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Abstract. We initiate the study of a fundamental combinatorial prob-
lem: Given a capacitated graph G = (V,E), find a shortest walk (“route”)
from a source s ∈ V to a destination t ∈ V that includes all vertices speci-
fied by a set W ⊆ V : the waypoints. This waypoint routing problem finds
immediate applications in the context of modern networked distributed
systems. Our main contribution is an exact polynomial-time algorithm
for graphs of bounded treewidth. We also show that if the number of
waypoints is logarithmically bounded, exact polynomial-time algorithms
exist even for general graphs. Our two algorithms provide an almost com-
plete characterization of what can be solved exactly in polynomial-time:
we show that more general problems (e.g., on grid graphs of maximum
degree 3, with slightly more waypoints) are computationally intractable.

1 Introduction

How fast can we find a shortest route, i.e., walk, from a source s to a destination t
which visits a given set of waypoints in a graph, but also respects edge capacities,
limiting the number of traversals? This fundamental combinatorial problem
finds immediate applications, e.g., in modern networked systems connecting
distributed network functions However, surprisingly little is known today about
the fundamental algorithmic problems underlying walks through waypoints.
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Fig. 1. Two shortest walks and their decompositions into three paths each: In both
graphs, we walk through all waypoints from s to t by first taking the red, then the blue,
and lastly the brown path. The existence of a solution in the left graph (e.g., a walk of
length 7 in this case) relies on one edge incident to a waypoint having a capacity of at
least two. In the right graph, it is sufficient that all edges have unit capacity. Note that
no s− t path through all waypoints exists, for either graph.
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The problem features interesting connections to the disjoint paths problem,
however, in contrast to disjoint paths, we (1) consider walks (of unit resource
demand each time an edge is traversed) on capacitated graphs rather than paths
on uncapaciatated graphs, and we (2) require that a set of specified vertices are
visited. We refer to Figure 1 for two examples.

Model. The inputs to the Waypoint Routing Problem (WRP) are: (1) a connected,
undirected, capacitated and weighted graph G = (V,E, c, ω) consisting of n =
|V | > 1 vertices, where c : E → N represents edge capacities and ω : E → N
represents the edge costs. (2) A source-destination vertex pair s, t ⊆ V (G). (3) A
set of k waypoints W = (w1, . . . , wk) ∈ V (G)k.

We observe that the route (describing a walk) can be decomposed into simple
paths between terminals and waypoints, and we ask: Is there a route R, which
w.l.o.g. can be decomposed into k+ 1 path segments R = P1⊕ . . .⊕Pk+1, where:

1. Capacities are respected: We assume unit demands and require |{i | e ∈ Pi ∈
R, i ∈ [1, k + 1]}| ≤ c(e) for every edge e ∈ E.

2. Waypoints are visited: Every element in W appears as an endpoint of exactly
two distinct paths in route R and s is an endpoint of P1 and t is an endpoint
of Pk+1. We note that the k waypoints can be visited in any order.

3. Walks are short: The length ` = |P1| + . . . + |Pk+1| of route R w.r.t. edge
traversal cost ω is minimal.

Remark I: Reduction to Edge-Disjoint Problems. Without loss of gener-
ality, it suffices to consider capacities c : E → {1, 2}, as shown in [38, Fig. 1]: a
walk R which traverses an edge e more than twice, cannot be a shortest one.

This also gives us a simple reduction of the capacitated problem to an
uncapacitated (i.e., unit capacity), edge-disjoint problem variant, by using at
most two parallel edges per original edge. Depending on the requirements, we
will further subdivide these parallel edges into paths (while preserving distances
and graph properties such as treewidth, at least approximately).
Remark II: Reduction to Cycles. Without loss of generality and to simplify
presentation, we focus on the special case s = t. We show that we can modify
instances with s 6= t to instances with s = t in a distance-preserving manner and
by increasing the treewidth by at most one. Our NP-hardness results hold for
s = t as well. The proof is deferred to the full version of this paper.

1.1 Our Contributions

We initiate the study of a fundamental waypoint routing problem. We present
polynomial-time algorithms to compute shortest routes (walks) through arbitrary
waypoints on graphs of bounded treewidth and to compute shortest routes on
general graphs through a bounded (but not necessarily constant) number of
waypoints. We show that it is hard to significantly generalize these results both
in terms of the family of graphs as well as in terms of the number of waypoints,
by deriving NP-hardness results: Our exact algorithms cover a good fraction of
the problem space for which polynomial-time solutions exist. More precisely, we
present the following results:
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1. Shortest Walks on Arbitrary Waypoints: While many vertex disjoint
problem variants like Hamiltonian path, TSP, vertex disjoint paths, etc. are
often polynomial-time solvable in graphs of bounded treewidth, their edge-
disjoint counterparts (like the edge-disjoint problem), are sometimes NP-hard
already on series-parallel graphs. As the Waypoint Routing Problem is an
edge-based problem, one might expect that the problem is NP-hard already
on bounded treewidth graphs, similarly to the edge-disjoint paths problem.
Yet, and perhaps surprisingly, we prove that a shortest walk through an
arbitrary number of waypoints can be computed in polynomial time on
graphs of bounded treewidth. By employing a simple trick, we transform
the capacitated problem variant to an uncapacitated edge-disjoint problem:
the resulting uncapacitated graph has almost the same treewidth. We then
employ a well-known dynamic programming technique on a nice tree decom-
position of the graph. However, since the walk is allowed to visit a vertex
multiple times, we cannot rely on techniques which are known for vertex-
disjoint paths. Moreover, we cannot simply use the line graph of the original
graph: the resulting graph does not preserve the bounded treewidth property.
Accordingly, we develop new methods and tools to deal with these issues.

2. Shortest Walks on Arbitrary Graphs: We show that a shortest route
through a logarithmic number of waypoints can be computed in randomized
time on general graphs, by reduction to the vertex-disjoint cycle problem
in [7]. Similarly, we show that a route through a loglog number of waypoints
can be computed in deterministic polynomial time on general graphs via [35].
Again, we show that that this is almost tight, in the sense that the problem
becomes NP-hard for any polynomial number of waypoints. This reduction
shows that the edge-disjoint paths problem is not harder than the vertex-
disjoint problem on general graphs, and the hardness result also implies
that [7] is nearly asymptotically tight in the number of waypoints.

1.2 A Practical Motivation

The problem of finding routes through waypoints or specified vertices is a natural
and fundamental one. We sketch just one motivating application, arising in the
context of modern networked systems. Whereas traditional computer networks
were designed with an “end-to-end principle” [50] philosophy in mind, modern
networks host an increasing number of “middleboxes” or network functions,
distributed across the network, in order to improve performance (e.g., traffic
optimizers, caches, etc.), security (e.g., firewalls, intrusion detection systems),
or scalability (e.g., network address translation). Moreover, middleboxes are
increasingly virtualized (a trend known as network function virtualization [23])
and can be deployed flexibly at arbitrary locations in the network (not only
at the edge) and at low costs. Accordingly, also more flexible routing schemes
have been developed, enabled in particular by the software-defined networking
paradigm [27], to route the traffic through these (virtualized) middleboxes to
compose more complex network services (also known as service chains [24]). Thus,
the resulting traffic routes can be modeled as walks, and the problem of finding
shortest routes through such middleboxes (the waypoints) is an instance of WRP.
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1.3 Related Work

The Waypoint Routing Problem is closely related to disjoint paths problems
arising in many applications [41,44,56]. Indeed, assuming unit edge capacities and
a single waypoint w, the problem of finding a shortest walk (s, w, t) can be seen
as a problem of finding two shortest (edge-)disjoint paths (s, w) and (w, t) with
a common vertex w. More generally, a shortest walk (s, w1, . . . , wk, t) in a unit-
capacity graph can be seen as a sequence of k+1 disjoint paths. The edge-disjoint
and vertex-disjoint paths problem (sometimes called min-sum disjoint paths) is a
deep and intensively studied combinatorial problem, also in the context of parallel
algorithms [36,37]. Today, we have a fairly good understanding of the feasibility
of k-disjoint paths: for constant k, polynomial-time algorithms for general graphs
have been found by Ohtsuki [45], Seymour [54], Shiloah [55], and Thomassen [57]
in the 1980s, and for general k it is NP-hard [34], already on series-parallel
graphs [43], i.e., graphs of treewidth at most two. However, the optimization
problem (i.e., finding shortest paths) continues to puzzle researchers, even for
k = 2. Until recently, despite the progress on polynomial-time algoritms for special
graph families like variants of planar graphs [4,19,40] or graphs of bounded
treewidth [51], no subexponential time algorithm was known even for the 2-
disjoint paths problem on general graphs [21,29,40]. A recent breakthrough result
shows that optimal solutions can at least be computed in randomized polynomial
time [8]; however, we still have no deterministic polynomial-time algorithm. Both
existing feasible and optimal algorithms are often impractical [8,18,52,54], and
come with high time complexity. We also note that there are results on the
min-max version of the disjoint paths problem, which asks to minimize the
length of the longest path. The min-max problem is believed to be harder than
min-sum [33,40].

The problem of finding shortest (edge- and vertex-disjoint) paths and cycles
through k waypoints has been studied in different contexts already. The cycle
problem variant is also known as the k-Cycle Problem and has been a central topic
of graph theory since the 1960s [47]. A cycle from s through k = 1 waypoints back
to t = s can be found efficiently by breadth first search, for k = 2 the problem
corresponds to finding a integer flow of size 2 between two vertices, and for k = 3,
it can still be solved in linear time [30,32]; a polynomial-time solution for any
constant k follows from the work on the disjoint paths problem [48]. The best
known deterministic algorithm to compute feasible (but not necessarily shortest)
paths is by Kawarabayashi [35]: it finds a cycle for up to k = O((log log n)1/10)
waypoints in deterministic polynomial time. Björklund et al. [7] presented a
randomized algorithm based on algebraic techniques which finds a shortest simple
cycle through a given set of k vertices or edges in an n-vertex undirected graph
in time 2knO(1). In contrast , we assume capacitated networks and do not enforce
routes to be edge or vertex disjoint, but rather consider (shortest) walks.

Regarding capacitated graphs, researchers have explored the admission control
problem variant: the problem of admitting a maximal number of routing requests
such that capacity constraints are met. For example, Chekuri et al. [16] and
Ene et al. [22] presented approximation algorithms for maximizing the benefit
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of admitting disjoint paths in bounded treewidth graphs with both edge and
vertex capacities. Even et al. [25,26] and Rost et al. [49] initiated the study of
approximation algorithms for admitting a maximal number of routing walks
through waypoints. In contrast, we focus on the optimal routing of a single walk.

In the context of capacitated graphs and single walks, the applicability of
edge-disjoint paths algorithms to the so-called ordered Waypoint Routing problem
was studied in [2,31], where the task is to find k + 1 capacity-respecting paths
(s, w1, ), (w1, w2), . . . , (wk, t). An extension of their methods to the unordered
Waypoint Routing problem via testing all possible k! orderings falls short of
our results: For general graphs, only O(1) waypoints can be considered, and for
graphs of bounded treewidth, only O(log n) waypoints can be routed in polynomial
time [2]; both results concern feasibility only, but not shortest routes. We provide
algorithms for O(log n) waypoints on general graphs and O(n) waypoints in
graphs of bounded treewidth, in both cases for shortest routes.

Lastly, for the case that all edges have a capacity of at least two and s = t, a
direct connection of WRP to the subset traveling salesman problem (TSP) can
be made [31]. In the subset TSP, the task is to find a shortest closed walk that
visits a given subset of the vertices [38]. As optimal routes for WRP and subset
TSP traverse every edge at most twice, optimal solutions for both are identical
when ∀e ∈ E : c(e) ≥ 2. Hence, we can make use of the subset TSP results of

Klein and Marx, with time of (2O(
√
k log k) + max∀e∈E ω(e)) · nO(1) on planar

graphs. Klein and Marx also point out applicability of the dynamic programming
techniques of Bellman and of Held and Karp, allowing subset TSP to be solved
in time of 2k · nO(1). For a PTAS on bounded genus graphs, we refer to [14]. We
would like to note at this point that the technique for s 6= t of Remark II does
not apply if all edges must have a capacity of at least two. Similarly, it is in
general not clear how to directly transfer s = t TSP results to the case of s 6= t,
cf. [53]. Notwithstanding, as WRP also allows for unit capacity edges (to which
subset TSP is oblivious), WRP is a generalization of subset TSP.

Paper Organization. In Section 2 we present our results for bounded treewidth
graphs and Section 3 considers general graphs. We derive distinct NP-hardness
results in Section 4 and conclude in Section 5. Due to space constraints, some
technical contents are deferred to the full version of this paper.4

2 Walking Through Waypoints on Bounded Treewidth

The complexity of the Waypoint Routing Problem on bounded treewidth graphs
is of particular interest: while vertex-disjoint paths and cycles problems are
often polynomial-time solvable on bounded treewidth graphs (e.g., vertex disjoint
paths [48], vertex coloring, Hamiltonian cycles [6], Traveling Salesman [13], see
also [11,28]) many edge-disjoint problem variants are NP-hard (e.g., edge-disjoint
paths [43], edge coloring [42]). Moreover, the usual line graph construction ap-
proaches to transform vertex-disjoint to edge-disjoint problems are not applicable
as bounded treewidth is not preserved under such transformations.

4 A preliminary full version is provided at [3].
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Against this backdrop, we show that indeed shortest routes through arbitrary
waypoints can be computed in polynomial-time for bounded treewidth graphs.

Theorem 1. The Waypoint Routing Problem can be solved in time of nO(tw2),
where tw denotes the treewidth of the network.

In other words, the Waypoint Routing Problem is in the complexity class
XP [17,20] w.r.t. treewidth. We obtain:

Corollary 1. The Waypoint Routing Problem can be solved in polynomial time
for graphs of bounded treewidth tw ∈ O(1).

Overview. We describe our algorithm in terms of a nice tree decomposition [39,
Def. 13.1.4] (§2.1). We first transform the edge-capacitated problem into an
edge-disjoint problem (on unit edge capacity graphs §2.2), leveraging a simple
observation on the structure of waypoint walks and preserving distances. We show
that this transformation changes the treewidth by at most an additive constant.
We then define the separator signatures (§2.3) and describe how to inductively
generate valid signatures in a bottom up manner on the nice tree decomposition,
applying the forget, join and introduce operations [39, Def. 13.1.5] (§2.4).

The correctness of our approach relies on a crucial observation on the underly-
ing Eulerian properties of the Waypoint Routing Problem in Lemma 2, allowing
us to bound the number of partial walks we need to consider at the separator,
see Figure 2 for an example. Finally in §2.5, we bring together the different bits
and pieces, and sketch how to dynamically program [10] the shortest waypoint
walk on the rooted separator tree.
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Fig. 2. Two different methods to choose an Eulerian walk, where the numbers from
1 to 11 describe the order of the traversal. In the left walk, the separator s is crossed
4 times, but only 2 times in the right walk. Furthermore, in the left walk, there are 2
walks each in G[A] (green and blue) and G[B] (brown and red), respectively. In the
right walk, there is only 1 walk for G[A] (blue) and 1 walk for G[B] (red).
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2.1 Treewidth Preliminaries

A tree decomposition T = (T,X) of a graph G consists of a bijection between
a tree T and a collection X, where every element of X is a set of vertices of G
such that: (1) each graph vertex is contained in at least one tree node (the bag
or separator), (2) the tree nodes containing a vertex v form a connected subtree
of T , and (3) vertices are adjacent in the graph only when the corresponding
subtrees have a node in common.

The width of T = (T,X) is the size of the largest set in X minus 1, with the
treewidth of G being the minimum width of all possible tree decompositions of G.

A nice tree decomposition is a tree decomposition such that: (1) it is rooted
at some vertex r, (2) leaf nodes are mapped to bags of size 1, and (3) inner nodes
are of one of three types: forget (a vertex leaves the bag in the parent node), join
(two bags defined over the same vertices are merged) and introduce (a vertex is
added to the bag in the parent node). The tree can be iteratively constructed by
applying simple forget, join and introduce types.

Let b ∈ X be a bag of the decomposition corresponding to a vertex b ∈ V (T ).
We denote by Tb the maximal subtree of T which is rooted at bag b. By G[b] we
denote the subgraph of G induced on the vertices in the bag b and by G[Tb] we
denote the subgraph of G which is induced on vertices in all bags in V (Tb). We
will henceforth assume that a nice tree decomposition T = (T,X) of a graph G
is given, covering its computation in the final steps of the proof of Theorem 1.

2.2 Unified Graphs

We begin by transforming our graphs into graphs of unit edge capacity, preserving
distances and approximately preserving treewidth.

Definition 1 (Unification). Let G be an arbitrary, edge capacitated graph. The
unified graph Gu of G is obtained from G by the following operations on each
edge e ∈ E(G): We replace e by c(e) parallel edges e1, . . . , ec(e), subdivide each
resulting parallel edge by creating vertices vei , i ∈ [c(e)]), and set the weight of
each subdivided edge to w(e)/2 (i.e., the total weight is preserved). We set all
edge capacities in the unified graph to 1. Similarly, given the original problem
instance I of the Waypoint Routing Problem, the unified instance Iu is obtained
by replacing the graph G in I with the graph Gu in Iu, without changing the
waypoints, the source and the destination.

It follows directly from the construction that I and Iu are equivalent with
regards to the contained walks. Moreover, as we will see, the unification process
approximately preserves the treewidth. Thus, in the following, we will focus
on Gu and Iu only, and implictly assume that G and I are unified. Before we
proceed further, however, let us introduce some more definitions. Using Remark I,
w.l.o.g., we can focus on graphs where for all e ∈ E, c(e) ≤ 2. The treewidth of
G and Gu are preserved up to an additive constant.

Lemma 1. Let G be an edge capacitated graph such that each edge has capacity
at most 2 and let tw be the treewidth of G. Then Gu has treewidth at most tw+ 1.
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Leveraging Eulerian Properties A key insight is that we can leverage the
Eulerian properties implied by a waypoint route. In particular, we show that the
traversal of a single Eulerian walk (e.g., along an optimal solution of WRP) can
be arranged s.t. it does not traverse a specified separator too often, for which we
will later choose the root of the nice tree decomposition.

Lemma 2 (Eulerian Separation). Let G be an Eulerian graph. Let s be an
(A,B) separator of order |s| in G. Then there is a set of ` ≤ 2|s| pairwise edge-
disjoint walks W = {W1, . . . ,W`} of G such that

1. For every W ∈ W, W has both of its endpoints in A ∩B.
2. Every walk W ∈ W is entirely either in G[A] (as WA) or in G[B] (as WB).
3. Let βA be the size of the set of vertices used by WA as an endpoint in s.

Then, WA contains at most βA walks. Analogously, for βB and WB.
4. There is an Eulerian walk W of G such that: W := W1 ⊕ . . .⊕W`.

2.3 Signature Generation and Properties

We next introduce the signatures we use to represent previously computed solu-
tions to subproblems implied by the separators in the (nice) tree decomposition.
For every possible signature, we will determine whether it represents a proper/
valid solution for the subproblem, and if so, store it along with an exemplary
sub-solution of optimal weight.

In a nutshell, the signature describes endpoints of (partial) walks on each
side of the separator. These partial walks hence need to be iteratively merged,
forming signatures of longer walks through the waypoints.

Definition 2 (Signature). Let b ∈ X. A signature σ of b (σb) is a pair, either
containing

1. 1) an unordered tuple of pairs of vertices si, ri ∈ b and 2) a subset Eb ⊆
E(G[b]) with σb = (((s1, r1) , (s2, r2) , . . . , (s`, r`)) , Eb) s.t. ` ≤ |b|, or

2. 1) ∅ and 2) ∅, with σb = (∅, ∅), also called an empty signature σb,∅.

Note that in the above definition we may have si = ri for some i. We can
now define a valid signature and a sub-solution, where we consider the vertex
s = t to be a waypoint.

Definition 3 (Valid Signature and Sub-Solution). Let b ∈ X and let either
σb = ({(s1, r1) , (s2, r2) , . . . , (s`, r`)} , Eb) or σb = σb,∅ be a signature of b. σb 6=
σb,∅ is called a valid signature if there is a set of pairwise edge-disjoint walks
Wσb

= {W1, . . . ,W`} such that:

1. If Wi is an open walk then it has both of its endpoints on (si, ri), otherwise,
si = ri and si ∈ V (Wi).

2. Let β be the size of the set of endpoints used by σb. Then, it holds that β ≥ `.
3. For every waypoint w ∈ V (Tb) it holds that w is contained in some walk

Wj , 1 ≤ j ≤ `.
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4. Every (pairwise edge-disjoint) walk Wj ∈ Wσb
only uses vertices from V (Tb)

and only edges from E(Tb) \ Eb, with Eb = E(b) \ Eb.
5. Every edge e ∈ Eb is used by a walk in Wσb

.
6. Among all such sets of ` walks, Wσb

has minimum total weight.

Additionally, if for a signature σb 6= σb,∅ there is such a set Wσb
(possibly

abbreviated by Wb if clear in the context), we say W is a valid sub-solution in
G[Tb]. For some waypoint contained in G[Tb], we call a signature σb,∅ valid, if
there is one walk W associated with it, s.t. W traverses all waypoints in G[Tb],
does not traverse any vertex in V (b), and among all such walks in G[Tb] has
minimum weight. If G[Tb] does not contain any waypoint, we call a signature σb,∅
valid, if there is no walk associated with it.

Lemma 3 (Number of different signatures). There are 2O(|b|2) different
signatures for b ∈ X.

2.4 Programming the Nice Tree Decomposition

The nice tree decomposition directly gives us a constructive way to dynamically
program WRP in a bottom-up manner. We first cover leaf nodes in Lemma 4,
and then work our way up via forget (Lemma 5), introduce (Lemma 6), and join
(Lemma 7) nodes, until eventually the root node is reached. Along the way, we
inductively generate all valid signatures at every node.

Lemma 4 (Leaf nodes). Let b be a leaf node in the nice tree decomposition
T = (T,X). Then, in time O(1) we can find all the valid signatures of b.

Proof. We simply enumerate all possible valid signatures. As a leaf node only
contains one vertex v from the graph, all possible edge sets in the signatures are
empty, and we have two options for the pairs: First, none, second, ((v, v)). The
second option is always valid, but the first (empty) one is only valid when v is
not a waypoint. ut

Due to space constraints, we cannot provide the longer proofs of the other three
nodes types, especially for the introduce and join nodes. Nonetheless, we at least
sketch the proof idea for the join nodes, as a reduction in their time complexity
would be interesting for future work, see also our remarks in Section 5.

Lemma 5 (Forget nodes). Let b be a forget node in the nice tree decomposition
T = (T,X), with one child q = child(b), where we have all valid signatures for q.

Then, in time 2O(|b|2) we can find all the valid signatures of b.

Lemma 6 (Introduce nodes). Let b be an introduce node in the nice tree
decomposition T = (T,X), with one child q = child(b), where we have all valid

signatures for q. Then, in time |b|O(|b|2) we can find all the valid signatures of b.

Lemma 7 (Join nodes). Let b be a join node in the nice tree decomposition
T = (T,X), with the two children q1 = child(b) and q2 = child(b), where we have

all valid signatures for q1 and q2. Then, in time nO(|b|) · 2O(|b|2) we can find all
the valid signatures of b.
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Our proof for join nodes consists of two parts, making use of the following fact:
For a given valid signature of b, two valid sub-solutions with different path
traversals have the same total length, if the set of traversed edges is identical. As
thus, when trying to re-create a signature of b with a valid sub-solution, we do
not need to create this specific sub-solution, but just any sub-solution using the
same set of endpoints and edges. We show:

1. We can partition the edges of a valid sub-solution into two parts along a
separator, resulting in a valid signature for each of the two parts, where each
sub-solution uses exactly the edges in its part.

2. Given a sub-solution for each of the two parts separated, we can merge their
edge sets, and create all possible signatures and sub-solutions using this
merged edge set.

2.5 Putting it All Together

We now have all the necessary tools to prove Theorem 1:

Proof (Thm. 1). Dynamically programming a nice tree decomposition.
Translating an instance of the Waypoint Routing Problem to an equivalent one
with s = t and unit edge capacities only increases the treewidth by a constant
amount, see Remark II and Lemma 1. Although it is NP-complete to determine
the treewidth of a graph and compute an according tree decomposition, there are
efficient algorithms for constant treewidth [12,47]. Furthermore, Bodlaender et
al. [9] presented a constant-factor approximation in a time of O(ctwn) for some
c ∈ N, also beyond constant treewidth: Using their algorithm O(log tw) times (via
binary search over the unknown treewidth size), we obtain a tree decomposition
of width O(tw). Following [39], we generate a nice tree decomposition of treewidth
O(tw) with O(twn) ∈ O(n2) nodes in an additional time of O(tw2n) ∈ O(n3).
The total time so far is O(ctwn log tw) +O(tw2n) for some c ∈ N.

We can now dynamically program the Waypoint Routing Problem on the
nice tree decomposition in a bottom-up manner, using Lemma 4 (leaf nodes),
Lemma 5 (forget nodes), Lemma 6 (introduce nodes), and Lemma 7 (join nodes).

The time for each programming of a node is at most O(tw)O(tw2) or nO(tw) ·2O(tw2),
meaning that we obtain all valid signatures with valid sub-solutions at the root
node r, in a combined time of nO(tw2), specifically:

(O(tw)O(tw2) + nO(tw) · 2O(tw2)) ·O(tw · n) +O(ctwn log tw) +O(tw2n).

Obtaining an optimal solution. If an optimal solution I to the Waypoint
Routing Problem exists (on the unified graph with s = t), then the traversed
edges E∗ and vertices V ∗ in I yield an Eulerian graph G∗ = (V ∗, E∗). With
each bag in the nice tree decomposition having O(tw) vertices, we can now apply
(the Eulerian separation) Lemma 2: There must be a valid signature of the root
r whose sub-solution uses exactly the edges E∗. As thus, from all the valid
sub-solutions at r, we pick any solution to WRP with minimum weight, obtaining
an optimal solution to the Waypoint Routing Problem. ut
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3 Walking Through Logarithmically Many Waypoints

While the Waypoint Routing Problem is generally NP-hard (as we will see below),
we show that a shortest walk through a bounded (not necessarily constant)
number of waypoints can be computed in polynomial time. We make use of
reductions to shortest vertex-disjoint [7,35] cycles problems, where the cycle has
to pass through specified vertices.

Theorem 2. For a general graph G with polynomial edge weights, a shortest walk
through k ∈ O(log n) waypoints can be computed in randomized polynomial time,

namely 2knO(1). Furthermore, a walk through k ∈ O
(

(log log n)
1/10

)
waypoints

in G can be computed in deterministic polynomial time.

4 NP-Hardness

Given our polynomial-time algorithms to compute shortest walks through arbi-
trary waypoints on bounded treewidth graphs as well as to compute shortest
walks on arbitrary graphs through a bounded number of waypoints, one may
wonder whether exact polynomial time solutions also exist for more general
settings. In the following, we show that this is not the case: in both dimensions
(number of waypoints and more general graph families), we inherently hit com-
putational complexity bounds. Our hardness results follow by reduction from a
special subclass of NP-hard Hamiltonian cycle problems [1,15]:

Theorem 3. WRP is NP-hard for any graph family of degree at most 3, for
which the Hamiltonian Cycle problem is NP-hard.

We have the following implication for grid graphs [5,15,46] of maximum degree
3, and can use similar ideas for the class of 3-regular bipartite planar graphs.

Corollary 2. For any fixed constant r ≥ 1 it holds that WRP is NP-hard on
1) 3-regular bipartite planar graphs and 2) grid graphs of maximum degree 3,
respectively, already for k ∈ O(n1/r).

Our proof techniques also apply to the k-Cycle problem studied by Björklund
et al. [7], whose solution is polynomial for logarithmic k. All possible edge-disjoint
solutions are also vertex-disjoint, due to the restriction of maximum degree 3.

Corollary 3. For any fixed constant r ≥ 1 it holds that the k-Cycle problem is
NP-hard on 1) 3-regular bipartite planar graphs and 2) grid graphs of maximum
degree 3, respectively, already for k ∈ O(n1/r).

5 Conclusion

Motivated by the more general routing models introduced in modern software-
defined and function virtualized distributed systems, we initiated the algorithmic
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study of computing shortest walks through waypoints on capacitated networks.
We have shown, perhaps surprisingly, that polynomial-time algorithms exist for a
wide range of problem variants, and in particular for bounded treewidth graphs.

In our dynamic programming approach to the Waypoint Routing Problem,
parametrized by treewidth, we provided fixed-parameter tractable (FPT) algo-
rithms for leaf, forget, and introduce nodes, but an XP algorithm for join nodes.
In fact, while we do not know whether our problem can be expressed in monadic
second-order logic MSO2, we can show that simply concatenating child-walks for
join nodes does not result in all valid parent signatures.

We believe that our paper opens an interesting area for future research.
In particular, it will be interesting to further chart the complexity landscape
of the Waypoint Routing Problem, narrowing the gap between problems for
which exact polynomial-time solutions do and do not exist. Moreover, it would
be interesting to derive a lower bound on the runtime of (deterministic and
randomized) algorithms on bounded treewidth graphs.
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