

Main Contributions

Medieval: A Plug & Play Distributed SDN Control Plane

- Flexible controller membership (additions, removals, failures)
- Automatic topology, controller and switch discovery & management
- Supports ONIX, ElastiCon, Beehive, STN, and more.

Provable Self-Stabilization

- *Self-Stabilization*: Important concept in fault-tolerant distributed systems: Converge to "good state" from an arbitrary initial state.
- Medieval tolerates failures and delays: low re-convergence times •

Network Managed by **Multiple Controllers**

"Good network state" :=

- Every switch is connected to a controller.
- Controllers can communicate and make joint decisions.

Why in-band? No reason to build, operate, and ensure the reliability of a separate out-of-band network. Also, out-of-band networks are typically underprovisioned and have limited redundancy.

Failure Resiliently

• Goal: Network should return to a good state.

The Medieval Approach

- management regions...
- ... and "conquer" unmanaged switches.
- Management with two spanning trees: (1) Per-region spanning tree

Switch Structure								
Control traffic is sent in-band. The switch identifies and forward control traffic to its control module.	Control Module In-band							
control module.	In-band							

The Protocol

- Measured time to manage switches _

physically connected network.

# ctrls	1	2	3	4	5	6	7	8
Time (ms)	9382	6983	6150	4224	6035	5104	3704	3680

Per-controller global spanning trees provide controller-to-controller connectivity.

Related Work

1. T. Koponen et al. Onix: A Distributed Control Platform for Large-scale Production Networks. In OSDI, 2010.

2. A. Dixit et al. Towards an Elastic Distributed SDN Controller. In HotSDN, 2013

3. S. H. Yeganeh et al. Beehive: Towards a simple abstraction for scalable software-defined networking. In HotNets, 2014.

4. M. Canini et al. A Distributed and Robust SDN Control Plane for Transactional Network Updates. In INFOCOM, 2015.