
RoSCo: Robust Updates for Software-Defined
Networks

James Lembke, Srivatsan Ravi, Patrick Eugster, Stefan Schmid

Abstract—In many Software-Defined Networking (SDN) de-
ployments the control plane ends up being actually centralized,
yielding a single point of failure and attack. This paper models
the interaction between the data plane and a distributed control
plane consisting of a set of failure-prone and potentially malicious
(compromised) control devices, and implements a secure and
robust controller platform that allows network administrators
to integrate new network functionality as with a centralized ap-
proach. Concretely, the network administrator may program the
data plane from the perspective of a centralized controller without
worrying about distribution, asynchrony, failures, attacks, or
coordination problems that any of these could cause.

We introduce a formal SDN computation model for applying
network policies and show that it is impossible to implement
asynchronous non-blocking and strongly consistent SDN con-
troller platforms in that model. We then present a robust SDN
controller protocol (RoSCo) which implements (i) a protocol
with provably linearizable semantics for applying network policies
that is resilient against faulty/malicious control devices as long
as a correct majority exists, and (ii) a modification to the
protocol that improves performance by relaxing the guarantees of
linearizability to exploit commutativity among updates. Extensive
experiments conducted with a functional prototype of RoSCo
over a large networked infrastructure supporting Open vSwitch
(OVS)-compatible Agilio CX™ SmartNIC hardware show that
RoSCo induces bearable overhead. In fact, RoSCo achieves higher
throughput in most cases investigated than the seminal Ra-
vana [35] platform which addresses only benign (crash) failures.

Keywords—Software defined networking, fault tolerance

I. INTRODUCTION

The Software-Defined Networking (SDN) control plane
allows for expressing and composing policies of varying
networking applications and translating these to a combined
network policy, entailing rules installed onto the switches for
handling network flows. Consider a typical SDN computation
model depicted in Fig. 1: as a packet arrives at a switch port
for which there is no matching entry in the switch’s flow table,
the switch generates an event sent to the controller platform.
The controller subsequently installs a new rule on the switch
and possibly on other switches as well.

J. Lembke is with Purdue University.
S. Ravi is with USC.
P. Eugster is with Purdue University, Università della Svizzera italiana

(USI), and TU Darmstadt.
S. Schmid is with University of Vienna.
Work supported by US NSF grants #1618923 (“Elastic and Robust Cloud

Programming”) and #1421910 (“Practical Assured Big Data Analysis in the
Cloud”), ERC grant #617805 (“LiveSoft”), and DFG center #1053 (“MAKI”).

Manuscript received January 30, 2019; revized January 30, 2020.

Fig. 1: SDN system architecture: The logically centralized controller
platform allows dynamic installation of network policies on the
network switching fabric. Communication between switches and the
controller platform is made through an established protocol interface
(e.g., OpenFlow [46], Cisco ONE [36], VMware NSX [7]). Some
subset of the participating controllers may be faulty. If there is no
matching flow table entry for an incoming packet at a switch port, the
switch runtime creates an event to be sent to the controller platform.

Crash(-stop) failures. Common centralized controller deploy-
ments are trivially prone to crash failures, as a single halting
failure of the controller process can disrupt control over the
network. Recent research has identified the challenges in build-
ing a truly distributed and fault-tolerant SDN controller [31],
[35], [8], [18]. The core challenge consists in ensuring the con-
sistent installation of network policies under asynchronous and
lossy communication. Specifically, a correct implementation of
the controller platform must consider subtle conflicts between
concurrently raised events and/or their resulting switch updates
that entail flow table modifications, and provide progress (or
availability) [35] in the face of crash failures.
Controller faults. Moreover, whilst several widely adopted
SDN controller platforms like Onix [37] and ONOS [9]
provide some pragmatic forms of distribution, these models
focus solely on crash failures where distributed controllers
cease to respond entirely. Little research effort has been
directed towards investigating real-life fault models in which
faulty SDN controllers continue to respond, but with corrupted
messages. Such situations may happen due to a variety of

1

causes including software flaws or transmission errors. For
example, in July 2008 Amazon S3 suffered an outage caused
by network communication errors that corrupted messages
“such that the message was still intelligible, but the system
state information was incorrect” [2]. Again, in 2012, Amazon
AWS suffered another outage due to “a latent bug in an
operational data collection agent” [3]. Google App Engine
also suffered a several hour outage as the “result of a bug
in our datastore servers [...] triggered by a particular class of
queries” [5]. In all these cases, the failure was not caused
by a crash. While these examples focus on general network
applications, the principles behind the outages can easily carry
over to any SDN controller model. Typical SDN policies are
based on matching of a packet prefix. When applying such
SDN policies, even the corruption of a single bit can cause a
mismatch resulting in incorrect data plane routing.

Furthermore, as Kreutz et al. argue in a position paper [38],
several threat vectors motivate the need for a secure and
dependable SDN controller platform, including forged or
faked flows, attacks on vulnerabilities in switches and on
control plane communication. The effects of such malicious
(à la Byzantine) adversaries [16], [41] in fact can manifest
similarly to many benign faults mentioned earlier such as
corrupted communication. In summary, once an SDN switch
is thus faulty or compromised (e.g., due to collocation with
a compromised application or virtual switch [50]), it may
perform any of the following actions: send arbitrary messages
within the control plane and to switches in the data plane
as well as arbitrarily delay/intercept/modify traffic between
controllers and switches [38], eventually compromising the
entire data plane. While it is not immediate under what
circumstances vulnerabilities cause control devices to exhibit
the full spectrum of Byzantine behavior [11], threat vectors
inherent to SDN make it vital that the SDN controller platform
provides provable correctness against faults beyond crashes.
Existing results and model uniqueness. Though many fun-
damental results and bounds from traditional fault-tolerant
distributed computing still apply to address the consistency
of data plane updates in the distributed SDN context, those
are based on abstractions/models which are both too generic
and specific. More specifically, the problems addressed in the
SDN model considered in this paper differ from traditional
setups in that the latter: (1) consider clients concurrently
issuing requests to servers, while the present SDN context
has switches issue events to controllers, whose handling yields
updates for several switches and not only the one raising
the event; (2) assume a single homogeneous network whilst
the SDN context further distinguishes between the data plane
network and controller-switch network (and possibly client-
controller network) which can be physically disjoint; (3) do
not typically make assumptions about state and logic managed
and shared among servers whereas the SDN logic [12] (e.g.,
network flows/flow tables) has well-known specific semantics
and constraints. As a result, traditional distributed computing
solutions deployed as black-boxes are unlikely to be efficient
in the SDN computation and threat model.

Technical constraints. A dependable practical SDN controller
platform, apart from providing consistency, integrity and avail-
ability for applying network policies, must also come with a
simple computation and programming model. Specifically, it
must allow the network administrator to program the network
switching fabric with the ease of programming a centralized
SDN controller. For example, unlike with our work, the
Hyperflow [51] replicated SDN controller platform requires the
application itself to actually manage the replicated state, thus
increasing the burden on programmers. A second important
requirement for the SDN controller platform is to keep the
instrumentation on the switch runtime minimal. For example,
it may be perfectly plausible to deploy a variant of Paxos [39]
(for crash failures) as is the case with [18] or deploy Byzantine
fault-tolerant (BFT) [40] protocols across every switch and
controller, but this can incur complex instrumentation, increase
usage of switch runtime resources (which may be limited),
and require messaging that is non-compliant with existing data
plane APIs like OpenFlow [46], [31].
Contributions. This paper presents RoSCo, to the best of our
knowledge the first comprehensive solution towards a robust
SDN controller platform with a provably consistent protocol
for applying network policies in the face of failures including
crashes up to maliciously compromised controllers, and which
conforms to standard programming interfaces [46], [7]. The
RoSCo protocol utilizes an agreement-based distributed con-
troller to ensure ordering of data-plane events combined with
quorum authentication for updates to network policies while
explicit acknowledgements ensure consistency. The key algo-
rithmic trick to implementing RoSCo in our SDN computation
and threat model is augmenting the switch runtime to perform
control message verification, with minimal induced overhead.

Concretely, this paper makes the following contributions. We
present (i) a formal computation model for applying network
policies in the presence of faulty and/or malicious controllers
and an impossibility result for implementing non-blocking data
plane updates in this model in a strongly consistent manner,
i.e., enforcing event linearizability – a property for the SDN
setting inspired by linearizability [28]; (ii) a protocol providing
event linearizability for this failure model that ensures progress
assuming a correct majority of controllers; (iii) a relaxation of
the linearizable protocol that guarantees update consistency
exploiting commutativity among updates and hence increasing
concurrency, leading to demonstrably improved performance;
(iv) the RoSCo prototype extending the Ryu controller frame-
work and the Open vSwitch (OVS) runtime with minimal data
plane instrumentation, in a way compliant with OpenFlow [46],
[31]; (v) extensive experiments and microbenchmarks that
show the overhead of RoSCo is bearable in practice; thanks
to design and implementation choices RoSCo achieves higher
throughput in most tested cases than the seminal Ravana [35]
platform that only tackles clear-cut crash failures.
Code and experimental artifacts. The RoSCo implemen-
tation is publicly available on GitLab and the experimental
topologies have been added for reproducibility of results1.

1https://gitlab.com/robust-sdn

2

https://gitlab.com/robust-sdn

Roadmap. § II overviews the problems associated with con-
current event processing due to faulty controller processes.
§ III formalizes the SDN model and presents our consistency
definitions for network updates. § IV presents the detailed
RoSCo protocols for strong and weak consistency. § V details
the implementation specifics of our prototype and § VI presents
extensive evaluation experiments. § VII presents related work.
§ VIII concludes the paper.

II. MOTIVATION AND MODEL

We first briefly motivate the need for consistency in applying
network policies before outlining our model of failure/threats
and computation. Using OpenFlow, an open standard protocol
providing a mechanism for communication between the SDN
data plane and control plane, switches send events to and
receive updates from controllers via a network connection
which imposes a nonzero network delay. This delay can cause
uncertain and undesirable behaviors even while all processes
are functioning as designed, as illustrated in the following.
Example. Consider the network topology shown in Fig. 2a
consisting of five OpenFlow compatible switches (s1−5). The
arrows represent the current flows routing network traffic to
switch s5. At a particular time, the link between s4 and s5
fails. s4 detects the failure and sends an event to the controller.

The controller requires a network update to alter flows
destined for s5 as shown in Fig. 2b. This network update
involves three individual switch updates; one at s2, s3, and s4.
In the SDN model, data plane switches do not communicate
with each other for network updates. As such, if the controller
sends out all switch updates in parallel, the update at s3
might be processed first, resulting in an unintended loop in
the network as shown in Fig. 2c. Eventually the switch update
at s2 will be processed and the loop will be removed however,
during the time that the network loop exists, significant switch
buffer resources may be consumed affecting availability of the
network. Performing the switch updates sequentially starting
with the update at s2, followed by s3, and finally s4 would
prevent the possibility of a network loop. While solutions
to this problem have been well-understood for a centralized
controller platform, our solution focuses on maintaining strong
consistency in a distributed controller environment, the details
of which are described in § IV.
Failure and threat model. We consider a failure/threat model
in which SDN controllers, besides crashing, may become
faulty or (partially) compromised as specified by Kreutz et
al. [38]. Similarly a network host (not part of the existing
control plane) may also be compromised and masquerade as an
SDN controller. Such an adversary is allowed to perform any of
the following actions on the network: send any arbitrary mes-
sage to switches in the data plane; send any arbitrary message
to other controllers; eavesdrop traffic on the communication
network between controllers in the control plane; eavesdrop
traffic on the communication network between switches and
controllers; intercept and modify traffic between controllers
and switches. While it might be the case that the physical
medium between switches in the data plane is the same as
that between the data plane and the control plane, an adversary

(a) (b) (c)

Fig. 2: Fig. 2a depicts the state of an SDN controlled network using
OpenFlow with five switches and the active flows to switch s5. Fig. 2b
depicts the intended flows after a network update due to a failure of
the link between s4 and s5. Fig. 2c depicts an unintended network
loop because switch s3 applied its switch update before s2 did.

may not modify the contents of packets sent between switches
in the data plane. Specifically, an adversary may not force
the dropping of data packets sent between switches other
than through modifications to switches’ flow tables. A switch
in the data plane may take indefinitely long to respond to
controller messages due to network asynchrony. The goal of
RoSCo protocols for network updates is to limit the impact an
adversary can have on the network as a whole. In the worst
case, an adversary should only be able to prevent forward
progress. It should not be allowed to alter flows or cause
incorrect routing of data packets. As discussed in § IV, RoSCo
ensures that correct policies are applied to switches through
the use of quorum authentication. However, our failure model
does not include the case of a dishonest majority through con-
current software or hardware failures or a coordinated attack.
Approaches tackling such scenarios e.g., utilizing multiple
versions of software and/or intrusion detection [53], [20] have
been well established in existing research. As discussed in
§ V, RoSCo is designed to be flexible to accommodate these
approaches.
Computation model. Characterizing the properties (outlined
in § I) associated with applying network policies and establish-
ing protocol correctness, besides a failure/threat model, neces-
sitates the need for a computation model. Holistically compar-
ing and evaluating different SDN controller platforms requires
us to precisely specify the following crucial properties: what is
the consistency property that defines the guarantees for within
the algorithm for how flow table modifications are made;
whether the SDN controller is distributed across multiple
instances; what are the inherent switch instrumentation (instr.)
and complexity costs that define the amount of additional
instrumentation is required to data plane switches in order to
properly use the SDN controller; what is the programming
model, i.e., the amount of knowledge that a controller applica-
tion and administrator must have of the underlying protocol.
RoSCo in context. Tab. I summarizes pros and cons of popular
existing distributed controller platforms and how they compare
against RoSCo, described in the following sections. Non-
distributed, centralized controller platforms such as Ryu [6],
while offering consistent ordering of events in the control
plane and centralized administration, do not offer protection
from failures. Onix [37] and NetPaxos [18] provide centralized
administration and protection from crash failures, however re-
quire significant switch instrumentation. Ravana [35] provides

3

TABLE I: Comparison of SDN controller platforms fault tolerance, application interfaces, and complexity.

Ravana [35] Ryu [6] Onix [37] NetPaxos [18] RoSCo
Consistency Observational

indistinguishabilitya
Sequential
specification

Partial event
orderingb

Partial event
orderingb

Event linearizabilityc &
update consistencyd

Distributed Yes No Yes Yes Yes
Switch instr.
& complexity

Minimal None High Very high Minimal

Programming
model

Centralized Centralized Maintain network
information base

Centralized Centralized

Adversary Crash Centralized failure Crash Crash Malicious
aObservational indistinguishability is the guarantee that any observation of events viewed in distributed controller model is the same as those
viewed in the centralized model. bPartial order allows for independent events to be observed in any order. cEvent linearizability ensures a
total order on event observations. dUpdate consistency ensures coherence of dependent network updates for flows across multiple switches.
RoSCo is the only distributed controller platform that provides complete linearizability with total event ordering and tolerates faults incurred
by malicious actors. Others do provide greater consistency over the centralized model, but either require significant switch instrumentation
(Onix, NetPaxos) or only tolerate crash failures (Ravana).

TABLE II: Summary of model notation.

Symbol Definition
c Controller process
s Switch process
π Network policy
e Network event
u Switch update
U Flow update (seq. of switch updates)
U Network update (seq. of switch updates)
E Execution of a network update
I Controller policy implementation
H Execution history
upd[S(e)] Set of switches to be updated as a result of event e
<E <H Total order in E or in H
πi ≺E πj Precedence of network policies in E

observational indistinguishability of events, centralized admin-
istration, and protection against crash failures however does
not protect against other faulty behavior. RoSCo combines the
benefits of event linearization and protection from failures (as
described in our failure and threat model) while still offering
centralized administration and minimal switch instrumentation.
Moreover, RoSCo also implements a weakly consistent update
procedure and presents an empirical characterization of the
induced overhead over the event linearizable protocol.

III. FORMALIZING SDN COMPUTATION

In this section, we provide a formal model of computation
for applying SDN policies and prove a fundamental result
on the nature of progress: it is impossible to implement
non-blocking and strongly consistent application of network
policies. Tab. II summarizes the notation used thereon. Readers
interested in the details of the RoSCo protocol which focus
on overcoming this impossibility result assuming an honest
majority of controllers may wish to proceed directly to § IV.
Control plane and data plane. We consider an asynchronous
controller system in which a set C = {c1, . . . cn} controller
processes communicate by sending and receiving messages.
The data plane is a set S = {s1, . . . , sm} of switches and a
set L ⊆ S ×S of links, either of which may fail. We consider
a full communication model in which each controller process
may send messages to, and receive messages from, any other

controller process or any switch. Switches communicate with
each other solely for the purpose of sending data plane traffic.
Network policies. Following [14], we define the notion of a
network policy which intuitively specifies the state of the flow
tables in data plane switches for forwarding packets across
the network. A network policy π specifies the state (or flow
tables) of each switch in the data plane. An event is initiated
by a switch or a controller and results in a network update to
apply a network policy to the flow tables of some subset of
switches. We assume that the application of a network policy
π begins with an event invocation by a switch followed by a
network update. A network update consists of a sequence of
switch updates u.

Note that, as outlined via Fig. 1, network policies themselves
are either set by one or more administrators or generated
through a controller application operating in a layer above the
controller platform. However without loss of generality and for
the simplicity of the model, we assume that a network policy
change is initiated by a switch, but the control plane may itself
initiate new network policies on the data plane. Furthermore,
as noted in Fig. 1, network policies are set as part of the
controller application in a layer above the controller platform.
Executions and configurations. A switch update is the mod-
ification of the flow table for a switch with the given rule.
A step of a network update U is a switch update u of U
or a primitive (e.g., message send/receive, atomic actions on
process memory state, etc.) performed during U along with
its response. A configuration (of an SDN implementation)
specifies the state of each switch and the state of each
controller process. The initial configuration is the configuration
in which all switches have their initial flow table entries and
all controllers are in their initial states. An execution fragment
is a (finite or infinite) sequence of steps. An execution E of
an implementation I is an execution fragment where, starting
from the initial configuration, each step is issued according to
the implementation I and each response of a primitive matches
the state resulting from all preceding steps. Two executions Ei
and Ej are indistinguishable to a set of control processes and
switches if each of them take identical steps in Ei and Ej .
Ideal world specification of network policies. Defining the
correctness of a concurrent network update protocol resilient

4

against faulty controllers requires specifying the ideal-world
functionality of the network policy, i.e., how the policy would
be implemented on the data plane by a trusted centralized
controller. We model this as a standard mealy machine: every
network policy πi has a deterministic sequential specification,
i.e., in the absence of concurrency, πi beginning with an
event invocation at data plane configuration Cj followed by
a network update, terminates by returning a response ri and
moves the data plane to some configuration Cj+1.

Note that, as outlined via Fig. 1, ideal world specification of
network policies are determined by one or more administrators
or generated through a controller application operating in a
layer above the controller platform. The goal of the RoSCo
protocols is to enforce this ideal world specification in a highly
concurrent failure/threat model.
Control plane and data plane instrumentation. We assume
that the control plane and data plane are separate and the
data plane switches are themselves mutually independent as is
the case in data center SDN deployments [31]. This typically
allows for the data plane switches to be deployed with minimal
instrumentation, i.e., largely forwarding packets according to
matching flow table rules [12]. Formally, for every execution
E and any event e invoking a network update U initiated by
switch s, every extension of E is indistinguishable to s from an
execution in which upd[S(e)] = {s}. Here, upd[S(e)] = {s}
denotes the set of switches whose flow tables must be updated
on completion of U as a result of the invocation of e by s.
Network updates & consistency. We now define our consis-
tency properties for network updates.
Strongly consistency or event linearizability. We first define
strongly consistent network updates, inspired by the definition
presented by Canini et al. [14]. To formalize the definition, we
introduce the following technical language. A policy πi pre-
cedes another policy πj in an execution E , denoted πi ≺E πj ,
if the network update for πi occurs before the network update
of πj in E . If none of two policies πi and πj precede the other,
we say that πi and πj are concurrent. An execution without
concurrent policies is a sequential execution. A network policy
is complete in an execution E if the invocation event is
followed in E by a matching network update; otherwise, it
is incomplete. Execution of E is complete if every policy in
E is complete. A high-level history H of an execution E is
the subsequence of E consisting of the network policy event
invocations, network updates and network policy responses.

An execution E is event linearizable [28] if there exists a
sequential high-level history S equivalent to some completion
of H such that (1) ≺H⊆≺S (policy precedence is respected)
and (2) S respects the sequential specification of policies in
H . A SDN implementation I implements event linearizable
network updates if every execution E of I is linearizable.
Update consistency. As depicted in Fig. 2, the response to
an event e may involve updates to multiple switches, each
of these updates requiring a specific order of execution to
maintain consistency. Furthermore, the handling of an event
by the controller application is affected not only by the event
itself but also the controller application’s global view of the
network (state). As such, the ordering of events as input to the

Fig. 3: Illustrating proof of Theorem 1: Construct an execution involv-
ing two non-commutative events e1 and e2 which must each update
flow tables of both switches s1 and s2. By the non-blocking property:
network updates π1 and π2 must complete. The uninstrumented data
plane model implies s1 and s2 are oblivious of conflicting events.
Thus, by the asynchronous nature of the adversary, updates involving
e1 and e2 might interleave. E.g., switch s1 may perform the update
from e1, but before s2 performs its update for e1, s1 may perform
the update for e2, violating event linearizability.

Fig. 4: Typical execution of an event linearizable protocol like RoSCo:
when two concurrent network policies π1 and π2 that are non-
commutative over updates to the same set of switches s1 and s2,
the protocol must block to prevent interleaving of the updates to the
flow tables of s1 and s2. The detailed description of the RoSCo event
linearizable protocol is described in Alg. 1 and Alg. 2 while the weak
update consistency procedure is described in Alg. 3.

controller application is also important.
Event linearizability stipulates that network update U1 must

take effect before U2 takes effect. However, in some situations
this strong guarantee is not necessary. We refer to a flow
update as an ordered sequence of switch updates [u1, . . . , un]
generated by the controller application in response to some
event. We refer to flow consistency as ordering of switch
updates within a flow update. The need for such consistency
is motivated in [32] as well as the example in § II. Ordering
is also required for updates to the same switch either within
or across multiple flow updates. Such updates may occur
as the result of multiple events handled by the controller
application or if multiple flow updates are generated in the
response to a single event. We refer to the ordering of updates
to a single switch as switch consistency. Our definition for
weak consistency, denoted, update consistency relaxes event
linearizability whenever possible by allowing switch updates
be applied in parallel provided both flow consistency and
switch consistency are maintained.

5

Impossibility of non-blocking linearizable SDN control.
We now establish a lower bound that places a fundamental
limitation on the nature of progress in asynchronous SDN
implementations: it is impossible to realize non-blocking and
event linearizable network updates. Intuitively, non-blocking
progress in the SDN context ensures that some network update
always completes successfully independent of the controller
failures and network asynchrony. Formally, we say that an
implementation I for network updates in SDN provides non-
blocking progress if in every execution E of I, some network
update Ui participating in E returns a matching response
within a finite number of steps. The result and the proof
itself is inspired by traditional distributed computing proofs
that establish the impossibility of highly parallel non-blocking
data structures [26].

Theorem 1: No non-blocking asynchronous SDN imple-
mentation provides event linearizable network updates.

Proof: Suppose by contradiction that there exists a SDN
implementation I in the malicious controller threat model that
provides event linearizable network updates and non-blocking
progress. As illustrated in Fig. 3, consider an execution Ei of I
in which two network updates U1 and U2 participate in Ei. We
assume that U1 (and resp. U2) is invoked by event e1 (and resp.
e2) by switch s1 (and resp. s2). Suppose that the response of e1
(and resp. e2) involves the flow table updates of switch s1 first
and then switch s2 (and resp. s2 first and then s1). Since I is
non-blocking, at least one of the events e1 or e2 must complete
updating the flow tables of s1 and s2 and return a matching
response within a finite number of steps. By our assumption, Ei
is indistinguishable to s1 (and resp. s2) from an execution Ej in
which upd[S(e1)] = {s1} (and resp. upd[S(e2)] = {s2}). By
the assumption of asynchrony, an adversary may simply delay
the communication between the controllers and switches s1
and s2 such that the updates to the respective switches as part
of events e1 and e2 are interleaved. However, this contradicts
the assumption that I is event linearizable: either the updates
corresponding to event e1 first terminates and then the updates
corresponding to event e2 are performed or vice-versa.

Theorem 1 implies that providing event linearizable and
asynchronous network updates requires relaxing the non-
blocking progress property. In the next section, we describe
a provably event linearizable protocol that is resilient against
faulty controllers and ensures blocking progress assuming a
majority of correct controllers. We additionally present a re-
laxation of the protocol satisfying update consistency providing
demonstrably improved performance.

IV. ROSCO PROTOCOL

This section presents the core contribution of this paper:
RoSCo, a dependable Software-Defined Networking (SDN)
controller platform for robust network updates. The detailed
description of the RoSCo protocol implementing event lin-
earizability is given in Alg. 1 and Alg. 2. The weakly consistent
update procedure is described with Alg. 3.
Overview and notation. RoSCo ensures flow consistency,
switch consistency, and progress assuming that a majority of
controllers are correct. That is, to tolerate f failures, RoSCo

requires that at least 3f + 1 controllers participate in the
execution. Since protocols involved in ordering events/event
handling across controllers can be costly, RoSCo makes use
of event batching.

The protocol makes use of the following notation:
A=[a1, . . . , an] denotes a sequence (ordered set) of elements
a1 . . . an. A sequence’s elements are identified/accessed via
index (e.g., A[i] refers to the i-th element of A, ai ∈ A.).
A=〈a1, . . . , an〉 denotes a tuple with elements a1 . . . an. A tu-
ple’s elements are identified via dereferencing (e.g., A.ai). ‘⊕’
denotes sequence concatenation: [a1, . . . , an] ⊕[b1, . . . , bm]
= [a1, . . . , an, b1, . . . , bm]. Lastly, cardinality is denoted by
‘| . . . |’: |[a1, . . . , an]|=n.
Definitions. We use the following definitions:
Event sequence E = [e1, . . . , en]: a sequence of one or more

events.
Switch update u = 〈s, r〉: an individual update to switch

identified as s with rule r. The rule corresponds to the
establishment of a new policy π on switch s.

Flow update U = [u1, . . . , un]: a sequence of switch updates
such that ui precedes ui+1.

Controller keys CPKi and CSKi: public and secret key re-
spectively for controller ci.

Switch keys SPKi and SSKi: public and secret key respec-
tively for switch si.
Note that for simplicity we assume that any event e and rule

r is implicitly uniquely identified.
Application interfaces. The protocol uses the following ap-
plication interfaces:
Switch event generation: generateEventData(p) = e, given

packet data p creates the necessary event data to be sent
to the controller.

Switch update application: apply(r) applies r to the
switch runtime.

Controller application invocation: handleEvents([e1, . . . , el])
returns [U1, . . . , Um]: a sequence of flow updates generated
in “response” to a sequence of events [e1, . . . , el] as
specified by the ideal world functionality.

Signature creation: sign(msg, sk), a function to sign a mes-
sage (msg) with given key (sk).

Signature verification: verifySign(sig,msg, pk), a function to
verify a signature (sig) for the given message (msg) using
the public key (pk).

Agreement: propose([e1, . . . , en]) is used by controllers to
initiate/participate in an agreement protocol on a sequence of
events E = [e1, . . . , en]. As the outcome of agreement, con-
trollers receive through a callback decide(E′) the sequence
of events E′ to pass to the controller application.

RoSCo protocol procedure. The RoSCo protocol uses an
agreement protocol to ensure a total ordering of events pro-
cessed by controller nodes as well as quorum authentication
to ensure agreement among rules to be applied to switches.
In short the RoSCo protocol works as follows: (i) A switch
receives an incoming packet for which there is no matching
rule in the flow table. (ii) The switch generates an event,
assigns the event a unique sequence number, signs the event

6

with its private key, and broadcasts the signed event to all
controllers (Alg. 1 line 17). (iii) A controller, upon receiving
a signed event from a switch, verifies the signature (ignoring
the event if verification fails or if the event has been received
previously), and adds the event to the current batch (Alg. 2
lines 7- 10). (iv) Once either the batch reaches capacity or
a timeout occurs, the controller proposes the batch across
controllers (Alg. 2 line 12). (v) Once agreement has been
reached, the controller passes the event batch to the controller
application to determine the network update for it (Alg. 2
lines 14- 20). Note that agreement decisions are delivered in
a sequential manner, i.e., decide executes in mutual exclusion
and in order of instances of the agreement protocol. (vi) The
controller executes the network update procedure (described
below) for the resulting network update (Alg. 2 line 20).
(vii) Event batch and network update are cleared after all
switch updates are applied to the data plane.
Strongly consistent network update procedure (event lin-
earizability). To ensure strong consistency, when given a
network update, the controller performs each switch update
serially. The procedure to perform the network update is as
follows: (i) The controller retrieves the next flow update from
the network update (Alg. 2 line 28). (ii) The controller
retrieves the next switch update from the flow update, signs
the update with its private key, and sends the signed update to
the switch (Alg. 2 line 31). (iii) The controller waits to receive
an acknowledgement the switch (Alg. 2 line 32). (iv) The
controller continues with the next switch update (step (ii)) until
all policies from the flow update have been made. (v) The
controller continues with the next flow update (step (i)) until
all flow updates have been applied.
Switch update procedure. To ensure protection from a faulty
controller, a switch can only apply an update rule after it
has received verified update rules from a quorum majority of
controllers. The procedure taken by a switch to perform a rule
update is as follows: (i) A switch, upon receiving a switch
update from a controller verifies the signature (ignoring the
update if verification fails or if the rule has been received
previously), and adds the rule to the received rule set (Alg. 1
lines 10-12). (ii) If a quorum of verified rules has been received
the switch applies the rule, and sends an acknowledgement
for the rule to all controllers (Alg. 1 lines 13-16). The proof
technique for event linearizability is interesting is its own right:
it shows how ideas from traditional distributed computing
proofs [43] can be adopted for deriving correctness proofs
of network update protocols. Recall that the application of a
network policy πi begins with an event invocation by a switch
si ∈ S followed by a network update. To prove event lineariz-
ability of RoSCo, we need to show that in every execution of
the RoSCo protocol, described in Alg. 1 and Alg. 2, and for any
two network policies πi and πj in a given execution, πi (and
resp. πj) completes entirely before πj (and resp. πi) starts. The
proof for event linearizability shows that the individual steps
of πi and πj are not interleaved by constructing a mapping to
an equivalent execution in which network policies are never
invoked concurrently. This is achieved by assigning appropriate
atomicity points for the update procedures.

Theorem 2: RoSCo protocol described in Alg. 1 and Alg. 2
enforces event linearization of network updates.

Proof: In RoSCo, an event is initiated by a switch and
results in a network update to apply a network policy to the
flow tables of some subset of switches as illustrated in Fig. 4.
The application of a network policy πi in an execution E of
RoSCo begins with an event invocation by a switch si ∈ S
followed by a network update.

Let Line 5 of Alg. 1 be the event invocation of any network
policy πi in an execution E and Line 24 in Alg. 2 denote
the response ri of πi in E . All steps performed by the state
machines described by the pseudocode within these lines
denote the lifetime of πi. The proof proceeds by assigning
a serialization point for a policy which identifies the step in
the execution in which the policy takes effect. First, we obtain
a completion of E by removing every incomplete policy from
E . Concretely, if the step in line 15 of Alg. 1 is not performed,
the policy is treated as incomplete.

Let H denote the high-level history of E constructed as fol-
lows: firstly, we derive linearization points of operations per-
formed in E (sendAcknowledgement, sendEvent, verifySign,
sendSwitchUpdate, apply and propose). The linearization
point of any such operation op is associated with a message
step performed between the lifetime of op. A linearization
H of E is obtained by associating the last event performed
within op as the linearization point. We then derive H as
the subsequence of E consisting of the network policy event
invocations, network updates and network policy responses.
Let <E denote a total order on steps performed in E and <H
denotes a total order steps in the complete history H . We then
define the serialization point of a policy πi; this is associated
with an execution step or the linearization point of an operation
performed within the execution of πi. Specifically, a complete
sequential history S is obtained by associating serialization
points to policies in H as follows: for every complete network
update in E , serialization point is assigned to the last event of
the loop in line 32 of Alg. 2.

Claim 1: For any two policies πi and πj in E , if πi ≺H πj ,
then πi <S πj .

Proof: This follows immediately from the fact that for a
given network update, its serialization point is chosen between
the first and last event of the policy implying if πi ≺H πj , then
δπi

<E δπj
implies πi <S πj .

Claim 2: Let [π1, . . . , πn] be the ordering for the sequential
specification of policies in H . Then, the sequence of network
policies as constructed in S is consistent with [π1, . . . , πn].

Proof: Let [U1, . . . , Un] be the corresponding sequence of
flow updates where for all i ∈ {1, . . . , n}, Ui is the flow update
for πi. Recall that each flow update consists of [u1, . . . , un]: a
sequence of switch updates such that ui precedes ui+1. Firstly,
we argue that for all i < j ≤ n, δπi

<E δπj
implies that

the last switch update of Ui (as defined by the linearization
point of apply in line 32 of Alg. 2) precedes the first switch
update of Uj . This invariant immediately follows the waiting
acknowledgement loop in line 32 of Alg. 2 which forces all
switches in Ui to complete before starting the first switch
update in Ui+1. Thus, if πi precedes πj according to the
sequential specification in H , then δπi <E δπj implies that

7

Algorithm 1 Algorithm for switch si with secret key SSKi

1: CPKi // Public key for each controller ci
2: P ← ∅ // Set of previous seen network updates from each controller

3: D ← ∅ // Set of received network updates and counts

4: quorum← b |C|−1
3
c+ 1

5: upon receive(packet) on incoming link do
6: if no flow table match then // Other anomalies possible

7: sendEvent(packet)
8: else
9: forward packet along data plane

10: upon receive(seq‖r‖sig) from controller ci do
11: if verifySign(r, sig, CPKi) and seq 6∈ P [ci] then
12: D[r]← D[r] ∪ {seq}
13: if |D[r]| ≥ quorum then
14: P [ci]← P [ci] ∪ {seq}
15: apply(r)
16: sendAcknowledgement(seq)

17: procedure sendEvent(packet)
18: e← generateEventData(packet)
19: sig ← sign(e, SSKi)
20: send(e‖sig) to every controller ci

21: procedure sendAcknowledgement(seq)
22: sig ← sign(ACK‖seq, SSKi)
23: send(ACK‖seq‖sig) to every controller ci

πi precedes πj in S.
To complete the proof of this claim, we argue that if πi

precedes πk according to the sequential specification in H ,
there does not exist i < j < k such that πi <S πj <S πk.
Suppose by contradiction that such a πj exists. Recall that by
the agreement property, every controller node agrees on the
output of the sequence of flow updates in line 17 of Alg. 2.
Consequently, the only reason for such a πj to exist is if the
last switch update of Uj precedes the first switch update of
Uk. But this is not possible by the invariant proved above—
contradiction.
The conjunction of Claim 1 and Claim 2 together establish
that E is event linearizable.

Weakly consistent network update procedure (update con-
sistency). For weak consistency, when given a network update,
the controller can perform the switch updates commutatively
provided that flow consistency and switch consistency are
maintained. Commutativity is determined based on the network
updates received by the controller application. Flow consis-
tency is maintained by ensuring that a switch update within
a flow update is not sent to the switch until after receiving
an acknowledgment for the previous switch update. Switch
consistency is maintained by ensuring that a switch update is
not sent to the switch until after an acknowledgment is received
for the last switch update to the same switch as determined by
the controller application (if any). The procedure to perform
the network update is as follows (cf. Alg. 3): the controller
forks a parallel thread for every flow update in the network
update (Alg. 3 line 29).

(i) The controller retrieves the next switch update from the
flow update and waits until the following have been satisfied
(Alg. 3 lines 31-36): a) the switch update is the first in the
flow update or an acknowledgement for the preceding switch
update has been received, and b) an acknowledgement for the

Algorithm 2 Algorithm for controller ci with secret key CSKi

1: SPKi // Public key for each switch si

2: S ← ∅ // Set of all previously seen events

3: B ← [] // Sequence of collected events for a batch

4: acks← [][] // Verified acknowledgements

5: log ← [] // Sequence of all network updates

6: count← 0 // Count used for sequencing switch updates

7: upon receive(e‖sig) from switch si do
8: if verifySign(e, sig, SPKi) and
9: e 6∈ S[si] then

10: B ← B ⊕ [e]

11: if |B| > threshold or timeout then
12: propose(B)
13: B ← []

14: upon decide(E) do
15: for each e ∈ E do
16: S[si]← S[si] ∪ {e}
17: U ← handleEvents(E)
18: log ← log ⊕ U
19: count← count+ |U|
20: update(U)

21: upon receive(ack = ACK‖seq‖sig) from switch si do
22: if verifySign(ack, SPKi) then
23: acks[si][seq]← true

24: procedure sendSwitchUpdate(seq, s, r)
25: sig ← sign(seq‖r, CSKi)
26: send(seq‖r‖sig) to s

27: procedure update(U) // Performs linearized network update

28: for i = 1..|U| in increasing order of i do
29: seq ← count− |U|+ i
30: for j = 1..|U[i]| in increasing order of j do
31: sendSwitchUpdate(seq,U[i][j].s,U[i][j].r)
32: wait until Rack[U[i][j].s][seq]

last switch update to the same switch from previous network
updates has been received. (ii) The controller signs the update
with its private key and sends it to the switch (Alg. 3 line 37).
(iii) The controller continues with the next switch update
(step (i)) until all switch updates have been made.
Discussion on progress with dishonest controller majority.
Observe that RoSCo is a blocking implementation that provides
forward progress as long as a correct majority of controllers
participate in a given execution, but safety (i.e., event lin-
earizability and update consistency) is never violated even if
a faulty majority exists. Note that even if some controller
manufactures a response to an event and even if the controller
is able to correctly sign the response, if no other controllers
send the same response then a quorum of responses will never
be received by the switch and the rule associated with the
response will never be applied (line 13 of Alg. 1).

This is the main algorithmic trick in RoSCo: to augment
the switch runtime to perform the controller event verification,
but with minimal overhead as we demonstrate through our ex-
tensive evaluations. We remark that the presented pseudocode
does not explicitly depict the RoSCo exception handling (when
a dishonest majority affects any step in the protocol execution
thus disrupting forward progress) which in practice can be
handled via timeouts, optimistic abort-and-retry mechanisms,
and/or existing techniques for detecting and defending against
coordinated intrusion [53], [20].

8

Algorithm 3 Weak consistency update procedure. Replaces
lines 27–32 of Alg. 2
27: procedure update(U)
28: seq[i]i=1..|U| ← count− |U|+ i
29: fork for i = 1..|U| do // in parallel

30: for j = 1..|U[i]| in increasing order of j do
31: wait until // both, in any order

32: // flow consistency

33: 1. Rack[U[i][j − 1].s][seq[i]] unless j = 1
34: // switch consistency

35: 2. Rack[U[i][j].s][last] for largest
36: last < seq[i] | ∃〈s, . . .〉 ∈ all[last] if any
37: sendSwitchUpdate(seq[i],U[i][j].s,U[i][j].r)

V. IMPLEMENTATION OF ROSCO

RoSCo is implemented as an abstraction layer between the
controller application and the data plane switches utilizing a
totally distributed controller framework where all controllers
operate in the same role. In contrast to explicit leader-based
network update protocol described in Ravana [35] for deal-
ing with benign faults, events are sent from switches to all
controllers avoiding the need for leader election.
Overview. The RoSCo implementation is twofold; (i) A Java
layer (runtime OpenJDK version 1.8.0) which runs on the
controller to perform agreement and handle acknowledge-
ments. Using interprocess communication, events are sent from
the RoSCo layer to the controller application providing the
flexibility of the use of any controller application framework
to run unmodified. (ii) An OVS runtime extension for handling
quorum authentication of policy responses. Fig. 5 depicts the
software organization of the RoSCo implementation. Implic-
itly, by extending OVS, the RoSCo implementation makes use
of the OpenFlow protocol. The sections that follow describe
how RoSCo makes use of existing OpenFlow messages and
structures. To ensure message integrity and authentication
OpenFlow messages are wrapped with a signature for the
sender as an extension to the existing OpenFlow message for-
mat. In addition, the RoSCo implementation utilizes OpenFlow
as follows:
• When a controller or switch sends a message, the

Transaction Identifier (XID) in the OpenFlow message
header is set to a unique value. This allows recipients of
the messages to drop duplicates.

• A Barrier Request (BarrierReq) is sent by the controller
to initiate an acknowledgement, it then waits for a Barrier
Response (BarrierRes) from the switch before proceeding.

Controller applications. The controller application contains
the logic for network policies and processes events to generate
network updates. The RoSCo runtime intercepts all incoming
event messages and network updates allowing unmodified
controller applications to run in a fault-tolerant manner. RoSCo
adds message signatures to the OpenFlow protocol messages,
but leaves the message payload for policies unchanged.
Agreement. In order to maintain consistent controller state,
events sent from switches must be processed by each controller
in the same order, however due to network asynchrony there
is no guarantee that events will be received in the same
order by controllers. Duplicate and corrupted events must also

Fig. 5: Depiction of RoSCo implementation. As OpenFlow events
are generated by the switch they are intercepted by the RoSCo OVS
runtime, assigned a sequence number and sent to the controller.
OpenFlow events are received by the RoSCo runtime and sent to
the RoSCo event queue which uses BFT-SMaRt [10] to determine a
total order across all controller nodes. Ordered events are sent to the
controller application and responses are passed through the RoSCo
runtime to the network and sent to the switch. Update rules are held by
the RoSCo OVS runtime until a quorum majority have been received
from verifiable controllers, which are then sent to the OVS runtime.

be discarded. In order to ensure a total ordering of events
across controller nodes, the RoSCo controller layer uses the
BFT-SMaRt library to agree on an event (set of events with
batching). Once a sequence of events is agreed on, each
controller processes them from its own event queue and sends
the corresponding response(s) directly to the data plane.
Event sequence numbers. Events sent from data plane
switches need to be identifiable to ensure ordering and unique
event execution. Any event that has been previously processed
by a controller node is discarded. To implement sequence
numbers, we modified the OVS runtime to use the XID
contained in the OpenFlow header. An event received by a
controller with the same XID as one received previously is
discarded. Similarly for event responses sent by controllers, the
XID is also used to assign each response a unique identifier
and a response received by a switch with a previously used
XID is discarded.
Quorum authentication. Quorum authentication ensures that
a policy cannot be set by a minority of malicious controllers,
assuming a control plane of four or more controllers. Quorum
authentication therefore complements Secure Sockets Layer
(SSL), provided in OVS, that only secures communication
but does not protect against a trusted controller that becomes
compromised by a malicious adversary. Switches must wait
for a majority quorum of responses received from verifiable
controllers before the rules can be installed. The verification
of controllers and the storing of responses is implemented as
a modification to the OVS runtime. Switches store verified
responses from controllers in a hash map keyed by XID along
with a list of the controllers that sent the particular response.
The response is passed to the switch runtime for processing
only when a majority quorum has been received. At that
time the response XID is “retired” and any future responses
containing the XID are ignored.
Acknowledgments. To ensure consistency, switches must send

9

Fig. 6: Depiction of RoSCo evaluation testbed. Control plane con-
sists of four separate machines from the DETERLab running the
RoSCo layer and Ryu. Switch emulation is performed by a sepa-
rate machine equipped with a Netronome® Agilio CX™ SmartNIC
using Mininet. Throughput benchmarking is done using the modified
OVS ovs-appctl command to generate continuous PacketIn requests
recording the ultimate throughput of received FlowMod responses.

acknowledgments to the control plane once a rule has been
installed. To that end we use OpenFlow Barrier Messages.
For each event, after all responses have been sent to relevant
switches, the RoSCo layer sends a BarrierReq to each switch
and waits for a BarrierRes. Once a quorum of responses is
received a switch sends a BarrierRes to each controller.
Event batching. The time it takes for the agreement protocol
to execute can be significant compared to the time for a
controller to process the event. In response to this, we have
implemented event batching to allow a controller to atomically
propose a set of events received from the data plane. BFT-
SMaRt ensures that only a single instance of the agreement
protocol is performed at a time. Albeit events may be batched
in a different order by different controllers, this single agree-
ment behavior, combined with unique event identifiers, ensures
that events are processed in the same order by all controllers.
Event batching imposes added latency as the controllers must
wait for either the batch to fill with events or until a certain
amount of time has passed (batch timeout). In many cases,
this added latency can be amortized based on the increased
throughput. However, for certain events, it may be necessary
to ensure that the latency is as short as possible. The RoSCo
batching implementation allows the batch size and timeout
values to be globally set based on the network time objectives.

VI. EVALUATION

In this section, we rigorously evaluate the overhead of our
event linearizable and update consistent protocols (cf. § IV)
using varying network configurations. The goal is to determine
the feasibility of deploying RoSCo in a large-scale SDN by an-
swering the following questions: (1) What is the effect of event
linearizability on throughput? (2) Does update consistency
improve throughput? (3) How much can a faulty controller

affect throughput and how does it compare against protocols
that only provide resilience against benign crash failures?
(4) Does RoSCo affect the latency of processing events?
Evaluation hardware. All evaluations were performed on
a set of machines provided by the DETERLab Project [1]
(cf Fig. 6). For RoSCo controllers, we used 4 machines (to
tolerate 1 failure) each containing 2 Intel® Xeon™ processors
running at 3.00 GHz with 4 GB of main memory. For switch
emulation, we used a single machine containing two Intel®
Xeon™ E5-2450 v2 processors (12 cores total) running at
2.20 GHz with 16 GB of main memory. All machines ran
Ubuntu 16.04 LTS with kernel v4.4.0-83 and were connected
using a 1 Gbit network. A separate 1 Gbit network was used
to connect controller machines dedicated for the agreement
protocol. Additionally, the switch machine also contained a
Netronome® Agilio CX™ SmartNIC which provides hardware
offloading of OpenFlow packet processing through the use
of a custom OVS implementation. This implementation is
open source which allowed for the modifications necessary
for our evaluation. Data plane connectivity was emulated using
Mininet v2.1.0.
Evaluation testbed. Throughput was measured using an ex-
tension to the OVS ovs-appctl command to create a benchmark
that accesses the OVS switch runtime and schedules the
sending of PacketIn requests from all switches. The benchmark
then waits for an equal number of FlowMod responses from the
controller(s), and records the total time to receive the responses
and the average response time for each individual PacketIn
request. In the control plane, the benchmark uses the cbench
application, a Ryu controller application implemented as a
benchmark for measuring throughput of OpenFlow messages.
Upon receiving a PacketIn message, cbench replies with an
empty FlowMod message which does not provide any routing
logic to the switch. As such, cbench is not intended for use
as deployed controller application and is solely intended for
benchmarking to provide minimal latency within the controller
application so that measurements actually reflect the through-
put of the controller runtime and transport layer. While our
benchmark focuses on PacketIn requests and FlowMod replies,
any OpenFlow event and response can be used without loss of
generality.

Using this benchmark we measured the throughput of
RoSCo and compared it to two other implementations: a
centralized controller using the Ryu [6] runtime (version 4.23)
and Ravana. The authors of Ravana were able to provide
their implementation which we used in our evaluations. The
data points for all graphs represent the geometric mean of
25 individual trials, with error bars representing one standard
deviation from the geometric mean.
Benefits of event batching. The RoSCo controller batches
events to increase throughput. Here we evaluate the throughput
and latency of RoSCo for varying batch sizes. Fig. 7a shows
the message throughput of events processed through the agree-
ment protocol by RoSCo for various batch sizes and Fig. 7b
shows the corresponding latency imposed. In our experiments,
throughput increases as batch size increases, which is the direct
result of the reduced number of agreement protocol instances

10

needed for controllers to agree on events. However at a point,
the benefits of batching are reduced as performance becomes
bounded by other aspects of event processing (e.g., decoding
of OpenFlow messages and processing of events).
Throughput and latency. We evaluated the throughput of
RoSCo against Ryu and Ravana. Using the OVS benchmark,
experiments were run for each implementation with varying
numbers of switches in the data plane, which all sent PacketIn
requests in parallel to the controller(s). The resulting through-
put can be seen in Fig. 7c. For both RoSCo and Ravana,
the maximum batch size was set to 1000 messages with a
batch time out of 0.1 s. The RoSCo network update procedures
evaluated are as follows:
RoSCo NO-ACK represents RoSCo without acknowledg-

ments. This scenario is impractical as it provides no consis-
tency guarantees for network updates, yet is included as a
baseline.

RoSCo LNZ represents RoSCo using the strongly consistent
network update procedure. As such, all switch updates are
performed sequentially.

RoSCo WEAK-SGL represents RoSCo using the weakly con-
sistent network update procedure with single switch updates.
In this scenario the flow updates received in response to an
event require updating a single switch.

RoSCo WEAK-ALL represents RoSCo using the weakly con-
sistent network update procedure, however each flow update
received in response to an event requires an update to all
switches.
RoSCo’s throughput is lower than Ryu’s due to the over-

heads of agreement and quorum authentication. The OVS
benchmark sends requests without delay representing the worst
possible case for RoSCo performance. Our goal is to provide
strong guarantees, not maximize update rate/throughput. That
said, our scheme provides good performance even in conserva-
tive scenarios; it is clearly faster with update consistency than
Ravana — whose performance is deemed sufficient for real-life
scenarios [35] — in all scenarios with 4 or more switches.

Ryu utilizes multiple threads in order to maintain separate
connections to each data plane switch. The Ravana implemen-
tation uses additional threading to maintain its distributed event
queue. Written as a direct extension to the Ryu runtime and en-
tirely in Python, Ravana suffers significant performance penal-
ties due to the threading behavior of the CPython interpreter’s
Global Interpreter Lock (GIL) [4], which while allowing for a
more deterministic execution, prevents threads from executing
in parallel. To show how the GIL affects event processing
throughput we also implemented RoSCo completely in Python
as an extension to the Ryu runtime. The resulting throughput
is shown as ‘RoSCo Python’ in Fig. 7c and is significantly
lower than the Java layer approach. This motivated the use
of a framework providing true parallelism for our RoSCo
implementation since our goal is to evaluate the overhead of
agreement, quorum authentication, and acknowledgements, not
the limitations of CPython.
Impact of consistency guarantees. Without any acknowledg-
ments, RoSCo is able to achieve throughput near Ryu since
all switch updates can be processed in parallel. However, this

TABLE III: RoSCo microbenchmark results
Measurement Time (ms)
Response Time (RT) 11.42
Acknowledgement Time (AT) 5.50
Quorum Time (QT) 0.28
Agreement Time (AGT) 9.78
Processing Time (PT) 1.36
RoSCo Overhead (RT + AT - PT) 15.56

provides no consistency in network updates. The addition of
acknowledgments provides the guarantee of update consis-
tency, however reduces throughput. This result is intuitive as
the controllers must wait for an acknowledgments from data
plane switches before sending dependent switch updates.

For the strongly consistent network update procedure
(RoSCo LNZ) all updates are processed sequentially. While
providing the strongest guarantees, it also allows no up-
date commutativity. Relaxing the consistency requirements
(RoSCo WEAK-SGL and RoSCo WEAK-ALL) provide signif-
icant performance improvements especially as the number of
switches increases. In both scenarios, increasing the number of
switches increases commutativity of flow updates. Even when
a flow update requires a switch update to each switch in the
data plane (RoSCo WEAK-ALL), such flow updates can be
pipelined as updates are made to individual switches.

In all experiments, more switches requires additional system
resources for managing acknowledgements, queued events, and
tracking rule quorums. This additional resource usage reduces
the overall throughput in the extreme cases for switch counts.
This behavior is also reflected in the centralized Ryu and
Ravana experiments.
Impact of faulty controllers. We ran RoSCo using the OVS
benchmark under the following two fault scenarios: (i) A
single faulty controller continuously proposes the first event
received from the data plane. Since the event is a duplicate,
it is continuously dropped, however all controllers must still
participate in agreement before the event is discarded. (ii) A
single faulty controller continuously sends a FlowMod to
all switches with differing response identifier. The switch
determines that the signature as well as the response identifier
are correct, however since no other controller in the control
plane sends the same update, a quorum is never reached and
the update is never applied.

We ran these scenarios through the same network configura-
tions as our throughput evaluation. Fig. 7d shows the results of
RoSCo while under attack scenario (i) (RoSCo WEAK-SGL-A)
and RoSCo WEAK-ALL-A in the figure). While the faulty
controller is able to affect the overall throughput of events from
the increased number of agreement instances, the reduction
is only marginal. For scenario (ii) there was no significant
difference in throughput. These results show that RoSCo can
perform equally well with controller faults as during normal
operations.
Microbenchmarks. Tab. III shows the average time spent in
various places of the RoSCo implementation while processing
a single event. Response Time (RT) represents the total time
to process the event, from the time it is sent by the data plane

11

(a) (b) (c) (d)
Fig. 7: Fig. 7a and Fig. 7b depict the throughput and latency of RoSCo with varying batch sizes. Fig. 7c depict the total throughput of RoSCo,
Ryu, Ravana, and the Python implementation of RoSCo for varying network sizes and consistency guarantees. Fig. 7d depicts the throughput
of RoSCo when the control plane include a faulty controller. Error bars represent one standard deviation from the geometric mean. Fig. 7c
and Fig. 7d reflect that at extreme cases for switch counts the overhead for managing acknowledgements, queued events, signature verification,
and quorum authentication reduces throughput, but all within acceptable levels compared to the state of the art.

switch to the time in which the switch processes a quorum
response. Acknowledgement Time (AT) represents the time for a
controller to receive an acknowledgement for a switch update.
In the case of dependent switch updates, the controller would
not be able to send the next switch update until receiving an
acknowledgement. Quorum Time (QT) represents the time that
a data plane switch waits for a quorum of messages from the
control plane (after receiving the first switch update). Agree-
ment Time (AGT) represents the time for a single instance of
agreement using BFT-SMaRt. Processing Time (PT) represents
the time spent for the controller application to process the
event and send a response. The overall overhead of quorum
authentication is minimal and the majority of RoSCo overhead
is from agreement and waiting for acknowledgments. The
actual overhead for a single request is shown in Tab. III.

Assuming negligible network delay, the overhead for RoSCo
is essentially the total response time plus acknowledgement
time minus the processing time. Processing of an event by the
controller application to generate a network update is required
regardless of protocol. Using the weakly consistent network
update procedure, the acknowledgement time can be amortized
as independent switch updates can be processed in parallel,
however since the values shown in Tab. III represent the time
to process a single event, this amortization is not reflected.
The total overhead can be further reduced by batching events
to amortize agreement costs.

VII. RELATED WORK

This section presents related work on consistency and fault
tolerance in distributed SDN controllers. Please see literature
surveys [12], [21] for general overviews of SDN controllers.
Consistency formalizations for network updates. The event
linearizability property presented in this paper is based on the
original definition for traditional distributed computing [28]
and was adapted to the SDN context previously in [14], how-
ever our definition expands on this to generalize linearizability
in malicious contexts as well as shows the impossibility result
which holds even for non-blocking environments. Consistent

updates (CU) [48] ensure that a packet is processed during
an execution either entirely by an old policy or a new one,
but never a mix of both. This property is also guaranteed
by the strictly stronger property of event linearizability since
it reduces the concurrent network update to an equivalent
sequential one. Network event structures (NES) [45] provide a
mechanism for causally consistent policy updates where multi-
ple switch updates can cause uncertainty in packet forwarding.
However, NES require instrumented data plane switches with
the ability to modify packets at ingress and egress switches.
One of the goals of RoSCo is to allow consistent switch
updates with minimal instrumentation of forwarding logic;
additionally causal consistency is weaker than the event lin-
earizability safety property, but incomparable to the update
consistency safety property. Unlike RoSCo, NES can not han-
dle malicious controller processes. Several papers study and
identify different customizable consistency properties for SDN
network updates [54], [32], [23], [42], [22], [34], but none
considers malicious adversaries. Deriving protocols for dealing
with malicious adversaries and extending our framework for
such consistency definitions is ongoing work.
Distributed SDN controller platforms. The SDN computa-
tion model considered in this paper explicitly separates the data
plane and control plane; concretely, it requires that the state
of any two switches in the data plane be mutually disjoint
and this precludes the use of agreement protocols within
the switch runtime. More generally, distributed computing
solutions like state machine replication may not be used as
a black-box for network updates as is the case in the Net-
Paxos protocol [18]. Onix [37] and ONOS [9] are two of
the earliest proposals to motivate the need for a distributed
control plane. Both suffer from two fundamental drawbacks:
the lack of consistency in network updates and the inability
to cope with malicious failures in the control plane as well
as attacks on network communications which may disrupt
network updates. Onix’ uses of Zookeeper [30] and ONOS’ use
of Raft [47] — while providing a mechanism for distributed
agreement used for consistent log replication — only provides

12

crash fault tolerance. Akella and Krishnamurthy [8] introduce
the study of crash tolerance in distributed SDN controllers and
sketch a solution that involves even switches participating in a
distributed agreement protocol which is extremely costly. Bee-
hive [52] implements a highly scalable distributed controller
platform, but does not provide any linearizability guarantees
for network updates nor does it provide resilience against
malicious adversaries as RoSCo does. Ravana [35] includes
a distributed controller synchronization protocol that provides
consistent network updates, but does not deal with malicious
adversaries. Rosemary [49] and LegoSDN [17] both provide
a protection framework for SDN applications to prevent mali-
cious behaviors and crashes however both focus on resilience
of the controller and the application in a single controller
environment. In contrast to RoSCo the frameworks do not
provide protection against an arbitrary host masquerading as a
controller sending malicious unsolicited flow rules to switches.
Renaissance [15] is self-stabilizing and hence can tolerate
arbitrary and in particular malicious behavior, however, the
distributed control plane can be inconsistent for longer periods
and only recover after re-convergence occurred.
Malicious adversaries in SDN. Fleet [44] initiated the prob-
lem of dealing with malicious adversaries in the SDN context.
Just as RoSCo, Fleet sketches a protocol that ensures progress
as long as honest majority of controllers exist; but it does
not provably satisfy event linearizability or its relaxation con-
sidered in this paper. Moreover, unlike RoSCo, Fleet requires
extensive data plane instrumentation and their simulation does
not provide a characterization of the cost of providing re-
silience against malicious adversaries nor the subtle protocol
differences associated with different consistency properties.
The position paper of Kreutz et al. [38] provides a good
overview of the motivation for secure and dependable SDN
controller platforms by discussing threat vectors (the model
addressed in our paper corresponds mostly to threats 3 and 4, in
addition to benign crash failures). Though discussing standard
techniques for mitigating different threat combinations, the
authors do not actually flesh out a concrete solution for a
particular adversary.

VIII. CONCLUSIONS

We presented the first model of computation for SDN in
the presence of faulty control processes as well as a protocol
and prototype implementation that shows that only a minimal
overhead is induced over existing SDN controller platforms
that do not provide resilience against malicious behavior. In the
future we will add support for proactive security [29], [13] for
protecting against mobile adversaries. Moreover, it is inevitable
to support a dynamic controller set: controllers may crash or
get compromised and should be restored or replaced, and the
system may expand to new geographical regions bringing in
new controllers [27], [19]. While existing solutions have been
presented in a general distributed systems sense we plan to
explore them in an SDN specific context to determine if the
SDN model can provide optimizations to existing solutions.
As part of this, we plan to extend RoSCo and develop a
comprehensive set of asynchronous protocols to allow control

group modifications leveraging techniques from distributed key
generation [25], [33] and threshold signatures [24].
Acknowledgements. We thank the anonymous reviewers for
the most helpful feedback. We also thank Pierre-Louis Roman
for his reviews and feedback.

REFERENCES

[1] “About DETERLab,” https://deter-project.org/about deterlab, accessed:
2018-04-29.

[2] “Amazon S3 Availability Event: July 20, 2008,” https://status.aws.
amazon.com/s3-20080720.html.

[3] “AWS Service Event in the US-East Region,” https://web.archive.org/
web/20181004131938/https://aws.amazon.com/message/680342/.

[4] “CPython Global Interpreter Lock,” https://wiki.python.org/moin/
GlobalInterpreterLock, accessed: 2018-04-29.

[5] “Google App Engine outage today,” https://groups.google.com/forum/
#!topic/google-appengine/985VmzuLMDs.

[6] “Ryu SDN Framework,” http://osrg.github.io/ryu, accessed: 2018-04-29.
[7] “VMware NSX Network Virtualization and Security Platform,” https:

//www.vmware.com/products/nsx.html, accessed: 2017-07-28.
[8] A. Akella and A. Krishnamurthy, “A Highly Available Software Defined

Fabric,” in ACM HotNets, 2014, pp. 21:1–21:7.
[9] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,

B. Lantz, B. O’Connor, P. Radoslavov, and W. Snow, “ONOS: Towards
an Open, Distributed SDN OS,” in Proceedings of the third workshop
on Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[10] A. Bessani, J. Sousa, and E. E. Alchieri, “State Machine Replication
for the Masses with BFT-SMaRt,” in IEEE DSN. IEEE, 2014.

[11] K. Birman, “Byzantine Clients,” 2017, https://
thinkingaboutdistributedsystems.blogspot.com/2017/05/
byzantine-clients.html.

[12] W. Braun and M. Menth, “Software-Defined Networking Using Open-
Flow: Protocols, Applications and Architectural Design Choices,” Fu-
ture Internet, vol. 6, no. 2, pp. 302–336, 2014.

[13] C. Cachin, K. Kursawe, A.Lysyanskaya, and R. Strobl, “Asynchronous
Verifiable Secret Sharing and Proactive Cryptosystems,” in ACM
CCS’02, 2002, pp. 88–97.

[14] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid, “A Distributed
and Robust SDN Control Plane for Transactional Network Updates,”
in INFOCOM, 2015, pp. 190–198.

[15] M. Canini, I. Salem, L. Schiff, E. M. Schiller, and S. Schmid, “Re-
naissance: A Self-Stabilizing Distributed SDN Control Plane,” in Proc.
IEEE ICDCS, 2018.

[16] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,” in
OSDI, Feb. 1999.

[17] B. Chandrasekaran and T. Benson, “Tolerating SDN Application Fail-
ures with LegoSDN,” in HotNets, 2014, p. 22.

[18] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos Made Switch-
y,” SIGCOMM CCR, vol. 46, no. 2, pp. 18–24, 2016.

[19] A. A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman, and R. R. Kompella,
“Towards an Elastic Distributed SDN Controller,” in HotSDN, 2013, pp.
7–12.

[20] H. T. Elshoush and I. M. Osman, “Alert Correlation in Collaborative
Intelligent Intrusion Detection Systems - A Survey,” Applied Soft
Computing, vol. 11, no. 7, pp. 4349–4365, 2011.

[21] N. Feamster, J. Rexford, and E. W. Zegura, “The Road to SDN: an
Intellectual History of Programmable Networks,” SIGCOMM CCR,
vol. 44, no. 2, pp. 87–98, 2014.

[22] K.-T. Foerster, S. Schmid, and S. Vissicchio, “Survey of Consistent
Network Updates,” in ArXiv Technical Report, 2016.

13

https://deter-project.org/about_deterlab
https://status.aws.amazon.com/s3-20080720.html
https://status.aws.amazon.com/s3-20080720.html
https://web.archive.org/web/20181004131938/https://aws.amazon.com/message/680342/
https://web.archive.org/web/20181004131938/https://aws.amazon.com/message/680342/
https://wiki.python.org/moin/GlobalInterpreterLock
https://wiki.python.org/moin/GlobalInterpreterLock
https://groups.google.com/forum/#!topic/google-appengine/985VmzuLMDs
https://groups.google.com/forum/#!topic/google-appengine/985VmzuLMDs
http://osrg.github.io/ryu
https://www.vmware.com/products/nsx.html
https://www.vmware.com/products/nsx.html
https://thinkingaboutdistributedsystems.blogspot.com/2017/05/byzantine-clients.html
https://thinkingaboutdistributedsystems.blogspot.com/2017/05/byzantine-clients.html
https://thinkingaboutdistributedsystems.blogspot.com/2017/05/byzantine-clients.html

[23] K. Förster, R. Mahajan, and R. Wattenhofer, “Consistent Updates in
Software Defined Networks: On Dependencies, Loop Freedom, and
Blackholes,” in IFIP NETWORKING, 2016, pp. 1–9.

[24] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust Threshold
DSS Signatures,” in EUROCRYPT, 1996, pp. 354–371.

[25] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems,” J. Cryptology,
vol. 20, no. 1, pp. 51–83, 2007.

[26] R. Guerraoui and M. Kapalka, Principles of Transactional Mem-
ory,Synthesis Lectures on Distributed Computing Theory. Morgan and
Claypool, 2010.

[27] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. J. Clark, and E. Katz-Bassett,
“SDX: a Software Defined Internet Exchange,” in ACM SIGCOMM
2014 Conference, 2014, pp. 551–562.

[28] M. Herlihy and J. M. Wing, “Linearizability: A Correctness Condition
for Concurrent Objects,” TOPLAS, vol. 12, no. 3, pp. 463–492, 1990.

[29] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive Secret
Sharing Or: How to Cope With Perpetual Leakage,” in Advances in
Cryptology—CRYPTO’95, 1995, pp. 339–352.

[30] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-
free Coordination for Internet-scale Systems,” in USENIX ATC, vol. 8,
2010, p. 9.

[31] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart,
and A. Vahdat, “B4: Experience with a Globally-deployed Software
Defined Wan,” SIGCOMM CCR, vol. 43, no. 4, pp. 3–14, Aug. 2013.

[32] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic Scheduling of Network
Updates,” in SIGCOMM, 2014, pp. 539–550.

[33] A. Kate and I. Goldberg, “Distributed Key Generation for the Internet,”
in IEEE ICDCS’09, 2009, pp. 119–128.

[34] N. P. Katta, J. Rexford, and D. Walker, “Incremental Consistent Up-
dates,” in Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking, HotSDN 2013, 2013, pp.
49–54.

[35] N. P. Katta, H. Zhang, M. J. Freedman, and J. Rexford, “Ravana: Con-
troller fault-tolerance in software-defined networking,” in SIGCOMM
SOSR ’15, 2015, pp. 4:1–4:12.

[36] S. Kiran and G. Kinghorn, “Cisco Open Network Environment: Bring
the Network Closer to Applications,” http://www.cisco.com/go/one,
accessed: 2017-07-28.

[37] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, and T. Hama, “Onix: A Distributed
Control Platform for Large-scale Production Networks,” in OSDI,
vol. 10, 2010, pp. 1–6.

[38] D. Kreutz, F. Ramos, and P. Verissimo, “Towards Secure and Depend-
able Software-Defined Networks,” in SIGCOMM HotSDN, 2013, pp.
55–60.

[39] L. Lamport, “Paxos Made Simple,” SIGACT News, vol. 32, no. 4, pp.
18–25, Dec. 2001.

[40] L. Lamport and M. Fischer, “Byzantine Generals and Transaction
Commit Protocols,” SRI International, Tech. Rep. 62, Apr. 1982.

[41] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” TOPLAS, vol. 4, no. 3, pp. 382–401, 1982.

[42] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling loop-free
network updates: It’s good to relax!” in Proc. ACM Symposium on
Principles of Distributed Computing (PODC), 2015.

[43] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[44] S. Matsumoto, S. Hitz, and A. Perrig, “Fleet: Defending SDNs from
Malicious Administrators,” in SIGCOMM HotSDN, 2014, pp. 103–108.

[45] J. McClurg, H. Hojjat, N. Foster, and P. Černỳ, “Event-driven Network
Programming,” in SIGPLAN Notices, vol. 51, no. 6, 2016, pp. 369–385.

[46] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, Mar.
2008.

[47] D. Ongaro and J. K. Ousterhout, “In Search of an Understandable
Consensus Algorithm,” in USENIX ATC, 2014, pp. 305–319.

[48] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for Network Update,” in SIGCOMM, 2012, pp. 323–334.

[49] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A Robust, Secure, and High-
Performance Network Operating System,” in SIGSAC, 2014, pp. 78–89.

[50] K. Thimmaraju, B. Shastry, T. Fiebig, F. Hetzelt, J.-P. Seifert, A. Feld-
mann, and S. Schmid, “Taking control of sdn-based cloud systems via
the data plane,” in SOSR, 2018.

[51] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow,” in INM/WREN, 2010, pp. 3–3.

[52] S. H. Yeganeh and Y. Ganjali, “Beehive: Simple Distributed Program-
ming in Software-Defined Networks,” in SOSR, 2016.

[53] C. V. Zhou, C. Leckie, and S. Karunasekera, “A Survey of Coordinated
Attacks and Collaborative Intrusion Detection,” Computers & Security,
vol. 29, no. 1, pp. 124–140, 2010.

[54] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. Godfrey, “Enforcing
Customizable Consistency Properties in Software-defined Networks,” in
NSDI, 2015, pp. 73–85.

James Lembke received his BS and MS in computer
science from Michigan Technological University in
2003 and 2005 respectively. He worked as a software
engineer for IBM from 2005 until 2013 and is
currently pursuing his PhD at Purdue University. His
research interests include software defined network-
ing, file systems, and memory management.

Srivatsan Ravi is an Assistant Professor of research
in CS and a research scientist at the Information Sci-
ences Institute in University of Southern California
(USC). He holds a Ph.D. degree from TU Berlin
in Germany, where he received the Marie Curie
Ph.D. Fellowship and was a member of Deutsche
Telekom Labs, Berlin, a MS degree from Cornell
University, and a BS degree from Anna University,
India. His research interests include algorithms and
lower bounds for fault-tolerant distributed systems.

Patrick Eugster is a Professor of computer science
at the Università della Svizzera Italiana (USI), and an
adjunct faculty member at Purdue University and TU
Darmstadt, where he was a regular faculty member
for 10 and 4 years respectively. He is interested in
distributed systems and programming languages. He
holds a Ph.D. degree from EPFL (2001), and is a
recipient of an NSF CAREER award (2007) and an
ERC Consolidator award (2012).

Stefan Schmid is a Professor of CS with the Uni-
versity of Vienna, Austria. He received the M.Sc.
and Ph.D. degrees from ETH Zurich, Switzerland,
in 2004 and 2008, respectively. He held a postdoc-
toral position with TU Munich and the University
of Paderborn in 2009. From 2009 to 2015, was a
Senior Research Scientist with the Telekom Innova-
tions Laboratories. From 2015 to 2018, he was an
Associate Professor with Aalborg University. His re-
search interests include the fundamental algorithmic
problems of networked systems.

14

http://www.cisco.com/go/one

