
Automating Communication Networks

Stefan Schmid (Uni Vienna)

Case Study: Fast What-If 
Analysis Tool of MPLS 

and SR Networks!



Great time to be a 
researcher! 

Rhone and Arve Rivers, 
Switzerland

Credits: George 
Varghese. 

Communication networks:

• Critical infrastructure: stringent 
dependability requirements

• Opportunities (e.g., flexibility) 
and challenges (complexity)

• Impossible to address manually

A case for automation and formal 
methods? 



Part 1: Complexity

1



Motivation 1: Complexity and Human Errors

We discovered a misconfiguration on this pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed incorrectly […] more “stuck” volumes 
and added more requests to the re-mirroring storm.

Service outage was due to a series of internal network events that corrupted 
router data tables.

Experienced a network connectivity issue […] interrupted the airline's 
flight departures, airport processing and reservations systems

Credits: Nate Foster

Datacenter, enterprise, carrier networks: mission-critical infrastructures.
But even techsavvy companies struggle to provide reliable operations.



G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
at

ac
e

n
te

r

Example: Keeping Track of (Flexible) 
Routes Under Failures

Example: BGP in 
Datacenter (!)

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations. 3



D
at

ac
e

n
te

r

Internet

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Cluster with services that 
should be globally reachable.

Cluster with services that should
be accessible only internally.

Example: Keeping Track of (Flexible) 
Routes Under Failures

3

Example: BGP in 
Datacenter (!)



Example: Keeping Track of (Flexible) 
Routes Under Failures

Example: BGP in 
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to 
Internet what is from 

G* (prefix).

X and Y block what is 
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

3



Example: Keeping Track of (Flexible) 
Routes Under Failures

Example: BGP in 
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to 
Internet what is from 

G* (prefix).

X and Y block what is 
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

What can go wrong?

3



Example: Keeping Track of (Flexible) 
Routes Under Failures

Example: BGP in 
Datacenter

D
at

ac
e

n
te

r

Internet
X and Y announce to 
Internet what is from 

G* (prefix).

X and Y block what is 
from P*.

Credits: Beckett et al. (SIGCOMM 2016): Bridging Network-
wide Objectives and Device-level Configurations.

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

If link (G,X) fails and traffic from G is rerouted via Y 
and C to X: X announces (does not block) G and H 

as it comes from C. (Note: BGP.)

3



The Case for Automation!
Role of Formal Methods?

Managing Complex Networks is 
Hard for Humans

Efficiency?!



Example: MPLS Networks

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

5



Default routing of
two flows

• MPLS: forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

Example: MPLS Networks

5



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

Default routing of
two flows

• MPLS: forwarding based on top label of label stack
push swap swap pop

pop

Example: MPLS Networks

5



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

• For failover: push and pop label

12

22

10
20

11
21

31|11
31|21

10
20

6



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal 
swap

• For failover: push and pop label

If (v2,v3) failed, 
push 30 and 

forward to v6.

31|11
31|21 6



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure: push 30: 
route around (v2,v3)

Fast Reroute Around 1 Failure

Default routing of
two flows

• MPLS: forwarding based on top label of label stack

12

22

10
20

11
21

Pop

Normal 
swap

• For failover: push and pop label

If (v2,v3) failed, 
push 30 and 

forward to v6.

31|11
31|21

What about multiple link failures?

6



2 Failures: Push Recursively

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

Push 30

Push 40

10
20

11
21

pop pop 7



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

7



v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original Routing

One failure: push 30: 
route around (v2,v3)

10
20

11
21

2 Failures: Push Recursively

Two failures: 
first push 30: route 

around (v2,v3)

Push recursively 40: 
route around (v2,v6)

But masking links one-by-
one can be inefficient: 

(v7,v3,v8) could be shortcut 
to (v7,v8). 

More efficient but also more complex:
Cisco does not recommend using this option!

Also note: due to push, header size 
may grow arbitrarily!

7



Failover Tables

Flow Table

Protected 
link Alternative 

link
Label

Forwarding Tables for Our Example

Version which does not 
mask links individually!

8



MPLS Tunnels in 
Today‘s ISP Networks

9



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Routers and switches store
list of forwarding rules, and 

conditional failover rules.

10



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

Reachability?

A

B

C

10



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Non-reachability: Is it ensured that
traffic originating from A never
reaches B?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

No loops?

10



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint ensurance: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., a firewall)?

A

B

C

Policy ok?

E.g. NORDUnet: no traffic via 
Iceland (expensive!).

10



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

Waypoint?

E.g. IDS

10



Responsibilities of a Sysadmin

Sysadmin responsible for:

• Reachability: Can traffic from ingress
port A reach egress port B?

• Loop-freedom: Are the routes implied
by the forwarding rules loop-free?

• Policy: Is it ensured that traffic from A 
to B never goes via C?

• Waypoint enforcement: Is it ensured
that traffic from A to B is always
routed via a node C (e.g., intrusion
detection system or a firewall)?

A

B

C

E.g. IDS

… and everything even under multiple failures?!

k failures = 

(
𝑛
𝑘
) possibilities

10



So what formal methods offer here?

A lot! Automated What-if 
Analysis Tool for MPLS and SR in 

polynomial time.
(INFOCOM 2018, CoNEXT 2018)



MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Leveraging Automata-Theoretic Approach

12



Leveraging Automata-Theoretic Approach

MPLS configurations, 
Segment Routing etc.

Pushdown Automaton
and Prefix Rewriting 

Systems Theory

Compilation

Interpretation

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY

rY ⇒ r
rX ⇒ pX

What if...?!

Use cases: Sysadmin issues queries 
to test certain properties, or do it 
on a regular basis automatically!

12



• Network: a 7-tuple

Mini-Tutorial: A Network Model

Nodes

Links

Incoming 
interfaces

Outgoing 
interfaces

Set of labels in 
packet header

13



Interface function: maps outgoing interface to next hop
node and incoming interface to previous hop node

That is:                               and

Interface 
function

• Network: a 7-tuple

Mini-Tutorial: A Network Model

13



• Network: a 7-tuple

Routing function: for each set of failed links , the
routing function

defines, for all incoming interfaces and packet headers, 
outgoing interfaces together with modified headers. 

Routing 
function

Mini-Tutorial: A Network Model

13



out2out1

Packet routing sequence can be represented using sequence of tuples:

Routing in Network

• Example: routing (in)finite sequence of tuples

Node 
receives…

… on interface…

… packet with
header…

… forwards it to
live next hop…

… with new header..

… given that these 
links are down.

v1

h1

v2

h2 h3

in1 in2

14



Pop:

Push:

Swap:

Example Rules: 
Regular Forwarding on Top-Most Label

Push label on 
stack

Swap top of 
stack

Pop top of 
stack

15



Failover-Push:

Example Failover Rules 

Emumerate all 
rerouting options

Failover-Swap:

Failover-Pop:

Example rewriting sequence:

Try default Try first backup Try second backup



A Complex and Big Formal Language! 
Why Polynomial Time?!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 

(
𝑛
𝑘
) possibilities

17



This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

k failures = 

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!

17



This is not how we will 
use the PDA!

• Arbitrary number k of failures: How can I avoid
checking all (𝑛

𝑘
) many options?!  

• Even if we reduce to push-down automaton: 
simple operations such as emptiness testing or
intersection on Push-Down Automata (PDA) is
computationally non-trivial and sometimes even
undecidable!

The words in our language are sequences of pushdown 
stack symbols, not the labels of transitions.

k failures = 

(
𝑛
𝑘
) possibilities

A Complex and Big Formal Language! 
Why Polynomial Time?!

17



Time for Automata Theory
(from Switzerland)!

Julius Richard Büchi

1924-1984

Swiss logician

• Classic result by Büchi 1964: the set of all reachable
configurations of a pushdown automaton a is regular set

• Hence, we can operate only on Nondeterministic Finite 
Automata (NFAs) when reasoning about the pushdown 
automata

• The resulting regular operations are all polynomial time

• Important result of model checking

18



Preliminary Tool and Query Language

Part 1: Parses query
and constructs Push-
Down System (PDS)

• In Python 3

query processing flow

Part 2: Reachability 
analysis of 
constructed PDS

• Using Moped tool

19

Regular query language

k <a> b <c>
# failures

header
header

path



YES!
(Gives witness!)

2 failures

Example: Traversal Testing With 2 Failures

Traversal test with k=2: Can traffic starting with [] go through s5, under up to k=2 failures?

push

push

stack
size!

pop

pop

Query: k=2 [] s1 >> s5 >> s7 []

20



Industrial Case Study with NORDUnet
The „Switch.Ch“ of Scandinavia?

• 24 MPLS routers, across several countries

• 1 million forwarding rules

• Queries like: „Is it ensured traffic never 
routed via Iceland?“

• 20 million PDA transitions but fast!

Much faster for 
many failures!

runtime in sec 21



Related Work

Our
approach



But What About Other Networks?

Rules of general networks (e.g., SDN): 

arbitrary header rewriting vs
in x L* → out x L*

The clue: exploit the specific structure of MPLS rules.

(Simplified) MPLS rules: 

prefix rewriting

in x L → out x OP

in out

h h’

where OP = {swap,push,pop}

Rules match the header h 
of packets arriving at in,

and define to which port out to 
forward as well as new header h’. 

22



What About Performance/QoS Properties?

OPODIS 2016



Further Complexities: (Unified) Packet Parsing 
Virtual Switches, e.g., MPLS 

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

24



User

Kernel

VM VM VM

N
I
C

Virtual Switch

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

24

Further Complexities: (Unified) Packet Parsing 
Virtual Switches, e.g., MPLS 



Compromising the Cloud (SOSR 2018)

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

24



Compromising the Cloud (SOSR 2018)

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

High priviledges

Attacker facing, 
complex parser

Logically centralized 
control

Collocated 
applications 24



User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

1

2

3

3

Compromising the Cloud (SOSR 2018)

24



Part 2: Flexibility



Traffic engineering
beyond “weights”:

SDN, MPLS, …

Complex network 
services, e.g., 
service chains Even topology reconfiguration

The next 
frontier!

Flexibility of communication networks 

26

Motivation 2: Flexibility

Centralized control,
application-specific 

forwarding, virtualization



Example: Free-Space Optics (ProjecToR)

t=1

26



Example: Free-Space Optics (ProjecToR)

t=2

26



Example: Reconfigurable Optical Switches 
(Helios, c-Through, etc.)

v2 v4 v6 v8

v1 v3 v5 v7

Static topology:

electric

Dynamic topology:

optical switch

(e.g. matching)

t=1

Matching!

27



Example: Reconfigurable Optical Switches 
(Helios, c-Through, etc.)

v2 v4 v6 v8

v1 v3 v5 v7

Static topology:

electric

Dynamic topology:

optical switch

(e.g. matching)

t=2

Matching!

27



Free-Space Optics
• Ghobadi et al., “Projector: Agile reconfigurable data center interconnect,” SIGCOMM 2016.
• Hamedazimi et al. “Firefly: A reconfigurable wireless data center fabric using free-space 

optics,” CCR 2014.

Optical Circuit Switches
• Farrington et al. “Helios: a hybrid electrical/optical switch architecture for modular data 

centers,” CCR 2010.
• Mellette et al. “Rotornet: A scalable, low-complexity, optical datacenter network,” 

SIGCOMM 2017.
• Farrington et al. “Integrating microsecond circuit switching into the data center,” SIGCOMM 

2013.
• Liu et al. “Circuit switching under the radar with reactor.,” NSDI 2014

Much Technology

Movable Antennas
• Halperin et al. “Augmenting data center networks with multi-gigabit wireless links,” 

SIGCOMM 2011.

60GHz Wireless Communication
• Zhou et al. “Mirror mirror on the ceiling: Flexible wireless links for data centers,” CCR 2012.

• Kandula et al. “Flyways to de-congest data center networks,” 2009.

Etc.!

28
Also for the WAN!



Resulting Vision: Exploiting Locality of Demand
Demand-Aware and Self-Adjusting Networks

Oblivious DAN SAN

Const degree

(e.g., expander): 

route lengths O(log n)

Exploit spatial locality Exploit temporal locality as well

29



How much does it help?



Depends on the “entropy”!
The less entropy, e.g., the 

shorter the routes!

How much does it help?



Motivation: 
Much Structure = Little Entropy

ProjecToR @ SIGCOMM 2016

Heatmap rack-to-rack traffic:

31



An Analogy to Coding
„Coming to MIR^3?“

00110101…

32



An Analogy to Coding 00110101…

Requires statistics!

32

„Coming to MIR^3?“



An Analogy to Coding 01011…

DAN!

Requires statistics!

32

„Coming to MIR^3?“



An Analogy to Coding 101…

Better or worse?

32

„Coming to MIR^3?“



An Analogy to Coding 101…

Better or worse?

It depends:

Can exploit
temporal locality!

No statistics: 
online!But:

32

„Coming to MIR^3?“



An Analogy to Coding 101…

DAN! SAN!
Can exploit
spatial locality!

Additionally exploit
temporal locality!

„Coming to MIR^3?“



Analogy to Datastructures, e.g., BST

Oblivious BST Demand-Aware 
(aka „Biased“ BST)

Self-Adjusting

e.g., splay trees

Lookup O(log n) Exploit spatial locality:

e.g., if only log(n) elements
accessed lookup O(loglog n)

Exploit temporal locality as well, 
e.g.,: O(1)

34



Conclusion
• Complexity and flexibilities: The case of algorithmic approaches

and automation

• Formal methods can be efficient! Case study What-if Analysis for 
MPLS and SR
– Other examples: verified packet parsers, verified „self-driving

networks“, consistent network updates, …

• The next frontier: topological flexibility
– Requires new algorithms: largely unexplored

Thank you! 
Question?



Fu
rt

h
er

 R
ea

d
in

g
P-Rex: Fast Verification of MPLS Networks with Multiple Link Failures
Jesper Stenbjerg Jensen, Troels Beck Krogh, Jonas Sand Madsen, Stefan Schmid, Jiri Srba, and Marc Tom Thorgersen.
14th International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Heraklion, Greece, December 2018.
Polynomial-Time What-If Analysis for Prefix-Manipulating MPLS Networks
Stefan Schmid and Jiri Srba.
37th IEEE Conference on Computer Communications (INFOCOM), Honolulu, Hawaii, USA, April 2018.
Taking Control of SDN-based Cloud Systems via the Data Plane (Best Paper Award)
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ACM Symposium on SDN Research (SOSR), Los Angeles, California, USA, March 2018.
Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks
Chen Avin and Stefan Schmid.
ArXiv Technical Report, July 2018.
Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
31st International Symposium on Distributed Computing (DISC), Vienna, Austria, October 2017.
Online Balanced Repartitioning
Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid.
30th International Symposium on Distributed Computing (DISC), Paris, France, September 2016.
rDAN: Toward Robust Demand-Aware Network Designs
Chen Avin, Alexandr Hercules, Andreas Loukas, and Stefan Schmid.
Information Processing Letters (IPL), Elsevier, 2018.
SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016. Early version: IEEE IPDPS 2013.
Characterizing the Algorithmic Complexity of Reconfigurable Data Center Architectures
Klaus-Tycho Foerster, Monia Ghobadi, and Stefan Schmid.
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS), Ithaca, New York, USA, July 2018.
Charting the Complexity Landscape of Virtual Network Embeddings
Matthias Rost and Stefan Schmid. IFIP Networking, Zurich, Switzerland, May 2018.

https://net.t-labs.tu-berlin.de/~stefan/conext18.pdf
https://net.t-labs.tu-berlin.de/~stefan/infocom18prefixnet.pdf
https://net.t-labs.tu-berlin.de/~stefan/sosr18.pdf
https://net.t-labs.tu-berlin.de/~stefan/dan-san.pdf
https://net.t-labs.tu-berlin.de/~stefan/disc17.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/disc16repartition.pdf
https://net.t-labs.tu-berlin.de/~stefan/ipl18.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7066977&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber%3D7066977
https://net.t-labs.tu-berlin.de/~stefan/ancs18.pdf
https://www.net.t-labs.tu-berlin.de/~stefan/ifip18landscape.pdf

