
“We cannot direct the wind, 
but we can adjust the sails.”
(Folklore)

Self-Adjusting Networks
Stefan Schmid



Trend:
Data-Centric Applications
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Datacenters (“hyper-scale”)

Traffic
Growth
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Interconnecting networks:  
a critical infrastructure
of our digital society.
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The Problem:
Huge Infrastructure, Inefficient Use

⇢ Network equipment reaching
capacity limits
⇀ Transistor density rates stalling
⇀ “End of Moore‘s Law in networking” [1]

⇢ Hence: more equipment, 
larger networks

⇢ Resource intensive and:
inefficient

Annoying for companies,
opportunity for researchers

[1
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Root Cause:
Fixed and Demand-Oblivious Topology
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How to interconnect?



Root Cause:
Fixed and Demand-Oblivious Topology

Many flavors, 
but in common: 
fixed and 
oblivious to 
actual demand.
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Root Cause:
Fixed and Demand-Oblivious Topology

Highway which ignores 
actual traffic: 
frustrating!

Many flavors,
but in common: 
fixed and 
oblivious to 
actual demand.

3



Our Vision:
Flexible and Demand-Aware Topologies
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Our Vision:
Flexible and Demand-Aware Topologies
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Our Motivation:
Much Structure in the Demand
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My hypothesis: can be 
exploited.

Empirical studies: 
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traffic matrices sparse and skewed



Sounds Crazy? 
Emerging Enabling
Technology.
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H2020: 
“Photonics one of only five
key enabling technologies
for future prosperity.”

US National Research Council: 
“Photons are the new
Electrons.”

Photonics



Enabler:
Novel Reconfigurable Optical Switches
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⇢ Spectrum of prototypes
⇀ Different sizes, different reconfiguration times 
⇀ From our last year’s ACM SIGCOMM workshop

Prototype 1

Prototype 2

Prototype 3



The Big Picture
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New!

More!
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The Big Picture
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Flexibility

Structure

Efficiency
New!

More!

Self-Adjusting
Networks

Now is the time!
Our goal: Develop the 
theoretical foundations
of demand-aware, self-
adjusting networks.



Unique Position:
Demand-Aware, Self-Adjusting Systems
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Everywhere, but mainly 
in software

Our focus: 
in hardware

vsAlgorithmic trading

Neural networks

Recommender systems



Question 1:

How to Quantify 
such “Structure” 
in the Demand?

10



11

Intuition:
Which demand has more structure?
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⇢ Traffic matrices of two different distributed 
ML applications

⇀ GPU-to-GPU
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Intuition:
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed 
ML applications

⇀ GPU-to-GPU

More uniform More structure
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Intuition:
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:
⇀ same non-temporal structure

⇢ Which one has more structure?

vsvs
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Intuition:
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:
⇀ same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs
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Trace Complexity:
A Systematic “Shuffle&Compress” Approach

Randomize rows Randomized columns Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original
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Trace Complexity:
A Systematic “Shuffle&Compress” Approach

Difference in 
compression?

Difference in 
compression?

Difference in 
compression?

Can be used to define a “Complexity Map”!

Randomize rows Randomized columns UniformOriginal
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No structure

bursty & skewed
skewed

Our approach: iterative 
randomization and 
compression of trace to 
identify dimensions of 
structure.
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Potential 
gain!

bursty & skewed
skewed

bursty uniform

NN

Different 
structures!

Our Methodology:

Complexity Map

Our approach: iterative 
randomization and 
compression of trace to 
identify dimensions of 
structure.



Question 2:

Given This Structure, 
What Can Be Achieved? 
Metrics and Algorithms?
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A first insight: entropy of the demand.
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Traditional BST
(Worst-case coding)

Demand-aware BST
(Huffman coding)

Self-adjusting BST
(Dynamic Huffman coding) More than 

an analogy!

Reduced expected route lengths!

entropy
rate

entropylog n
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rate
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Generalize methodology:
... and transfer 
entropy bounds and 
algorithms of data-
structures to networks. 

First result: 
Demand-aware networks 
of asymptotically 
optimal route lengths. 
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ERL=Ω(HΔ(Y|X))

From Static Coding:

Entropy Lower Bound
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⇢ Idea for algorithm:
⇀ union of trees
⇀ reduce degree

⇢ Ok for sparse demands
⇀ helper nodes

What about dynamic case?

From Static Coding:

Upper Bound and Algo

Static
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⇢ Dynamic the same:
⇀ union of dynamic ego-trees

⇢ E.g., SplayNets

From Dynamic Coding:

Dynamic Setting

Dynamic
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Domain 1
Models and 
metrics

Domain 2
Algorithms

Domain 3
Integration

Requires knowledge in networking, distributed systems, algorithms, performance evaluation.

Notion of self-adjusting networks opens a 
large uncharted field with many questions:
⇀ By how much can load be lowered, 

energy reduced, quality-of-service  
improved, etc. in demand-aware networks?

⇀ How to model reconfiguration costs? 
⇀ How to render these networks robust? 
⇀ Impact on other layers?
⇀ How to design scalable control planes?

so far

to do 

scratched 
surface

Challenges:

Future Work
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Even bigger picture:

Flexible Networks
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Virtual-
ization

SDN Optics

Even bigger picture:

Flexible Networks
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