
Liron Schiff (Tel Aviv University)

Stefan Schmid (TU Berlin, Germany & Aalborg University, Denmark)

Marco Canini (Université catholique de Louvain)

Ground Control to Major Faults:
Towards Fault Tolerant and Adaptive SDN Control Network

 Logically

centralized control

Control plane network

Fast data plane

Software Defined Network (SDN)

• Main function:

– Connect the controller with each switch

Controller

SDN control-plane

• Main function:

– Connect the controller with each switch

• Can be distributed

– Handle failures

– Load balancing

– Need synchronization

SDN control-plane

• Main functions:

– Connect the controller with each switch

– Inter-connect the controllers

• Can be distributed

– Handle failures

– Load balancing

– Need synchronization

SDN control-plane

• Main function:

– Connect the controller with each switch

– Inter-connect the controllers

• Can be distributed

– Handle failures

– Load balancing

– Need synchronization

• Can be in-band

– Cheaper

– More provisioned (redundancy)

– More flexible (TE, unicast, etc.)

SDN control-plane

Control

Module

In-band

processing

• Control traffic is sent in-
band.

• The switch identifies and
forward it to the
control module.

• Supported by OpenFlow.

Switch Structure (Model)

Challenge: Boot Up

• Switches start as unmanaged.

• Switches should be configured to forward control in-
band.

Challenge: Boot Up

• Switches start as unmanaged.

• Switches should be configured to forward control in-
band.

Challenge: Plug&Play

• Support new links / switches / controllers

• Switches can’t be configured with all possible controllers.

Challenge: Plug&Play

• Support new links / switches / controllers

• Switches can’t be configured with all possible controllers.

Challenge: Handle Failures

• Goal: Network should return to a good state.

Challenge: Handle Failures

“Good network state” :=
• Every switch is connected to a controller.

• Controllers can communicate and make joint

decisions.

Model

Our Contributions

A Plug & Play Distributed SDN Control Plane

• Flexible controller membership (additions, removals,

failures)

• Automatic switch discovery & topology awareness

• Supports ONIX, ElastiCon, Beehive, STN, and more.

Self Adjusting

• Converges to “good state” from unmanaged states.

• Tolerates failures and delays: low re-convergence times

The Medieval Scheme

• Controllers aim to continuously grow their

management regions...

• … and “conquer” unmanaged switches.

• Management with two spanning tree types:

 (1) Per-region spanning tree

 (bidirectional, owned by controller)

 (2) Network-wide spanning tree

 (to connect controllers)

Switch States

x 1 2 2 1

1. Controller traffic

is passed through

2. Other controllers

are blocked

Session

established

No keep-alive

timeout

Unmanaged Managed

1. Broadcast

2. Any controller

can respond

Switch State Configurations

Rules Properties

Managed Priority 2, with timeout

Unmanaged Priority 1, no timeout

A priori configured

Maintained by controller

Controller uses a managed switch, R, to detect

and establish connection to a new switch S.

The Protocol

The Medieval Scheme

• Controllers aim to continuously grow their

management regions...

• … and “conquer” unmanaged switches.

• Management with two spanning tree types:

 (1) Per-region spanning tree

 (bidirectional, owned by controller)

 (2) Network-wide spanning tree

 (to connect controllers)

The Medieval Scheme

• Controllers aim to continuously grow their

management regions...

• … and “conquer” unmanaged switches.

• Management with two spanning tree types:

 (1) Per-region spanning tree

 (bidirectional, owned by controller)

Controller to Switch Connectivity

Controllers “conquer” switches adjacent to their

regions of control and build a spanning tree for

controller-to-switch connectivity.

S1

S2

S7

S8

S3

S4

S5

S6

BA

Switch

Controller

Other Link

Spanning Tree Link

Unmanned switchAnchor switch
pkt-in(ARP)

ARP

ARP

The Medieval Scheme

• Controllers aim to continuously grow their

management regions...

• … and “conquer” unmanaged switches.

• Management with two spanning tree types:

 (1) Per-region spanning tree

 (bidirectional, owned by controller)

 (2) Network-wide spanning tree

 (to connect controllers)

Controller to Controller Connectivity

S1

S2

S7

S8

S3

S4

S5

S6

BA

Per-controller global spanning trees provide

controller-to-controller connectivity.

- Emulator in Java

- OpenFlow switches and controllers: light-

weight threads

- Links modelled by message queues

- Fat-tree topology (k=4), 1-8 controllers

- Measured time to manage switches

ctrls 1 2 3 4 5 6 7 8

Time(ms) 9382 6983 6150 4224 6035 5104 3704 3680

Prototype Implementation

Prototype Implementation

• Medieval: a robust distributed SDN control
plane.

• Fully supported by OpenFlow.

• Convergence can be proved and easily tested.

• Extended analysis and simulation are coming
soon.

Conclusions

