtree w.r.t.Amoeba-Unicast w.r.t.Amoeba-Multicast w.r.t.Owan-Unicast w.r.t.Owan-Multicast

0

10

20

30

40

20 40 60 80

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(a) Internet2

0

10

20

30

40

50

20 40 60 80

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(b) GScale

0

10

20

30

40

50

20 40 60 80

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(c) Equnix

0

10

20

30

40

50

20 40 60

Im
pr

ov
em

en
t (

%
)

% of datacenters are receivers

(d) IDN

1

2

3

4

5

20 40 60 80

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(e) Internet2

1

3

5

7

20 40 60 80

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(f) GScale

1

3

5

7

9

20 40 60 80

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(g) Equnix

1

3

5

7

20 40 60

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

% of datacenters are receivers

(h) IDN

Fig. 8. Receiver factor impact. (a-d) are improvements (in %) of transfers that meet their deadlines, (e-f) are network throughput improvements.

-1
0
1
2
3
4
5
6

4 6 8 10 12

D
ec

re
as

e
(%

)

Request Arrival Rate (per timeslot)

(a) Acceptance ratio (unweighted)

0
2
4
6
8

10
12

4 6 8 10 12

Im
pr

ov
em

en
t (

%
)

Request Arrival Rate (per timeslot)

(b) Acceptance ratio (weighted)

0
5

10
15
20
25
30

4 6 8 10 12
Im

pr
ov

em
en

t (
%

)

Request Arrival Rate (per timeslot)

(c) Throughput

Fig. 9. Impact on the acceptance ratio and throughput when employing DaRTreeWeight over DaRTree.

variants of DaRTree and of DaRTreeWeight. Fig. 10 shows the
runtime time of DaRTree when applying the iterative search
(solver) to schedule requests with uniform weights (Iterative
search + uniform weight), that of the variant of DaRTree
which adopts binary search to handle requests with non-
uniform weights (Binary search + Non-uniform weight) and
that of DaRTreeWeight which uses our two-phase computation
to allocate requests with non-uniform weights (Two-phase
computation + Non-uniform weight). We can see that when
there are only few requests to allocate, both the iterative search
and the two-phase computation can terminate within 10 seconds
on average to allocate requests with uniform weight and non-
uniform weight, respectively. But, as the number of to-be-
allocated requests increases, the iterative search becomes slow
and takes about 30 seconds and up to about 100 seconds to
allocate requests. This is because when the request arrival
rate is 12, the network is heavily overloaded. The iterative
search takes about 8 to 9 iterations to find optimal solutions. In
contrast, the two-phase computation can terminate within about
10 seconds, in nearly all cases. The binary search approach is
always outperformed by the two-phase computation. Note that
the plots for iterative and binary search are for uniform and
non-uniform weights, respectively.

Reallocation of requests with DaRTreeJoint. Lastly, in order

4 6 8 10 12

Request Arrival Rate (per timeslot)

0.5

1

2

4

8

16

32

64

128

256

512

C
o

m
p

u
ta

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

4 6 8 10 12

Request Arrival Rate (per timeslot)

0.5

1

2

4

8

16

32

64

128

256

512

4 6 8 10 12

Request Arrival Rate (per timeslot)

0.5

1

2

4

8

16

32

64

128

256

512
Iterative search

+Uniform weight

Binary search

+Non-uniform weight
Two-phase computation

+Non-uniform weight

Fig. 10. Runtime comparison (log-scale) for non-/uniformly weighted transfer
requests. Our two-phase computation (right, DaRTreeWeight) is faster than a
standard binary search (middle), and even than an iterative search for uniform
weights (left, DaRTree).

to measure the benefit of reallocation, we compare DaRTree
and DaRTreeJoint across different request arrival rates, deadline
factors and receivers. Note that in this collection of experi-
ments, we only simulate transfer requests with uniform weights.
Fig. 11 plots the results obtained from the GScale topology.
Overall, DaRTreeJoint outperforms DaRTree in deadline-met
transfers, throughput and completion time. Fig. 11(a), 11(d),
11(g) show the results obtained under different request arrival
rates. We can see that as the request arrival rate increases,
both DaRTree and DaRTreeJoint yield a decreasing percent-
ages of deadline-met transfers, as the results in Fig. 11(a)

14

70

80

90

100

1 3 5 7 9 11
%

 D
ea

dl
in

e-
m

et
 Tr

an
se

rs

Request Arrival Rate (per timeslot)

DaRTree
DaRTreeJoint

(a) Comparisons on percentage of
deadline-meeting transfers.

50

60

70

80

90

100

6 12 18 24 30

%
 D

ea
dl

in
e-

m
et

 Tr
an

se
rs

Deadline Factor

DaRTree
DaRTreeJoint

(b) Comparisons on percentage of
deadline-meeting transfers.

50

60

70

80

90

20 30 40 50 60 70 80

%
 D

ea
dl

in
e-

m
et

 Tr
an

se
rs

% of datacenters are receivers

DaRTree DaRTreeJoint

(c) Comparisons on percentage of
deadline-meeting transfers.

0

5

10

15

20

25

30

1 3 5 7 9 11

Im
pr

ov
em

en
t(%

)

Request Arrival Rate (per timeslot)

(d) Improvements on throughput.

0

5

10

15

20

25

30

35

6 12 18 24 30

Im
pr

ov
em

en
t(%

)

Deadline Factor

(e) Improvements on throughput.

0

10

20

30

40

50

20 30 40 50 60 70 80

Im
pr

ov
em

en
t(%

)

% of datacenters are receivers

(f) Improvements on throughput.

Completion time/Deadline duration: (0, 25%] Completion time/Deadline duration: (25%, 50%]
Completion time/Deadline duration: (50%, 75%] Completion time/Deadline duration: (75%,1)

0

20

40

60

80

100

1 3 5 7 9 11

%
of

 Tr
an

sfe
rs

Request Arrival Rate (per timeslot)

(g) Improvements on completion time.

0

20

40

60

80

6 12 18 24 30

%
of

 Tr
an

sfe
rs

Deadline Factor

(h) Improvements on completion time.

0

20

40

60

20 30 40 50 60 70 80

%
of

 Tr
an

sfe
rs

% of datacenters are receivers

(i) Improvements on completion time.

Fig. 11. DaRTreeJoint improves the request acceptance ratio, throughput and transfer completion time.

show. However, DaRTreeJoint can always achieve about 5%
more deadline-met transfers. The results in Fig. 11(d) show
that DaRTreeJoint also achieves around a stable 10% higher
throughput than DaRTree. Fig. 11(g) shows that DaRTree-
Joint finishes about 97% and 52% transfers earlier than their
deadlines even when the request arrive rate is 1 and 11,
respectively and finishes around 14% and 55% transfers within
a quarter of their deadlines. Fig. 11(b), 11(e), 11(h) shows
the results obtained under different deadline factors. As the
deadline factor increases (or the deadline becomes looser), we
can see an increase in percentages of deadline-met transfers for
both algorithms from Fig. 11(b). DaRTreeJoint achieves at least
10% more deadline-met transfers. This more deadline transfers
leads DaRTreeJoint to a round 15% higher throughput. Fig.
11(h) shows DaRTreeJoint can finish 35% to 76% earlier than
their deadlines. Fig. 11(c), 11(f), 11(i) show the results obtained
under different number of receivers. Fig. 11(c) shows that both
algorithms maintain a fairly stable percentage of deadline-met
transfers when the number of receivers changes.

However, DaRTreeJoint also outperforms DaRTree in ac-
cepting at least 12% more transfers, achieving 25% higher
throughput, and finishing around 40% transfers earlier than
their deadline. Fig. 12 shows the runtime of DaRTree and
DaRTreeJoint. We can see that the runtime of both DaRTree

1 3 5 7 9 11
Request Arrival Rate (per timeslot)

2-2

2-1

20

21

22

23

24

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

se
co

n
d
s)

DaRTree

1 3 5 7 9 11
Request Arrival Rate (per timeslot)

DaRTreeJoint

Fig. 12. Runtime comparison between DaRTree (left) and DaRTreeJoint(right)

and DaRTreeJoint is just a few seconds on average. For small
request arrival rates from 1 to 5, DaRTree is a bit faster than
DaRTreeJoint but both can terminate in up to 5 seconds. As
the request arrival rate increases from 5 to 11, DaRTreeJoint
performs slightly better than DaRTree.

As such, by aggressively reorganizing admitted requests dur-
ing their lifetime, DaRTreeJoint can further increase acceptance
ratio and throughput. Even though all admitted requests will be
completed until their deadline, a downside is that the clients
have less planning certainty about their sending/receiving rates.

IX. CONCLUSION

Our work was motivated by the rapidly increasing scale
of geo-replication and the recently uncovered possibilities of

15

physical layer adaptation in the WAN. To this end, we pre-
sented DaRTree, an efficient approach to maximize the on-
line admission of deadline-sensitive multicast transfer requests
in reconfigurable WANs. DaRTree leverages 1) load-adaptive
Steiner tree routing and 2) topology reconfiguration via relaxed
optimization solvers for greater efficiency, without requiring
rescheduling or preemption. Our extensive simulations for real-
world topologies showed that DaRTree significantly improves
the network throughput and the number of admitted requests
over prior work. DaRTree also enhances the performance of
unicast transfers in reconfigurable WANs and of multicast
transfers in WANs without reconfiguration. Moreover, DaRTree
can be efficiently adapted to handle non-uniform transfer utility
functions and ongoing reallocation of admitted requests. We
believe that our work opens several interesting avenues for
future research. In particular, it will be interesting to explore
opportunities in the context of randomized rounding or the
potential benefits of allowing preemptions.
Reproducibility. In order to simplify future research and in
order to make our results reproducible, we will share our
implementation4 and experimental results with the research
community together with this paper.
Acknowledgements. We would like to thank the authors of [20]
for providing us with their source code. We would also like to
thank the anonymous reviewers for their helpful comments.

REFERENCES

[1] L. Luo, K.-T. Foerster, S. Schmid, and H. Yu, “DaRTree: deadline-aware
multicast transfers in reconfigurable wide-area networks,” in IEEE/ACM
IWQoS, 2019.

[2] Cisco, “Cisco global cloud index: Forecast and methodology, 2016–
2021 white paper,” https://www.cisco.com/c/en/us/solutions/collateral/
service-provider/global-cloud-index-gci/white-paper-c11-738085.html,
online: accessed 15-April-2019.

[3] C.-Y. Hong, S. Kandula et al., “Achieving high utilization with software-
driven WAN,” in ACM SIGCOMM, 2013.

[4] S. Jain, A. Kumar, S. Mandal et al., “B4: Experience with a globally-
deployed software defined WAN,” in ACM SIGCOMM, 2013.

[5] S. Kandula, I. Menache, R. Schwartz et al., “Calendaring for wide area
networks,” in ACM SIGCOMM, 2014.

[6] N. Mohammad, C. S. Raghavendra, K. Srikanth, and R. Sriram, “Quick-
Cast: Fast and efficient inter-datacenter transfers using forwarding tree,”
in IEEE INFOCOM, 2018.

[7] H. Zhang, K. Chen, W. Bai et al., “Guaranteeing deadlines for inter-data
center transfers,” IEEE/ACM Trans. Netw., vol. 25(1), pp. 579–595, 2017.

[8] Y. Zhang, J. Jiang, K. Xu et al., “BDS: a centralized near-optimal overlay
network for inter-datacenter data replication,” in ACM EuroSys, 2018.

[9] V. Jalaparti, I. Bliznets, S. Kandula et al., “Dynamic pricing and traffic
engineering for timely inter-datacenter transfers,” in ACM SIGCOMM,
2016.

[10] L. Luo, H. Yu, Z. Ye, and X. Du, “Online deadline-aware bulk transfer
over inter-datacenter WANs,” in IEEE INFOCOM, 2018.

[11] M. Noormohammadpour and C. S. Raghavendra, “Datacenter traffic
control: Understanding techniques and tradeoffs,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 2, pp. 1492–1525, 2018.

[12] N. McKeown, T. Anderson, H. Balakrishnan et al., “Openflow: enabling
innovation in campus networks,” ACM SIGCOMM Computer Communi-
cation Review, vol. 38, no. 2, pp. 69–74, 2008.

[13] P. Bosshart, D. Daly, G. Gibb et al., “P4: Programming protocol-
independent packet processors,” ACM SIGCOMM Computer Communi-
cation Review, vol. 44, no. 3, pp. 87–95, 2014.

[14] M. Wichtlhuber, J. Kessler, S. Bucker et al., “Soda: Enabling CDN-ISP
collaboration with software defined anycast,” in IFIP Networking, 2017.

4https://github.com/ilongluo/DaRTree.git

[15] M. Noormohammadpour et al., “DCCast: Efficient point to multipoint
transfers across datacenters,” in USENIX HotCloud, 2017.

[16] M. Noormohammadpour and C. S. Raghavendra, “DDCCast: Meeting
point to multipoint transfer deadlines across datacenters using ALAP
scheduling policy,” arXiv preprint arXiv:1707.02027, 2017.

[17] S. Ji, S. Liu, and B. Li, “Deadline-aware scheduling and routing for
inter-datacenter multicast transfers,” in IEEE International Conference
on Cloud Engineering (IC2E), 2018, pp. 124–133.

[18] S. Luo, H. Xing, and K. Li, “Near-optimal multicast tree construction in
leaf-spine data center networks,” IEEE Systems Journal, pp. 1–4, 2019.

[19] S. Luo, H. Yu, K. Li, and H. Xing, “Efficient file dissemination in data
center networks with priority-based adaptive multicast,” IEEE Journal on
Selected Areas in Communications, 2020.

[20] X. Jin, Y. Li, D. Wei et al., “Optimizing bulk transfers with software-
defined optical WAN,” in ACM SIGCOMM, 2016.

[21] S. Jia, X. Jin, G. Ghasemiesfeh, J. Ding, and J. Gao, “Competitive
analysis for online scheduling in software-defined optical WAN,” in IEEE
INFOCOM, 2017.

[22] R. Durairajan, P. Barford, J. Sommers, and W. Willinger, “Greyfiber: A
system for providing flexible access to wide-area connectivity,” arXiv
preprint arXiv:1807.05242, 2018.

[23] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill, “RADWAN:
rate adaptive wide area network,” in ACM SIGCOMM, 2018.

[24] L. Luo, H. Yu, and Z. Ye, “Deadline-guaranteed point-to-multipoint bulk
transfers in inter-datacenter networks,” in IEEE ICC, 2018.

[25] N. Laoutaris, M. Sirivianos, X. Yang et al., “Inter-datacenter bulk
transfers with netstitcher,” in ACM SIGCOMM, 2011.

[26] N. Laoutaris, G. Smaragdakis, R. Stanojevic et al., “Delay-tolerant bulk
data transfers on the Internet,” IEEE/ACM Trans. Netw., vol. 21, no. 6,
pp. 1852–1865, 2013.

[27] Y. Feng, B. Li, and B. Li, “Postcard: Minimizing costs on inter-datacenter
traffic with store-and-forward,” in IEEE ICDCS Workshops, 2012, pp. 43–
50.

[28] Y. Wang, S. Su, A. X. Liu, and Z. Zhang, “Multiple bulk data transfers
scheduling among datacenters,” Computer Networks, vol. 68, pp. 123–
137, 2014.

[29] Y. Wu, Z. Zhang, C. Wu et al., “Orchestrating bulk data transfers across
geo-distributed datacenters,” IEEE Transactions on Cloud Computing,
vol. 5, no. 1, pp. 112–125, 2017.

[30] R. Singh, M. Ghobadi, K.-T. Foerster, M. Filer, and P. Gill, “Run, walk,
crawl: Towards dynamic link capacities,” in ACM HotNets, 2017.

[31] K.-T. Foerster, L. Luo, and M. Ghobadi, “Optflow: A flow-based abstrac-
tion for programmable topologies,” in ACM SOSR, 2020.

[32] L. Luo, K.-T. Foerster, S. Schmid, and H. Yu, “Splitcast: Optimizing mul-
ticast flows in reconfigurable datacenter networks,” in IEEE INFOCOM,
2020.

[33] Y. Xia, T. E. Ng, and X. S. Sun, “Blast: Accelerating high-performance
data analytics applications by optical multicast,” in INFOCOM, 2015.

[34] K.-T. Foerster and S. Schmid, “Survey of reconfigurable data center
networks: Enablers, algorithms, complexity,” SIGACT News, vol. 50,
no. 2, pp. 62–79, 2019.

[35] “The path to 100g (fujitsu network communications),” http://www.fujitsu.
com/downloads/TEL/fnc/whitepapers/Path-to-100G.pdf, online: accessed
15-April-2019.

[36] “White paper: Next-generation roadm architectures and benefits,” https:
//www.fujitsu.com/us/Images/Fujitsu-NG-ROADM.pdf, online: accessed
15-April-2019.

[37] Y. Sheng, Y. Zhang, H. Guo et al., “Benefits of unidirectional design
based on decoupled transmitters and receivers in tackling traffic asym-
metry for elastic optical networks,” J. Opt. Commun. Netw., vol. 10, no. 8,
pp. C1–C14, Aug 2018.

[38] M. Dinitz and B. Moseley, “Scheduling for weighted flow and completion
times in reconfigurable networks,” in INFOCOM, 2020.

[39] M. Reitblatt, N. Foster, J. Rexford et al., “Abstractions for network
update,” ACM SIGCOMM Computer Communication Review, vol. 42,
no. 4, pp. 323–334, 2012.

[40] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of consistent
software-defined network updates,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1435–1461, 2018.

[41] M. A. Bonuccelli and M. C. Clò, “Scheduling of real-time messages in
optical broadcast-and-select networks,” IEEE/ACM Trans. Netw., vol. 9,
no. 5, pp. 541–552, 2001.

[42] “Global data centers,” https://www.equinix.com/locations/, online: ac-
cessed 15-April-2019.

[43] “Mosek.” https://www.mosek.com/, online: accessed 15-April-2019.

