
Nap: Network-Aware Data Partitions
for Efficient Distributed Processing

Mr. Or Raz, Prof. Chen Avin, Prof. Stefan Schmid

School of Electrical and Computer Engineering
Ben-Gurion University of the Negev

Beer-Sheva, Israel

Faculty of Computer Science
University of Vienna

Vienna, Austria

September 26, 2019

Nap: Network-Aware Data Partitions
for Efficient Distributed Processing

Mr. Or Raz, Prof. Chen Avin, Prof. Stefan Schmid

School of Electrical and Computer Engineering
Ben-Gurion University of the Negev

Beer-Sheva, Israel

Faculty of Computer Science
University of Vienna

Vienna, Austria

September 26, 2019

2
0
1
9
-0
9
-2
5

Nap

Hello everyone, my name is Or Raz, I am a Master graduate from the

school of Electrical and Computer Engineering in Ben-Gurion University

of the Negev, Israel. This research has been done with the support of

Professors Chen Avin and Stefan Schmid, and my Thesis is mainly about

this work. Today, I will talk about Nap, a scheme that takes the network

into consideration when partitioning the data, and therefore minimizes the

completion time in distributed processing frameworks, such as Hadoop.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

O. Raz (BGU - ECE) Nap September 26, 2019 1 / 18

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

O. Raz (BGU - ECE) Nap September 26, 2019 2 / 18

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Introduction

• The amount of data queried and processed by emerging applications is
growing explosively (in many fileds such as health, business, and science).

• Traditionally, data processing frameworks were designed to run in
Homogeneous environments or within a single datacenter, but today it is less
common with more Geographically distributed processing.

• Because the scale of data and the data itself is generated in a geographically
distributed fashion (IOT).

• Therefore, to maximize performance, we need to consider the available
network resources which has been neglected in the optimization analysis,
otherwise we could have a poor performance (wide-area analytics).

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

O. Raz (BGU - ECE) Nap September 26, 2019 2 / 18

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Introduction

• The amount of data queried and processed by emerging applications is
growing explosively (in many fileds such as health, business, and science).

• Traditionally, data processing frameworks were designed to run in
Homogeneous environments or within a single datacenter, but today it is less
common with more Geographically distributed processing.

• Because the scale of data and the data itself is generated in a geographically
distributed fashion (IOT).

• Therefore, to maximize performance, we need to consider the available
network resources which has been neglected in the optimization analysis,
otherwise we could have a poor performance (wide-area analytics).

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

O. Raz (BGU - ECE) Nap September 26, 2019 2 / 18

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Introduction

• The amount of data queried and processed by emerging applications is
growing explosively (in many fileds such as health, business, and science).

• Traditionally, data processing frameworks were designed to run in
Homogeneous environments or within a single datacenter, but today it is less
common with more Geographically distributed processing.

• Because the scale of data and the data itself is generated in a geographically
distributed fashion (IOT).

• Therefore, to maximize performance, we need to consider the available
network resources which has been neglected in the optimization analysis,
otherwise we could have a poor performance (wide-area analytics).

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

Contribution

Nap, a network-aware and adaptive mechanism for fast large scale data
processing based on MapReduce, such as joins.

O. Raz (BGU - ECE) Nap September 26, 2019 2 / 18

Introduction

Nowadays, we are living in the Big Data era.

Data is processed and stored in geographically distributed datacenters.

Traditional query optimizations neglect the network.

Contribution

Nap, a network-aware and adaptive mechanism for fast large scale data
processing based on MapReduce, such as joins.

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Introduction

• Our contribution is Nap, a mechanism which minimizes the completion time
in a network-aware manner and is optimized to the current network
conditions. In addition, it doesn’t require any logic modifications where it
only fools the application for a better partitioning of the data.

• We are particularly interested in workloads based on relational databases and
consider the most fundamental operation in distributed data processing:
joins.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Venue Paper Paper Author Author Name

SIGMOD SkewTune MapReduce 1 1 J. Dean

EuroSys Riffle MapReduce 2 7 Y.Kwon

OSDI MapReduce HaLoop 5 4 H. Zhang

S2RDF 3 8 D. Ullman

Riffle 4 2 S. Ghemawat

Kraken 6

X (v,p) Y (p,a) Z (a,Name)

O. Raz (BGU - ECE) Nap September 26, 2019 3 / 18

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Venue Paper Paper Author Author Name

SIGMOD SkewTune MapReduce 1 1 J. Dean

EuroSys Riffle MapReduce 2 7 Y.Kwon

OSDI MapReduce HaLoop 5 4 H. Zhang

S2RDF 3 8 D. Ullman

Riffle 4 2 S. Ghemawat

Kraken 6

X (v,p) Y (p,a) Z (a,Name)

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Multiway Join

First, lets take a look on these three tables that has two joint attributes,

p and a.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Venue Paper Paper Author Author Name

SIGMOD SkewTune MapReduce 1 1 J. Dean

EuroSys Riffle MapReduce 2 7 Y.Kwon

OSDI MapReduce HaLoop 5 4 H. Zhang

S2RDF 3 8 D. Ullman

Riffle 4 2 S. Ghemawat

Kraken 6

X (v,p) Y (p,a) Z (a,Name)

O. Raz (BGU - ECE) Nap September 26, 2019 3 / 18

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Venue Paper Paper Author Author Name

SIGMOD SkewTune MapReduce 1 1 J. Dean

EuroSys Riffle MapReduce 2 7 Y.Kwon

OSDI MapReduce HaLoop 5 4 H. Zhang

S2RDF 3 8 D. Ullman

Riffle 4 2 S. Ghemawat

Kraken 6

X (v,p) Y (p,a) Z (a,Name)

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Multiway Join

We consider an operation which joins all of these tables, X (v ,p) ./
Y (p,a) ./ Z (a,n) where ./ denotes the join operator.
Attributes: v - the Venue, p - the Paper ID, a - the Author ID, and n -
the Author name.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Venue Paper Paper Author Author Name

SIGMOD SkewTune MapReduce 1 1 J. Dean

EuroSys Riffle MapReduce 2 7 Y.Kwon

OSDI MapReduce HaLoop 5 4 H. Zhang

S2RDF 3 8 D. Ullman

Riffle 4 2 S. Ghemawat

Kraken 6

Venue Paper Author

OSDI MapReduce 1

OSDI MapReduce 2

EuroSys Riffle 4

Venue Paper Author Name

OSDI MapReduce 1 J. Dean

OSDI MapReduce 2 S. Ghemawat

EuroSys Riffle 4 H. Zhang

X (v,p) Z (a,Name)Y (p,a)

O. Raz (BGU - ECE) Nap September 26, 2019 3 / 18

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Venue Paper Paper Author Author Name

SIGMOD SkewTune MapReduce 1 1 J. Dean

EuroSys Riffle MapReduce 2 7 Y.Kwon

OSDI MapReduce HaLoop 5 4 H. Zhang

S2RDF 3 8 D. Ullman

Riffle 4 2 S. Ghemawat

Kraken 6

Venue Paper Author

OSDI MapReduce 1

OSDI MapReduce 2

EuroSys Riffle 4

Venue Paper Author Name

OSDI MapReduce 1 J. Dean

OSDI MapReduce 2 S. Ghemawat

EuroSys Riffle 4 H. Zhang

X (v,p) Z (a,Name)Y (p,a)

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Multiway Join

The traditional way to join these tables is by a cascade join or a
sequential join, which takes few phases or only two for this example. This
fundamental operation and others are done in a distributed manner,
when the tables are too large for storing in one computer.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Cascade join is optional, but can we do better?

O. Raz (BGU - ECE) Nap September 26, 2019 3 / 18

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Cascade join is optional, but can we do better?

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Multiway Join

This raise the question of can we do better?

Afrati and Ullman in “Optimizing multiway joins” have shown back in

2011 a way to join all the tables in one phase with MapReduce paradigm,

a multiway join. This method involves replication of the tables. I am

going to focus about this example today, due it’s clear efficiency and

because the join operation has been used in many “Big Data”

frameworks, including implementations in MapReduce.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Cascade join is optional, but can we do better?
Yes, for some cases, a join of all the tables in one phase, multiway join, is
better!

O. Raz (BGU - ECE) Nap September 26, 2019 3 / 18

Multiway Join

ACM Tables Example

Consider a small database of Papers, Papers-Authors, and Authors that we
want to join them, X (v ,p) ./ Y (p,a) ./ Z (a,n).

Cascade join is optional, but can we do better?
Yes, for some cases, a join of all the tables in one phase, multiway join, is
better!

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Multiway Join

This raise the question of can we do better?

Afrati and Ullman in “Optimizing multiway joins” have shown back in

2011 a way to join all the tables in one phase with MapReduce paradigm,

a multiway join. This method involves replication of the tables. I am

going to focus about this example today, due it’s clear efficiency and

because the join operation has been used in many “Big Data”

frameworks, including implementations in MapReduce.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

MapReduce Model1

The model consists of four main
phases:

map.
partition.
shuffle.
reduce.

m mappers and r reducers processes for
the MapReduce job. M1 M2 M3 Mm

R1 R2 R3 Rr

. . .

. . .

1DG08.
O. Raz (BGU - ECE) Nap September 26, 2019 4 / 18

MapReduce Model1

The model consists of four main
phases:

map.
partition.
shuffle.
reduce.

m mappers and r reducers processes for
the MapReduce job. M1 M2 M3 Mm

R1 R2 R3 Rr

. . .

. . .

1DG08.

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

MapReduce Modela

aDG08.

• This is a state-of-the-art programming model for processing large data sets
using parallelism and decentralization concepts.

• It has a Master-Slave architecture.

• All the phases are performed locally except the shuffle, which transfer data
between the processes, and thus it can be a bottleneck for the whole
execution.

• It is highly useful, and efficient tool for large-scale fault tolerant data
analysis with crash recovery mechanism.

• Apache Hadoop (batch processing with massive amounts of data) and
Apache Spark (overcome latency and the inability to stream data by
exploiting the memory) are software frameworks that use this paradigm.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

MapReduce Model2

The model consists of four main
phases:

map.
partition.
shuffle.
reduce.

m mappers and r reducers processes for
the MapReduce job. M1 M2 M3 Mm

R1 R2 R3 Rr

. . .

. . .

1DG08.
2DG08.O. Raz (BGU - ECE) Nap September 26, 2019 4 / 18

MapReduce Model2

The model consists of four main
phases:

map.
partition.
shuffle.
reduce.

m mappers and r reducers processes for
the MapReduce job. M1 M2 M3 Mm

R1 R2 R3 Rr

. . .

. . .

1DG08.
2DG08.

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

MapReduce Modela

aDG08.

• This is a state-of-the-art programming model for processing large data sets
using parallelism and decentralization concepts.

• It has a Master-Slave architecture.

• All the phases are performed locally except the shuffle, which transfer data
between the processes, and thus it can be a bottleneck for the whole
execution.

• It is highly useful, and efficient tool for large-scale fault tolerant data
analysis with crash recovery mechanism.

• Apache Hadoop (batch processing with massive amounts of data) and
Apache Spark (overcome latency and the inability to stream data by
exploiting the memory) are software frameworks that use this paradigm.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Empirical Motivation

Hadoop cluster on AWS with 25 mappers transferring 1.6 GB to 3
reducers.
Join of three tables from ACM digital library,
X (v ,p) ./ Y (p,a) ./ Z (a,n).

California

Virginia

London

setup

O. Raz (BGU - ECE) Nap September 26, 2019 5 / 18

Empirical Motivation

Hadoop cluster on AWS with 25 mappers transferring 1.6 GB to 3
reducers.
Join of three tables from ACM digital library,
X (v ,p) ./ Y (p,a) ./ Z (a,n).

California

Virginia

London

setup

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Empirical Motivation

Now we can present the essence of the network in wide area processing

with the following example. We preform a multiway join of three tables,

using one master and three workers that transfer 1.6 GB between them.

The workers share the same compute capabilities while they are spread

geographically in different places and California’s downlink is limited to

0.5 Gbps.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Comparison between Non-Adaptive and Adaptive Partitions

In the non-adaptive case, the data is partitioned uniformly.

Data Partition

Virginia California London
0

100

200

300

400

500

600

700

M
B

Non-Adaptive

O. Raz (BGU - ECE) Nap September 26, 2019 6 / 18

Comparison between Non-Adaptive and Adaptive Partitions

In the non-adaptive case, the data is partitioned uniformly.

Data Partition

Virginia California London
0

100

200

300

400

500

600

700

M
B

Non-Adaptive

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Comparison between Non-Adaptive and
Adaptive Partitions

Originally Hadoop paritition the data equally around it’s computers

(reducers) but in this cluster we should consider the network for

partitioning the data, we call this partition non-adaptive as it doesn’t

adapt to the network.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Comparison between Non-Adaptive and Adaptive Partitions

In the non-adaptive case, the data is partitioned uniformly.

California is the bottleneck of the join computation.

Data Partition Completion Time

Virginia California London
0

100

200

300

400

500

600

700

M
B

Non-Adaptive

Reduce

Merge

Shuffle

Virginia California London
0

50

100

150

200

250

S
ec

Non-Adaptive

O. Raz (BGU - ECE) Nap September 26, 2019 6 / 18

Comparison between Non-Adaptive and Adaptive Partitions

In the non-adaptive case, the data is partitioned uniformly.

California is the bottleneck of the join computation.

Data Partition Completion Time

Virginia California London
0

100

200

300

400

500

600

700

M
B

Non-Adaptive

Reduce

Merge

Shuffle

Virginia California London
0

50

100

150

200

250

S
ec

Non-Adaptive

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Comparison between Non-Adaptive and
Adaptive Partitions

We show the average results for ten runs of Hadoop jobs. (Expalin the
axes carefully) 1.6 Gb is distributed equally which leads to California’s
slow completion time, that act as a bottleneck, and a very fast Virginia’s
time. The main difference between the three, layes on the California’s
slow downlink which can clearly be seen from the dominance of the
shuffle time in the completion time.
Reduce and merge functions are performed locally while the shuffle
involves communication, Virginia’s shuffle and completion time are 111
and 147 seconds, whereas California’s shuffle and completion time are
186 and 225 seconds.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Comparison between Non-Adaptive and Adaptive Partitions

Partitioning the data adaptively to the reduce rates results in a lower
completion time.

Data Partition Completion Time

Virginia California London
0

100

200

300

400

500

600

700

M
B

Adaptive

Reduce

Merge

Shuffle

Virginia California London
0

50

100

150

200

250

S
ec

Adaptive

O. Raz (BGU - ECE) Nap September 26, 2019 6 / 18

Comparison between Non-Adaptive and Adaptive Partitions

Partitioning the data adaptively to the reduce rates results in a lower
completion time.

Data Partition Completion Time

Virginia California London
0

100

200

300

400

500

600

700

M
B

Adaptive

Reduce

Merge

Shuffle

Virginia California London
0

50

100

150

200

250

S
ec

Adaptive2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Comparison between Non-Adaptive and
Adaptive Partitions

We show the average results for ten runs of Hadoop jobs. (Expalin the
axes carefully) 1.6 Gb is distributed equally which leads to California’s
slow completion time, that act as a bottleneck, and a very fast Virginia’s
time. The main difference between the three, layes on the California’s
slow downlink which can clearly be seen from the dominance of the
shuffle time in the completion time.
Reduce and merge functions are performed locally while the shuffle
involves communication, Virginia’s shuffle and completion time are 111
and 147 seconds, whereas California’s shuffle and completion time are
186 and 225 seconds.
Thus, we modify the partitioning of data, more wisely, to be aware of the
reducer’s downlinks.
Reduce does matter- vary from 20 to 40 seconds which is close to 14%
of the C .

Nap might distribute the keys in a non-uniform way, which results in

reducers receiving a non-equal share of the shuffled data to process, and

longer reduce function.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Comparison between Non-Adaptive and Adaptive Partitions

In the non-adaptive case California is the bottleneck of the join
computation.

In the adaptive case the completion time is reduced by 20%.

Data Partition Completion Time

Virginia California London Virginia California London
0

100

200

300

400

500

600

700

M
B

Non-Adaptive Adaptive

Reduce

Merge

Shuffle

Virginia California London Virginia California London
0

50

100

150

200

250

S
ec

Non-Adaptive Adaptive

O. Raz (BGU - ECE) Nap September 26, 2019 6 / 18

Comparison between Non-Adaptive and Adaptive Partitions

In the non-adaptive case California is the bottleneck of the join
computation.

In the adaptive case the completion time is reduced by 20%.

Data Partition Completion Time

Virginia California London Virginia California London
0

100

200

300

400

500

600

700

M
B

Non-Adaptive Adaptive

Reduce

Merge

Shuffle

Virginia California London Virginia California London
0

50

100

150

200

250

S
ec

Non-Adaptive Adaptive

2
0
1
9
-0
9
-2
5

Nap
Introduction and Motivation

Comparison between Non-Adaptive and
Adaptive Partitions

We show the average results for ten runs of Hadoop jobs. (Expalin the
axes carefully) 1.6 Gb is distributed equally which leads to California’s
slow completion time, that act as a bottleneck, and a very fast Virginia’s
time. The main difference between the three, layes on the California’s
slow downlink which can clearly be seen from the dominance of the
shuffle time in the completion time.
Reduce and merge functions are performed locally while the shuffle
involves communication, Virginia’s shuffle and completion time are 111
and 147 seconds, whereas California’s shuffle and completion time are
186 and 225 seconds.
Thus, we modify the partitioning of data, more wisely, to be aware of the
reducer’s downlinks.
Reduce does matter- vary from 20 to 40 seconds which is close to 14%
of the C .

Nap might distribute the keys in a non-uniform way, which results in

reducers receiving a non-equal share of the shuffled data to process, and

longer reduce function.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

O. Raz (BGU - ECE) Nap September 26, 2019 7 / 18

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

2
0
1
9
-0
9
-2
5

Nap
Model and Problem

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

MapReduce Multiway Join Model4

i tables to join.

m mappers and r
reducers processes for
the MapReduce join.

The reduce rates vector
f̄ = {f1, . . . , fr}.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 Rr

f1 f2 f3 fr

. . .

. . .

. . .

4DG08, AU11.
O. Raz (BGU - ECE) Nap September 26, 2019 8 / 18

MapReduce Multiway Join Model4

i tables to join.

m mappers and r
reducers processes for
the MapReduce join.

The reduce rates vector
f̄ = {f1, . . . , fr}.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 Rr

f1 f2 f3 fr

. . .

. . .

. . .

4DG08, AU11.

2
0
1
9
-0
9
-2
5

Nap
Model and Problem

MapReduce Multiway Join Modela

aDG08, AU11.

The following model is for the multiway join case study and it is based on
the MapReduce architecture. We assume that the reducers are the
bottlenecks, and in particular their reduce rates, which can be the
downlink or the processing rates. Every reducer i has a positive reduce
rate, fi , where f̄ is sorted in decreasing order (fr = 1).
Both mappers and reducers are processes and considered as workers in
the model.
The dashed lines emphasize that tables are split among mappers, where
each table can be located in one machine or split into many machines.
The cloud (and its links) represents the communication network, which is
needed for routing the data from the mappers to the reducers.
This model is an extension to Afrati and Ullman model, when all the
reducers had the same rate, ∀i , fi = 1, and in the paper it has been
presented for a more general use case.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Problem Definition

Problem

Consider a MapReduce job (multiway join), J, with r reducers, and f̄
reduce rates vector. Our goal is to partition the data according to f̄ , and
thus minimize the (job) completion time C.

O. Raz (BGU - ECE) Nap September 26, 2019 9 / 18

Problem Definition

Problem

Consider a MapReduce job (multiway join), J, with r reducers, and f̄
reduce rates vector. Our goal is to partition the data according to f̄ , and
thus minimize the (job) completion time C.

2
0
1
9
-0
9
-2
5

Nap
Model and Problem

Problem Definition

While traditionally, the optimizations has been done for the

computational power, the amount of data, the structure and load of the

network have been ignored, where C is as our primary metric of interest.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

O. Raz (BGU - ECE) Nap September 26, 2019 10 / 18

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

2
0
1
9
-0
9
-2
5

Nap
Nap

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 Rr

f1 f2 f3 fr

. . .

. . .

. . .

O. Raz (BGU - ECE) Nap September 26, 2019 11 / 18

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 Rr

f1 f2 f3 fr

. . .

. . .

. . .

2
0
1
9
-0
9
-2
5

Nap
Nap

Network Aware and Adaptive Multiway Join

The basic idea of Nap is simple, exploit the reduce rate of each reducer,
and by that minimize the completion time.
This time is defined as the completion time of the whole process, and it
is determined by the last reducer to complete the job, i.e., the straggler.
We achieve it by fooling Hadoop with the introduction of virtual reducers
as our “new” workers in the MapReduce operation, where they are
located inside the “physical” reduce processes.
Instead of partitioning the data uniformly between the reducers we
uniformly partition it between the virtual reducers, and only decides
which small chunk, amount of virtual reducers, should be placed in each
reducer. Using more virtual reducers than reducers results in dividing the
transferred data into smaller pieces, which is easier for tuning the
partition of data and reducing the completion time.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 R4

4 4 2 1

. . .

. . .

O. Raz (BGU - ECE) Nap September 26, 2019 11 / 18

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 R4

4 4 2 1

. . .

. . .

2
0
1
9
-0
9
-2
5

Nap
Nap

Network Aware and Adaptive Multiway Join

The basic idea of Nap is simple, exploit the reduce rate of each reducer,
and by that minimize the completion time.
This time is defined as the completion time of the whole process, and it
is determined by the last reducer to complete the job, i.e., the straggler.
We achieve it by fooling Hadoop with the introduction of virtual reducers
as our “new” workers in the MapReduce operation, where they are
located inside the “physical” reduce processes.
Instead of partitioning the data uniformly between the reducers we
uniformly partition it between the virtual reducers, and only decides
which small chunk, amount of virtual reducers, should be placed in each
reducer. Using more virtual reducers than reducers results in dividing the
transferred data into smaller pieces, which is easier for tuning the
partition of data and reducing the completion time.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 R4

4 4 2 1

. . .

. . .

O. Raz (BGU - ECE) Nap September 26, 2019 11 / 18

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time.

T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 R4

4 4 2 1

. . .

. . .

2
0
1
9
-0
9
-2
5

Nap
Nap

Network Aware and Adaptive Multiway Join

The basic idea of Nap is simple, exploit the reduce rate of each reducer,
and by that minimize the completion time.
This time is defined as the completion time of the whole process, and it
is determined by the last reducer to complete the job, i.e., the straggler.
We achieve it by fooling Hadoop with the introduction of virtual reducers
as our “new” workers in the MapReduce operation, where they are
located inside the “physical” reduce processes.
Instead of partitioning the data uniformly between the reducers we
uniformly partition it between the virtual reducers, and only decides
which small chunk, amount of virtual reducers, should be placed in each
reducer. Using more virtual reducers than reducers results in dividing the
transferred data into smaller pieces, which is easier for tuning the
partition of data and reducing the completion time.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time. T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 R4

4 4 2 1

. . .

. . .

O. Raz (BGU - ECE) Nap September 26, 2019 11 / 18

Network Aware and Adaptive Multiway Join

Smartly assign virtual
reducers (chunks of
data) on the reducers.

Reducer i hosts vi virtual
reducers.

B - total communication
cost.

W - sum of the reduce
rates.

C - straggler’s finish
time. T1 T2 T3 Ti

M1 M2 M3 Mm

R1 R2 R3 R4

4 4 2 1

. . .

. . .

2
0
1
9
-0
9
-2
5

Nap
Nap

Network Aware and Adaptive Multiway Join

The basic idea of Nap is simple, exploit the reduce rate of each reducer,
and by that minimize the completion time.
This time is defined as the completion time of the whole process, and it
is determined by the last reducer to complete the job, i.e., the straggler.
We achieve it by fooling Hadoop with the introduction of virtual reducers
as our “new” workers in the MapReduce operation, where they are
located inside the “physical” reduce processes.
Instead of partitioning the data uniformly between the reducers we
uniformly partition it between the virtual reducers, and only decides
which small chunk, amount of virtual reducers, should be placed in each
reducer. Using more virtual reducers than reducers results in dividing the
transferred data into smaller pieces, which is easier for tuning the
partition of data and reducing the completion time.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

O. Raz (BGU - ECE) Nap September 26, 2019 12 / 18

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

2
0
1
9
-0
9
-2
5

Nap
Nap

What is the Optimal Partition?

Given this model what is the best thing we should expect for? A uniform

finish time and we show in the paper that when we use all the resources,

all the r reducers, then the completion time is lower bounded. Sometimes

we don’t need to use all the reducers because they can not help with the

processing, and we prove it in the paper as well. Because the multiway

join method we know includes replication of the tables, thus the total

communication cost is a function of the virtual reducers and using less

virtual reducers will generate less replication, therefore it can be

beneficial.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?

R1 R2

x 1

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

O. Raz (BGU - ECE) Nap September 26, 2019 12 / 18

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?

R1 R2

x 1

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.2

0
1
9
-0
9
-2
5

Nap
Nap

What is the Optimal Partition?

Given this model what is the best thing we should expect for? A uniform

finish time and we show in the paper that when we use all the resources,

all the r reducers, then the completion time is lower bounded. Sometimes

we don’t need to use all the reducers because they can not help with the

processing, and we prove it in the paper as well. Because the multiway

join method we know includes replication of the tables, thus the total

communication cost is a function of the virtual reducers and using less

virtual reducers will generate less replication, therefore it can be

beneficial.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?

R1 R2

100 1

No, due to a slow reducer.

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

O. Raz (BGU - ECE) Nap September 26, 2019 12 / 18

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?

R1 R2

100 1

No, due to a slow reducer.

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

2
0
1
9
-0
9
-2
5

Nap
Nap

What is the Optimal Partition?

Given this model what is the best thing we should expect for? A uniform

finish time and we show in the paper that when we use all the resources,

all the r reducers, then the completion time is lower bounded. Sometimes

we don’t need to use all the reducers because they can not help with the

processing, and we prove it in the paper as well. Because the multiway

join method we know includes replication of the tables, thus the total

communication cost is a function of the virtual reducers and using less

virtual reducers will generate less replication, therefore it can be

beneficial.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?
No, due to a slow reducer.

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

Integer Partition of n = 7 for (4,2,1)→

O. Raz (BGU - ECE) Nap September 26, 2019 12 / 18

What is the Optimal Partition?

The completion time with r reducers is lower bounded by O(B
W).

Do we need to use all the r reducers or not?
No, due to a slow reducer.

Finding the optimal partition of virtual reducers that minimize the
completion time includes a connection to Integer Partition and Young
Lattice.

Integer Partition of n = 7 for (4,2,1)→

2
0
1
9
-0
9
-2
5

Nap
Nap

What is the Optimal Partition?

Finding the optimal partition is not trivial but using Integer Partition and

Young Lattice we can find a solution. We offer an alternative that is

based on greedy searching for the optimal partition.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Young Lattice and Optimal Walk

Optimal Path Example

Consider a job J of multiway join using three reducers, r = 3, with a
downlink vector f̄ = {4,2,1}.

The edges emphasize the
insertion of one box (virtual
reducer).
The optimal walk is highlighted
in red.
The order of boxes on each
diagram corresponds to the
order of the reducers.

(v1,v2,v3)

Young Lattice

(2, 2, 1)

(2, 1, 1) (2, 2, 0)

v=1

v=3

v=6

v=5

v=4

v=2

v=7

O. Raz (BGU - ECE) Nap September 26, 2019 13 / 18

Young Lattice and Optimal Walk

Optimal Path Example

Consider a job J of multiway join using three reducers, r = 3, with a
downlink vector f̄ = {4,2,1}.

The edges emphasize the
insertion of one box (virtual
reducer).
The optimal walk is highlighted
in red.
The order of boxes on each
diagram corresponds to the
order of the reducers.

(v1,v2,v3)

Young Lattice

(2, 2, 1)

(2, 1, 1) (2, 2, 0)

v=1

v=3

v=6

v=5

v=4

v=2

v=7

2
0
1
9
-0
9
-2
5

Nap
Nap

Young Lattice and Optimal Walk

Each diagram (i.e., virtual reducers assignment), can be translated to a
completion time, and on every level n there are all the possible partitions
of integer n. So in each level, which denotes the given number of virtual
reducers, we color in red the best assignment, i.e., the assignments with
the minimal completion time based on the rates vector. Note that several
assignments can achieve the minimum. Accordingly, edges that are
directed into such optimal assignments are also colored in red.
*For instance, the leftmost diagram on level four (integer partitions of
n = 4) has two virtual reducers on R1, one virtual reducer on R2, and one
virtual reducer on R3, (2,1,1), and to the right on this diagram there is a
partition of four virtual reducers, two on R1 and two on R2, (2,2,0).

These walks are the basis for a greedy search, for an optimal assignment,

when we greedily insert virtual reducer based on f̄ .

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Young Lattice and Optimal Walk

Optimal Path Example

Consider a job J of multiway join using three reducers, r = 3, with a
downlink vector f̄ = {4,2,1}.

Optimal Path

v=1

v=3

v=6

v=5

v=4

v=2

v=7

Young Lattice

(2, 2, 1)

(2, 1, 1) (2, 2, 0)

v=1

v=3

v=6

v=5

v=4

v=2

v=7

O. Raz (BGU - ECE) Nap September 26, 2019 13 / 18

Young Lattice and Optimal Walk

Optimal Path Example

Consider a job J of multiway join using three reducers, r = 3, with a
downlink vector f̄ = {4,2,1}.

Optimal Path

v=1

v=3

v=6

v=5

v=4

v=2

v=7

Young Lattice

(2, 2, 1)

(2, 1, 1) (2, 2, 0)

v=1

v=3

v=6

v=5

v=4

v=2

v=7

2
0
1
9
-0
9
-2
5

Nap
Nap

Young Lattice and Optimal Walk

One significant diagram from the figure is the leftmost diagram on level

five, (2,2,1), which doesn’t have an ancestor with minimal completion

time on level four. It is not a minimal partition, because for partition of

integer five it has two stragglers and there other optimal partitions (on

the same level) with only one straggler.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Endless Loop?

Iteratively “walking” on the optimal path would result in optimal
partition, but when should we stop?

We can stop after W − r comparisons, and eventually the running
time would be O(W · log r).

O. Raz (BGU - ECE) Nap September 26, 2019 14 / 18

Endless Loop?

Iteratively “walking” on the optimal path would result in optimal
partition, but when should we stop?

We can stop after W − r comparisons, and eventually the running
time would be O(W · log r).

2
0
1
9
-0
9
-2
5

Nap
Nap

Endless Loop?

Finding the optimal partition for partition of one is simple by brute force.

We can add optimally on each step, but when should stop?

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Endless Loop?

Iteratively “walking” on the optimal path would result in optimal
partition, but when should we stop?

We can stop after W − r comparisons, and eventually the running
time would be O(W · log r).

O. Raz (BGU - ECE) Nap September 26, 2019 14 / 18

Endless Loop?

Iteratively “walking” on the optimal path would result in optimal
partition, but when should we stop?

We can stop after W − r comparisons, and eventually the running
time would be O(W · log r).

2
0
1
9
-0
9
-2
5

Nap
Nap

Endless Loop?

Greedily adding one virtual reducer by another until we reach W when

the adding compares r options for the insertion of one virtual reducer.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

O. Raz (BGU - ECE) Nap September 26, 2019 15 / 18

Outline

1 Introduction and Motivation

2 Model and Problem

3 Nap

4 Proof-of-Concept and Conclusion

2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

O. Raz (BGU - ECE) Nap September 26, 2019 16 / 18

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

Implementation

The idea behind it is to decrease the completion time, straggler’s finish

time, by sending less data to the straggler and more data to some other

reducers but how can we do it when we don’t know where they are?

(without updating the RM code for different scheduling of the containers

in the cluster).

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

Modify Hadoop.

Modify Partitioner Class.

Modify YARN
Parameters.

YARNFlow getPartition Extra Results

Setup Drawbacks

O. Raz (BGU - ECE) Nap September 26, 2019 16 / 18

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

Modify Hadoop.

Modify Partitioner Class.

Modify YARN
Parameters.

YARNFlow getPartition Extra Results

Setup Drawbacks2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

Implementation

• Write to HDFS the containers location in the heartbeat function.

• Override the getPartition function.

• Enables using the new Partitioner Class and uniformly distribute the
mappers.

Upon Job execution, the RM decides where to allocate each container
inside the workers.
This scheduling process is oblivious to the end user and for updating this
process I had to understand the core of scheduling (which is not easy and
not well documented in the web) and then I had to do the following three
goals.
We have changed the starting point of the reduce containers and the
shuffle phase to the same time of allocating mapper containers, therefore
all the containers must be allocated in parallel and it enables our code
(Partitioner Class) to distribute the data according to the computer’s
downlink.
Worth mentioning that also the mappers location is important and I had
to equally distribute the mappers over the cluster.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

Modify Hadoop.

Modify Partitioner Class.

Modify YARN
Parameters.

YARNFlow getPartition Extra Results

Setup Drawbacks

Virginia California London Straggler

Non-Adaptive
Virginia California London Straggler

Adaptive

100

150

200

250

300

350

S
ec

O. Raz (BGU - ECE) Nap September 26, 2019 16 / 18

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

Modify Hadoop.

Modify Partitioner Class.

Modify YARN
Parameters.

YARNFlow getPartition Extra Results

Setup Drawbacks

Virginia California London Straggler

Non-Adaptive
Virginia California London Straggler

Adaptive

100

150

200

250

300

350

S
ec

2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

Implementation

The boxplot displays the mean value as a black strip, the median value as
a white strip, and two other strips for the boundaries of each box. In
fact, the slowest job in the adaptive scenario (10, 211) is roughly as fast
as the fastest non-adaptive job (1, 205).

Partit no-
adapt

adapt

Mean 236 192
Variance 1462 143
Median 224 191
Max 331 221
Min 205 174

*There is a minor difference of time between the results, due to the time

from submitting the job to allocating the reduce containers. Although

the reducers are allocated right after the mappers, there is no slow start

for the shuffle nor allocating the reducers, the elapsed time of a straggler

from all the reducers will not include a few seconds before the reducers

start, e.g., the scheduling time of map containers or even AM container.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

For more see my Nap repository on Github,
https://github.com/razo7/Nap.

O. Raz (BGU - ECE) Nap September 26, 2019 16 / 18

Implementation

Problem

How to partition the data, map output, according to the reducer’s
downlink while we don’t know where are the containers?

For more see my Nap repository on Github,
https://github.com/razo7/Nap.

2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

Implementation

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Conclusion and Future Work

Conclusion

This work presents Nap, a simple network-aware approach to improve
distributed data processing performance in heterogeneous environments by
adapting the data partition, and hence minimizing the completion time.

Future Work:

Explore scenarios with more complex bottlenecks.
Perform a placement optimization of the containers.
Study other join operators and even jointly optimize the network with
the queries plan.

O. Raz (BGU - ECE) Nap September 26, 2019 17 / 18

Conclusion and Future Work

Conclusion

This work presents Nap, a simple network-aware approach to improve
distributed data processing performance in heterogeneous environments by
adapting the data partition, and hence minimizing the completion time.

Future Work:

Explore scenarios with more complex bottlenecks.
Perform a placement optimization of the containers.
Study other join operators and even jointly optimize the network with
the queries plan.

2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

Conclusion and Future Work

This kind of work can be related mainly to Hadoop’s shortcomings due to
its lack of network consideration.

• Consider a different implementation of multiway join and try to optimize the
shuffle phase also for Apache Spark.

• Try to find a suggestion for the number of reducers, r .

We presented a formal performance analysis of our approach and reported
on a proof-of-concept implementation.

•

1. Consider a different implementation of multiway join and try to
optimize the shuffle phase also for Apache Spark.
2. Given our work with AD∗, try to find a suggestion for the number of
reducers, r .

We believe that our work opens several interesting avenues for future

research in addition to the remarks I had mention before. We presented a

formal performance analysis of our approach and reported on a

proof-of-concept implementation.

Introduction and Motivation Model and Problem Nap Implementation and Conclusion

Thank you

O. Raz (BGU - ECE) Nap September 26, 2019 18 / 18

Thank you

2
0
1
9
-0
9
-2
5

Nap
Proof-of-Concept and Conclusion

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results

O. Raz (BGU - ECE) Nap September 26, 2019 1 / 23

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results2
0
1
9
-0
9
-2
5

Nap
MapReduce

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

MapReduce Paradigm7

State-of-the-art programming model for processing large data sets
using parallelism and decentralization concepts.

Master-Slave architecture.

The model consists of four main phases: map, partition, shuffle, and
reduce.

Hadoop- software frameworks that use this paradigm with other tools
such as HDFS and YARN.

7DG08, white15.
O. Raz (BGU - ECE) Nap September 26, 2019 2 / 23

MapReduce Paradigm7

State-of-the-art programming model for processing large data sets
using parallelism and decentralization concepts.

Master-Slave architecture.

The model consists of four main phases: map, partition, shuffle, and
reduce.

Hadoop- software frameworks that use this paradigm with other tools
such as HDFS and YARN.

7DG08, white15.

2
0
1
9
-0
9
-2
5

Nap
MapReduce

MapReduce Paradigma

aDG08, white15.

• This paradigm is highly useful and efficient tool for large-scale fault tolerant
data analysis with crash recovery mechanism. This model has a Master-Slave
architecture with one master that manages all the slaves/workers.

• All the phases are performed locally except the shuffle, when there is a
communication between mappers and reducers and this is the most
consuming phase and can be a bottleneck for the whole execution.

• Apache Hadoop (batch processing with massive amounts of data) and
Apache Spark (overcome latency and the inability to stream data by
exploiting the memory) are software frameworks that use this paradigm.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Wordcount Example

*Partition- Hash(k2)%r = reducer identifier.
Model

O. Raz (BGU - ECE) Nap September 26, 2019 3 / 23

Wordcount Example

*Partition- Hash(k2)%r = reducer identifier.
Model

2
0
1
9
-0
9
-2
5

Nap
MapReduce

Wordcount Example

A well-known example of word count in the corpus.

• A map phase- Each machine takes a split of the corpus, and for each word, a
key-value tuple is created (k2,v2). The key is the actual word from the
corpus, and the value is one as the number of appearances for that word so
far(Combiner).

• A shuffle phase- Tuples are sent from the mappers to the reducers,
according to the Partitioner, which uses the tuples’ key to determine the
destination of each mapper’s output. The shuffle is performed in a way that
does not account for the communication; thus it cannot balance the load on
each reducer, which results in longer C .

• A reduce phase- The reducers collect all the tuples and perform the reduce
function, which aggregates all the tuples by their key. Then the reducer
saves the result locally and in the distributed file system.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results

O. Raz (BGU - ECE) Nap September 26, 2019 4 / 23

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results2
0
1
9
-0
9
-2
5

Nap
Related Work

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Related Work

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

O. Raz (BGU - ECE) Nap September 26, 2019 5 / 23

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

2
0
1
9
-0
9
-2
5

Nap
Related Work

Related Work
Past Work

Our idea and contribution covers many topics that has been studies
intensively over the years for the way of minimizing the C .
Worth mentioning is the work of CliqueSquare on flattening the operator
tree to improve response time for RDF (A query language for databases)
queries. When RDF tends to involve in many joins.

Resource Description Framework (RDF)- flexible data model introduced

for the Semantic Web and his database can be seen as a directed labelled

graph. RDF queries tend to involve more joins than a relational query

computing the same result.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Related Work

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

O. Raz (BGU - ECE) Nap September 26, 2019 5 / 23

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

2
0
1
9
-0
9
-2
5

Nap
Related Work

Related Work
Past Work

The two Microsoft works (WANalytics and Low Latency Analytics of
Geo-distributed Data in the Wide Area) that captures the importance of
the network in Geo-distributed cluster with a placement optimization in
Spark.
The model of the designers includes a proxy layer (with Apache Hive)
and cache for the optimization in each DC. The analyst sends an
analytical queries (SQL) to a WANalytics command layer which creates a
distributed execution to the partitions (the partition includes some DCs)
then the proxy layer (in each DC) manages analytics stack, cache and
support data transfer optimally

Iridium is a system for low latency geo-distributed analytic and it uses a

greedy heuristic for a data and task placement of queries. In addition, it

is implemented on Spark framework with HDFS, for task placement they

override the default Spark’s scheduler and the experiment have been used

8 EC2 in different regions around the globe for geo-distribution.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Related Work

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

O. Raz (BGU - ECE) Nap September 26, 2019 5 / 23

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

2
0
1
9
-0
9
-2
5

Nap
Related Work

Related Work
Past Work

The (Network-aware resource management for scalable data analytics
frameworks) article that focus on the importance of sharing cluster
resources between multiple workloads using a network-aware container
placement approach.

The current framework are based solely on compute resource profiles for

their work without taking information on the network topology and input

data locations into account (also try to load balancing by sharing the

containers with many nodes). The solution uses a weighted cost function

which consider data locality, container closeness and balance over

avaliable resources.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Related Work

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

O. Raz (BGU - ECE) Nap September 26, 2019 5 / 23

Past Work

CliqueSquare: Flat Plans for Massively Parallel RDF Queries
[GKMQZ15].

WANalytics: Analytics for a Geo-Distributed Data-Intensive World
[VCGKV15]
Low Latency Analytics of Geo-distributed Data in the Wide Area
[PABKABS15].

Network-aware resource management for scalable data analytics
frameworks [RTK15].

HaLoop: efficient iterative data processing on large clusters
[BBEH10].

Riffle: optimized shuffle service for large-scale data analytics
[ZCSCF18].

Handling data skew in join algorithms using MapReduce [MSYL16].

2
0
1
9
-0
9
-2
5

Nap
Related Work

Related Work
Past Work

Next there are works on Hadoop’s network problem more specifically the
shuffle phase, with I/O overhead or data skew and even skew in join
algorithms, when the data is not load balanced.
For instance, Haloop that initiates the work for optimizing current
frameworks to iterative jobs, it decrease the running time and shuffled
data regarding a workflow of iterative jobs. Haloop jointly reduces the
waste on time (from I/O, CPU, and network bandwidth) and detects a
termination condition of loops.

The article suggests Multi-dimensional range partitioning (MDRP) which

combines the ideas of the last methods and decrease the skew. It samples

the data (make it a workflow) and don’t repartition the data cells without

output (can not make a join).

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Related Work

More Related Work

SmartJoin: A network-aware multiway join for MapReduce [SHCY14].

Optimizing multiway joins in map-reduce environment [AU12].

O. Raz (BGU - ECE) Nap September 26, 2019 6 / 23

More Related Work

SmartJoin: A network-aware multiway join for MapReduce [SHCY14].

Optimizing multiway joins in map-reduce environment [AU12].

2
0
1
9
-0
9
-2
5

Nap
Related Work

Related Work
More Related Work

But there are two articles that are much more closer to our work (AU and
SmartJoin).
SmartJoin, also, present a network-aware multiway join algorithm for
map-reduce but for a different multiway join. Their join joins two large
tables using one joint attribute in a reduce side join fashion. And the
network aware reference relates to a late join between many small tables
(on the reduce function) using hash join between the reducers. SmartJoin
dynamically redistributes tuples directly between reducers, while we
optimize the way of partitioning the data in the shuffle phase (where there
is a replication problem) and we join tables with two joint attributes.

Moreover, we relate to the network by the downlinks of each worker,

where SmartJoin relates to the structure of the cluster, e.g., the switches’

bandwidth between nodes and racks.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Related Work

More Related Work

SmartJoin: A network-aware multiway join for MapReduce [SHCY14].

Optimizing multiway joins in map-reduce environment [AU12].

O. Raz (BGU - ECE) Nap September 26, 2019 6 / 23

More Related Work

SmartJoin: A network-aware multiway join for MapReduce [SHCY14].

Optimizing multiway joins in map-reduce environment [AU12].

2
0
1
9
-0
9
-2
5

Nap
Related Work

Related Work
More Related Work

Afrati and Ullman’s scheme, which we show next, is oblivious to the
downlinks vector (i.e., assuming all downlinks are the same); thus we
consider this as a non-adaptive scheme. Also, we denote the scheme by
NO.

Afrati and Ullman present a model for computing multway joins in

map-reduce, accounting for communication costs by changing the data

partition. However, their approach is non-adaptive as it assumes that all

link capacities are equal, we suggest to remove this restriction and

generalize the model. Their work inspired us for the multiway join

analysis and implementation as we will see on the next section.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results

O. Raz (BGU - ECE) Nap September 26, 2019 7 / 23

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Non-Adaptive Multiway Join (NO)

Hadoop based reduce side join.

Repartition join algorithm, map output→{key ,value}.
Set s̄ of s share variables s̄ = {s1,s2, . . . ,ss}, and s hash functions,
one for each of the joint attributes.

Each key/chunk would represent one reducer when key = HNO(t, s̄)
and value = t.

H-NO Function

O. Raz (BGU - ECE) Nap September 26, 2019 8 / 23

Non-Adaptive Multiway Join (NO)

Hadoop based reduce side join.

Repartition join algorithm, map output→{key ,value}.
Set s̄ of s share variables s̄ = {s1,s2, . . . ,ss}, and s hash functions,
one for each of the joint attributes.

Each key/chunk would represent one reducer when key = HNO(t, s̄)
and value = t.

H-NO Function

2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Non-Adaptive Multiway Join (NO)

The scheme (NO) performs a cascade join in the reducers, but for

making a proper join each reducer must have all the rows with the

matching joint attributes. Thus, the map output pair of {key ,value}, for

each row in the tables, will have a key with s values, where s is the

number of joint attributes in the join, and a value as the row itself. For

making the key they use HNO(t, s̄) which is a set of s hash functions.

There is share variables vector with one variable for each joint attribute,

when each variable defines a degree of replication for the corresponding

joint attribute (number of buckets that the attribute is hashed to).

Therefore, the rows are duplicated according to size of share variable and

it’s related missing joint attribute, as we can see on the next slide.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Metrics

Definition

Total communication cost (B) is the amount of data that is transferred
from the mappers to the reducers [Bits].

Definition

completion time (C) is the elapsed time from starting the calculation until
the end of the calculation, from submitting the mapreduce job until it
finishes [Sec].

O. Raz (BGU - ECE) Nap September 26, 2019 9 / 23

Metrics

Definition

Total communication cost (B) is the amount of data that is transferred
from the mappers to the reducers [Bits].

Definition

completion time (C) is the elapsed time from starting the calculation until
the end of the calculation, from submitting the mapreduce job until it
finishes [Sec].

2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Metrics

One can assume that the computation time in the computers (local
computation) is negligible in comparison to the communication time
(transfer of the data), due to the rapid improvement in computing
capabilities. There is a trade off between these two metrics for making
the multiway join:

1. Minimum B at cost of long C , perform a local cascade join, don’t distribute
the work and maybe some concurrency (a queue might build up when it
depends only on the downlink of a single reducer).

2. Maximum B with short C , replicate the tables to all the reducers with a cost
of sending vast amount of data which is unutilized. High concurrency
between computers (and not only processes) but at some point it doesn’t
decrease the C any more and only produces a large output from each
reducer .

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Minimization of the Completion Time-1

Minimize B → Minimize C

Minimize: B = x · s1 + y · s2 + z · s3.
with the following constraints:

Constraint 1 : s1 · s2 · s3 = r .

Constraint 2 : s1,s2,s3 ∈ N+.

Lagrangian Equations

O. Raz (BGU - ECE) Nap September 26, 2019 10 / 23

Minimization of the Completion Time-1

Minimize B → Minimize C

Minimize: B = x · s1 + y · s2 + z · s3.
with the following constraints:

Constraint 1 : s1 · s2 · s3 = r .

Constraint 2 : s1,s2,s3 ∈ N+.

Lagrangian Equations2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Minimization of the Completion Time-1

This leads to Afrati and Ullman approach for minimization of completion
time by first minimizing the total communication cost.

This is analysis example of the multiway join problem for three tables

when each table is missing only one joint attribute.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Minimization of the Completion Time-1

Minimize B → Minimize C

Minimize: B = x · s1 + y · s2 + z · s3.
with the following constraints:

Constraint 1 : s1 · s2 · s3 = r .

Constraint 2 : s1,s2,s3 ∈ N+.

Lagrangian Equations

O. Raz (BGU - ECE) Nap September 26, 2019 10 / 23

Minimization of the Completion Time-1

Minimize B → Minimize C

Minimize: B = x · s1 + y · s2 + z · s3.
with the following constraints:

Constraint 1 : s1 · s2 · s3 = r .

Constraint 2 : s1,s2,s3 ∈ N+.

Lagrangian Equations2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Minimization of the Completion Time-1

This leads to Afrati and Ullman approach for minimization of completion
time by first minimizing the total communication cost.

This is analysis example of the multiway join problem for three tables

when each table is missing only one joint attribute.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Minimization of the Completion Time-1

Minimize B → Minimize C

Minimize: B = x · s1 + y · s2 + z · s3.
with the following constraints:

Constraint 1 : s1 · s2 · s3 = r .

Constraint 2 : s1,s2,s3 ∈ N+.

Lagrangian Equations

O. Raz (BGU - ECE) Nap September 26, 2019 10 / 23

Minimization of the Completion Time-1

Minimize B → Minimize C

Minimize: B = x · s1 + y · s2 + z · s3.
with the following constraints:

Constraint 1 : s1 · s2 · s3 = r .

Constraint 2 : s1,s2,s3 ∈ N+.

Lagrangian Equations2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Minimization of the Completion Time-1

Also, it uses the share variables for defining the size of replication for
each table, based on the missing joint attribute.
Note that these two constraints connect the number of tables replications
to the number of reducers, where using more reducers results in a larger
replication of tables and larger total communication cost.

Afrati and Ullman use Lagrange Multiplier(a method in mathematical

optimization), λ , for finding local minima of the function, subject to

equality constraints.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Minimization of the Completion Time-2

BNO = 3 3
√
x ·y · z · r = Bc · r

1
3 = O(r

1
3) (1)

CNO =
BNO

r
= O(

r
1
3

r
) = O(r−

2
3) (2)

When we increase r , then we can achieve lower completion time at a cost
of increasing the replication, BNO.
Min C plot

O. Raz (BGU - ECE) Nap September 26, 2019 11 / 23

Minimization of the Completion Time-2

BNO = 3 3
√
x ·y · z · r = Bc · r

1
3 = O(r

1
3) (1)

CNO =
BNO

r
= O(

r
1
3

r
) = O(r−

2
3) (2)

When we increase r , then we can achieve lower completion time at a cost
of increasing the replication, BNO.
Min C plot

2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Minimization of the Completion Time-2

Eventually they find that there is linear proportion between the total
communication cost and the number of reducers while there is also a
communication constant that captures the size of tables, Bc = 3 3

√
xyz .

BNO increases with the number of reducers.

I would like to mention that this nice results might be a product of

rounding and approximations have to be done for credibility of

constraints.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Minimization of the Completion Time-2

BNO = 3 3
√
x ·y · z · r = Bc · r

1
3 = O(r

1
3) (1)

CNO =
BNO

r
= O(

r
1
3

r
) = O(r−

2
3) (2)

When we increase r , then we can achieve lower completion time at a cost
of increasing the replication, BNO.
Min C plot

O. Raz (BGU - ECE) Nap September 26, 2019 11 / 23

Minimization of the Completion Time-2

BNO = 3 3
√
x ·y · z · r = Bc · r

1
3 = O(r

1
3) (1)

CNO =
BNO

r
= O(

r
1
3

r
) = O(r−

2
3) (2)

When we increase r , then we can achieve lower completion time at a cost
of increasing the replication, BNO.
Min C plot

2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Minimization of the Completion Time-2

Then, they assume having a hash functions, that partition the records
uniformly, when using the default, uniform, Partitioner, then the minimal
C by NO is ...

Each reducer will receive the same amount of data, an equal sharing, and

since they are all alike, they will finish together at the same time. There

is a trade off between the two metrics.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Minimal Completion Time Comparison between NO and AD

◆

◆◆

◆
◆
◆◆

◆◆◆

◆◆◆◆◆◆◆

◆◆◆
◆◆◆◆

◆◆◆

◆◆◆◆◆◆◆◆◆
◆◆◆

◆◆◆◆
◆◆◆

◆◆◆◆◆◆◆
◆◆◆

◆◆◆◆

NO[9] AD[W] ◆ AD[v]

Wr W-r
0 10 20 30 40 50 60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

number of virtual reducer v

se
c

Minima

Bc

O. Raz (BGU - ECE) Nap September 26, 2019 12 / 23

Minimal Completion Time Comparison between NO and AD

◆

◆◆

◆
◆
◆◆

◆◆◆

◆◆◆◆◆◆◆

◆◆◆
◆◆◆◆

◆◆◆

◆◆◆◆◆◆◆◆◆
◆◆◆

◆◆◆◆
◆◆◆

◆◆◆◆◆◆◆
◆◆◆

◆◆◆◆

NO[9] AD[W] ◆ AD[v]

Wr W-r
0 10 20 30 40 50 60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

number of virtual reducer v

se
c

Minima

Bc

2
0
1
9
-0
9
-2
5

Nap
Non-Adaptive Multiway Join (NO)

Minimal Completion Time Comparison
between NO and AD

For further discussion and highlighting the theoretical results of the next
sections, we consider again the ACM multiway join example in the
Introduction with f̄ vector as in the last Figure and for the sake of
simplicity Bc = 1. The sum of downlinks, number of reducers, and their
difference is highlighted with purple on the X axis and three vertical
lines. There are two arrows towards the local and global minima of
AD[v]’s C , at v = W = 36, and r = 2. Each point in the figure shows the
minimal completion time out of all the λ partitions of v .

Blue line - when we partition equally the data between nine reducers,

whereas the green line is the completion time for AD[W], which utilizes

all the downlinks of the nine reducers. AD[v] outperforms NO[9], because

it can partition the data and utilizes the network better. v = 26.AD∗ is

achieved by selecting only two virtual reducers on R1 and R2, which leads

to the lowest C , and identical finish time between them. Overall,

CAD[2] outperforms CAD[W] by 50% and CNO[9] by 75%.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results

O. Raz (BGU - ECE) Nap September 26, 2019 13 / 23

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results2
0
1
9
-0
9
-2
5

Nap
Adaptive Multiway Join Idea

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

HNO(t, s̄ ′) - Mapping Rows to Virtual Reducers

𝑘02𝑘01𝑘00

𝑘12𝑘11𝑘10

𝑘22𝑘21𝑘20

0 1 2

0

1

2

ℎ1 𝑝 =

ℎ2 𝑎 =

ℎ2 𝑍. 𝑎 = 0

ℎ1 𝑋. 𝑝 = 2

ℎ1 𝑌. 𝑝 = 0 𝑎𝑛𝑑 ℎ2 𝑌. 𝑎 = 2

0 1 2 3 4 5

0

1

2

3

4

5

𝑘00 𝑘01

𝑘11

𝑘10

𝑘02

𝑘12

𝑘20

𝑘21

𝑘22

ℎ′2 𝑎 =
ℎ′2 𝑍. 𝑎 = 2

ℎ′1 𝑋. 𝑝 = 4

ℎ′1 𝑝 =

ℎ′1 𝑌. 𝑝 = 0 𝑎𝑛𝑑 ℎ′2 𝑌. 𝑎 = 4

Join X (v ,p) ./ Y (p,a) ./ Z (a,n) H-au .
f̄ = (8,8,6,4,4,2,2,1,1) downlink vector.
s̄ = {3,3}, r = 9 reducers.
s̄ ′ = {6,6}, v = W = 36 virtual reducers/keys.

O. Raz (BGU - ECE) Nap September 26, 2019 14 / 23

HNO(t, s̄ ′) - Mapping Rows to Virtual Reducers

𝑘02𝑘01𝑘00

𝑘12𝑘11𝑘10

𝑘22𝑘21𝑘20

0 1 2

0

1

2

ℎ1 𝑝 =

ℎ2 𝑎 =

ℎ2 𝑍. 𝑎 = 0

ℎ1 𝑋. 𝑝 = 2

ℎ1 𝑌. 𝑝 = 0 𝑎𝑛𝑑 ℎ2 𝑌. 𝑎 = 2

0 1 2 3 4 5

0

1

2

3

4

5

𝑘00 𝑘01

𝑘11

𝑘10

𝑘02

𝑘12

𝑘20

𝑘21

𝑘22

ℎ′2 𝑎 =
ℎ′2 𝑍. 𝑎 = 2

ℎ′1 𝑋. 𝑝 = 4

ℎ′1 𝑝 =

ℎ′1 𝑌. 𝑝 = 0 𝑎𝑛𝑑 ℎ′2 𝑌. 𝑎 = 4

Join X (v ,p) ./ Y (p,a) ./ Z (a,n) H-au .
f̄ = (8,8,6,4,4,2,2,1,1) downlink vector.
s̄ = {3,3}, r = 9 reducers.
s̄ ′ = {6,6}, v = W = 36 virtual reducers/keys.

2
0
1
9
-0
9
-2
5

Nap
Adaptive Multiway Join Idea

HNO(t, s̄ ′) - Mapping Rows to Virtual Reducers

Now we return to the example we had for NO scheme, when we implicitly
assumed that the downlink rates are all equal and one, and when each
reducer is identified with a single key.
On the right is AD scheme, that assumes that the downlinks are known
to be f̄ = (8,8,6,4,4,2,2,1) for r = 9 reducers, thus it uses v = W = 36
virtual reducers.
Now, each cell on the matrix represents one virtual reducer and there are
two different hash functions h′1(p),h′2(a), and two different share
variables s ′1 = 6,s ′2 = 6. The map output keys would represent the virtual
reducers and afterwards the partitioner would use new function for
partitioning the keys/virtual reducers according to the reducers’
downlinks. This way R1, which has a key (0,0) as before, now has 8
virtual reducers, while R9, which has key (2,2) as before, will receive only
1 virtual reducer since its downlink is much slower.

Afterwards the basic join method in reducers stays the same as in Afrati

and Ullman and every two rows that need to join will end at a unique

virtual reducer and in turn at a unique reducer.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

AD Scheme- Algorithm

λ = {v1,v2,v3, · · · ,vr} is a partition of the v virtual reducers among the r
reducers.

Algorithm 1 AD(Q,R,λ)

1: Compute vectors s̄ ′, s̄ share variables using v,r (|R|= r) and Q.
2: Create MapNO(s̄ ′).

a: Create table with rows of {HNO(t, s̄ ′), t} per each record t ∈ Ti

3: Create PartitionAD(s̄,λ).
4: Create ReduceNO(Q).
5: MapReduce(MapNO(s̄ ′), PartitionAD(s̄,λ), ReduceNO(Q), R).

AD-Opt NO Scheme AD

O. Raz (BGU - ECE) Nap September 26, 2019 15 / 23

AD Scheme- Algorithm

λ = {v1,v2,v3, · · · ,vr} is a partition of the v virtual reducers among the r
reducers.

Algorithm 1 AD(Q,R,λ)

1: Compute vectors s̄ ′, s̄ share variables using v,r (|R|= r) and Q.
2: Create MapNO(s̄ ′).

a: Create table with rows of {HNO(t, s̄ ′), t} per each record t ∈ Ti

3: Create PartitionAD(s̄,λ).
4: Create ReduceNO(Q).
5: MapReduce(MapNO(s̄ ′), PartitionAD(s̄,λ), ReduceNO(Q), R).

AD-Opt NO Scheme AD

2
0
1
9
-0
9
-2
5

Nap
Adaptive Multiway Join Idea

AD Scheme- Algorithm

The AD(Q,R,λ) scheme extends NO scheme with a change to the
partition function, PartitionAD(s̄,λ), and the addition of virtual reducers’
input partition.
The map function creates a {key ,value} pair with the same value as we
have seen before, but now with a different key.
The new key of the table row t is mapped to new keys, and it is
replicated to v workers using a s̄ ′ vector.
Next, the new partition function, PartitionAD(s̄,λ), maps from new keys
to NO keys and then to the reducers according to λ , the partition of the
virtual reducers, and s̄ vector.
This results in partitioning of the new keys, according to the network,
followed from λ , but PartitionAD(s̄,λ) insures that we distribute the
values (rows) to r reducers instead of v virtual reducers.

The scheme ends with running a MapReduce job...

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results

O. Raz (BGU - ECE) Nap September 26, 2019 16 / 23

Outline

5 MapReduce

6 Related Work

7 Non-Adaptive Multiway Join (NO)

8 Adaptive Multiway Join Idea

9 More Results2
0
1
9
-0
9
-2
5

Nap
More Results

Outline

First, I introduce the motivation in general, then with a join example,
and I will give some empirical motivation.
Next, I cover the model for the problem and the problem itself.

Then, I go over what is Nap scheme with it’s relation to Young Lattice.

In the end I go over the implementation, it’s difficulties and introduce

some points for future work.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Setup

Modified version of Hadoop on AWS multi region cluster.

EC2 t2.xlarge and M4.xlarge instances.

Wonder Shaper for fixing a downlink rate.

HDFS and YARN daemons.

EmpSetup Implementation

O. Raz (BGU - ECE) Nap September 26, 2019 17 / 23

Setup

Modified version of Hadoop on AWS multi region cluster.

EC2 t2.xlarge and M4.xlarge instances.

Wonder Shaper for fixing a downlink rate.

HDFS and YARN daemons.

EmpSetup Implementation

2
0
1
9
-0
9
-2
5

Nap
More Results

Setup

We implemented a prototype of Nap and conducted some basic
experiments on EC2 that serve us as a proof-of-concept.
Wonder Shaper is a command-line utility that limits the adapter’s
bandwidth.
The master instance is in charge of the whole computation by running
the NameNode (NN), and the Resource Manager (RM) daemons, and
the workers are responsible for storing the data and running the workload
within containers.
HDFS has a a replication factor of three; thus, the input resides in every
worker and we even managed to split the input (almost) evenly around
the 25 mappers (which was not straightforward).
Why the master is only ”mastering”? → The NN and RM daemons have
been selected to run on a different machine, the master machine, because
we have wanted to separate the monitoring work from the workers by
keeping them less busy and don’t prioritize any locality communication
on one of the regions (e.g., AM with RM or DN with NN).

Default block size (b) =128 MB.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Results- Completion time

The non-adaptive jobs has high variance in comparison to the
adaptive.
The slowest job in the adaptive, 211 seconds, is roughly as fast as the
fastest non-adaptive job, 205 seconds.

Non-Adaptive Adaptive

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Adaptive

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Implementation

O. Raz (BGU - ECE) Nap September 26, 2019 18 / 23

Results- Completion time

The non-adaptive jobs has high variance in comparison to the
adaptive.
The slowest job in the adaptive, 211 seconds, is roughly as fast as the
fastest non-adaptive job, 205 seconds.

Non-Adaptive Adaptive

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Adaptive

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Implementation

2
0
1
9
-0
9
-2
5

Nap
More Results

Results- Completion time

We have used Job History server REST-API for gathering all the
statistics and Wolfram Mathematica for the plots.
Non-Adaptive (uniformly), purple, and Adaptive (nonuniformly), orange,
λ = (7, 6, 6)), with 1.6 GB shuffled data.
The boxplot displays the mean value as a black strip, the median value as
a white strip, and two other strips for the boundaries of each box. In
fact, the slowest job in the adaptive scenario (10, 211) is roughly as fast
as the fastest non-adaptive job (1, 205).

Partit no-
adapt

adapt

Mean 236 192
Variance 1462 143
Median 224 191
Max 331 221
Min 205 174

*There is a minor difference of time between the results, due to the time

from submitting the job to allocating the reduce containers. Although

the reducers are allocated right after the mappers, there is no slow start

for the shuffle nor allocating the reducers, the elapsed time of a straggler

from all the reducers will not include a few seconds before the reducers

start, e.g., the scheduling time of map containers or even AM container.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Results- Completion time

The non-adaptive jobs has high variance in comparison to the
adaptive.
The slowest job in the adaptive, 211 seconds, is roughly as fast as the
fastest non-adaptive job, 205 seconds.

Non-Adaptive Adaptive

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Adaptive

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Implementation

O. Raz (BGU - ECE) Nap September 26, 2019 18 / 23

Results- Completion time

The non-adaptive jobs has high variance in comparison to the
adaptive.
The slowest job in the adaptive, 211 seconds, is roughly as fast as the
fastest non-adaptive job, 205 seconds.

Non-Adaptive Adaptive

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Adaptive

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Implementation

2
0
1
9
-0
9
-2
5

Nap
More Results

Results- Completion time

We have used Job History server REST-API for gathering all the
statistics and Wolfram Mathematica for the plots.
Non-Adaptive (uniformly), purple, and Adaptive (nonuniformly), orange,
λ = (7, 6, 6)), with 1.6 GB shuffled data.
The boxplot displays the mean value as a black strip, the median value as
a white strip, and two other strips for the boundaries of each box. In
fact, the slowest job in the adaptive scenario (10, 211) is roughly as fast
as the fastest non-adaptive job (1, 205).

Partit no-
adapt

adapt

Mean 236 192
Variance 1462 143
Median 224 191
Max 331 221
Min 205 174

*There is a minor difference of time between the results, due to the time

from submitting the job to allocating the reduce containers. Although

the reducers are allocated right after the mappers, there is no slow start

for the shuffle nor allocating the reducers, the elapsed time of a straggler

from all the reducers will not include a few seconds before the reducers

start, e.g., the scheduling time of map containers or even AM container.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Results- Elapsed Reducer’s Time by Region

Elapsed reducer’s time- shuffle + merge + reduce times.

In the non-adaptive, Virginia’s reducer is always the fastest.

In the adaptive, London’s reducer is on average the straggler.

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Adaptive

O. Raz (BGU - ECE) Nap September 26, 2019 19 / 23

Results- Elapsed Reducer’s Time by Region

Elapsed reducer’s time- shuffle + merge + reduce times.

In the non-adaptive, Virginia’s reducer is always the fastest.

In the adaptive, London’s reducer is on average the straggler.

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Adaptive

2
0
1
9
-0
9
-2
5

Nap
More Results

Results- Elapsed Reducer’s Time by Region

We have seen an average of this results in the empirical motivation but
now we can see that for the non-adaptive California’s average finish time
is more than 30% higher compared to Virginia’s, and more than 15%
compared to London (147, 225, and 187 seconds, respectively).
Virginia is constantly the fastest and there are many time fluctuations in
jobs 5, 8, and 9 for California’s reducer (elapsed time is 237, 246, and
328 seconds respectively).
The adaptive partition reduce these large fluctuations when sending less
100 MB towards California that act as a bottleneck in the non-adaptive
partition.

The reducers are finishing in almost identical finish time when London’s

reducer is on average the straggler.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Results- Elapsed Reducer’s Time by Region

Elapsed reducer’s time- shuffle + merge + reduce times.

In the non-adaptive, Virginia’s reducer is always the fastest.

In the adaptive, London’s reducer is on average the straggler.

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Adaptive

O. Raz (BGU - ECE) Nap September 26, 2019 19 / 23

Results- Elapsed Reducer’s Time by Region

Elapsed reducer’s time- shuffle + merge + reduce times.

In the non-adaptive, Virginia’s reducer is always the fastest.

In the adaptive, London’s reducer is on average the straggler.

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Non-Adaptive

Virginia

California

London

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8 Job 9Job 10

0

50

100

150

200

250

300

350

S
ec

Adaptive

2
0
1
9
-0
9
-2
5

Nap
More Results

Results- Elapsed Reducer’s Time by Region

We have seen an average of this results in the empirical motivation but
now we can see that for the non-adaptive California’s average finish time
is more than 30% higher compared to Virginia’s, and more than 15%
compared to London (147, 225, and 187 seconds, respectively).
Virginia is constantly the fastest and there are many time fluctuations in
jobs 5, 8, and 9 for California’s reducer (elapsed time is 237, 246, and
328 seconds respectively).
The adaptive partition reduce these large fluctuations when sending less
100 MB towards California that act as a bottleneck in the non-adaptive
partition.

The reducers are finishing in almost identical finish time when London’s

reducer is on average the straggler.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Hadoop Versions

Hadoop version 1 shortcomings - scalability, Cluster utilization,
Locality awareness, and input diversity.

In version two, there are Application Master (AM) and Resource
Manager (RM) daemons which “break” the old JobTracker to two
components. The scheduling process has been changed also when it
begins with AM container (JVM), one per job, who runs on one of
the workers and communicates with RM for allocating the next
containers (map and reduce containers).

Implementation

O. Raz (BGU - ECE) Nap September 26, 2019 20 / 23

Hadoop Versions

Hadoop version 1 shortcomings - scalability, Cluster utilization,
Locality awareness, and input diversity.

In version two, there are Application Master (AM) and Resource
Manager (RM) daemons which “break” the old JobTracker to two
components. The scheduling process has been changed also when it
begins with AM container (JVM), one per job, who runs on one of
the workers and communicates with RM for allocating the next
containers (map and reduce containers).

Implementation2
0
1
9
-0
9
-2
5

Nap
More Results

Hadoop Versions

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

getPartition

Algorithm 2 getPartition

1: reducer← 0
2: if v = 0 then
3: reducer← Hash(k) % r
4: else
5: pRes← Hash(k) % v
6: pc← pick computer given pRes, λ and v
7: reducer← pick uniformly reducer from the list of pc’s reducers
8: end if
9: return reducer

Implementation

O. Raz (BGU - ECE) Nap September 26, 2019 21 / 23

getPartition

Algorithm 2 getPartition

1: reducer← 0
2: if v = 0 then
3: reducer← Hash(k) % r
4: else
5: pRes← Hash(k) % v
6: pc← pick computer given pRes, λ and v
7: reducer← pick uniformly reducer from the list of pc’s reducers
8: end if
9: return reducer

Implementation

2
0
1
9
-0
9
-2
5

Nap
More Results

getPartition

The modification of Hadoop and our partition class in Section ??
can be used to modify the map output keys for any Hadoop job,
not necessarily multiway join. This can be used as a standalone
system for adaptive and network aware Hadoop jobs where the
programmer only needs to select, beforehand, the λ of the keys on
the reducers.
Our current implementation requires clusters with enough RAM
for allocating all the containers in parallel. Because setConf is
waiting for reading the HDFS file, which is written once, right
after all the containers are running. Thus, if setConf does not find
this HDFS file, it will not continue to the rest of the code, and the
whole job is stuck. Therefore, it can make sense to study more
memory-efficient solutions. Running Hadoop with our multiway join,
Nap, begins with splitting each line of input (from each table) by the
split input and record reader. For example, the map function of Table X
computes a hash value for the joint attribute, p, by using hashCode
function (from class String) and modules it with s1. Afterward, the result
is concatenated with a number from zero to s2, which results in creating
a key k (k ∈ k ′), whereas the line is duplicated to s2 different keys. The
map output creates a key that is a pair of k (for getPartition) and the
concatenation of the table letter, X , with the joint attribute, p (for
secondary sorting). The map output is passed to the Partitioner class,
going through the setConf function (from Configurable interface) and
then to getPartition. In setConf, we gather much information about RM
scheduling of containers in the cluster (mappers and reducers), only by
reading the mappers’ and reducers’ locations from HDFS. Also, we
compute the number of mappers and reducers per computer.

Then, in getPartition, we go over every map output and return a number

between zero and r . The typical implementation of getPartition hashes

each key of map output, k , with some generic hash function (e.g.,

hashCode), and the result is modulo by r . In our implementation, when

we want an equal partition by r results we set v to zero, and then we do

the default getPartition. Otherwise, we hash the key, k, but now we

modulo it with v . Afterward, we map all the output values that are lower

than v1 to the first computer, the values between v1 and v2 to the second

computer, and so on. This way we partition the map output according to

λ , and when λ equals f̄ , then the data is distributed according to the

computer’s downlinks.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

YARN -Workflow of MapReduce Job

Implementation Drawbacks

O. Raz (BGU - ECE) Nap September 26, 2019 22 / 23

YARN -Workflow of MapReduce Job

Implementation Drawbacks

2
0
1
9
-0
9
-2
5

Nap
More Results

YARN -Workflow of MapReduce Job

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Drawbacks

Speculative execution.

First-fit algorithm for mappers allocation.

Unnecessary duplication.

Implementation Conclusion YARN

O. Raz (BGU - ECE) Nap September 26, 2019 23 / 23

Drawbacks

Speculative execution.

First-fit algorithm for mappers allocation.

Unnecessary duplication.

Implementation Conclusion YARN

2
0
1
9
-0
9
-2
5

Nap
More Results

Drawbacks

We emphasize that our prototype implementation and experimental
results should be understood as proofs-of-concept. Our main contribution
lies in the conceptual and theoretical side. In particular, the prototype still
has many limitations, and our experimental results are not representative.
Modifying Hadoop:
RM is monitoring the performance and progress of the containers by the
heartbeat messages between RM and NM of each computer in the cluster.

These messages are sent every second (by default), and if one of the

containers is not responding with a heartbeat for a threshold amount of

time or its progress percent is below some threshold, then RM allocates a

new container in a different computer, a speculative container. Those

containers would race with the original containers, and when one of them

is finished the second one is killed. Consequently, a cluster with slow

containers would have many speculative containers that could help

reduce the straggler’s time at the expense of overloading the server.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Drawbacks

Speculative execution.

First-fit algorithm for mappers allocation.

Unnecessary duplication.

Implementation Conclusion YARN

O. Raz (BGU - ECE) Nap September 26, 2019 23 / 23

Drawbacks

Speculative execution.

First-fit algorithm for mappers allocation.

Unnecessary duplication.

Implementation Conclusion YARN

2
0
1
9
-0
9
-2
5

Nap
More Results

Drawbacks

Every Hadoop job begins with RM waiting for a heartbeat message from

each NM, then RM allocates all the requested containers in each

computer if it is capable, in the order of receiving heartbeat messages,

and it can also be seen as a First-fit algorithm from bin packing .

Because by default, Hadoop version two uses Capacity scheduler with a

yarn.scheduler.capacity.per-node-heartbeat.maximum-container-assignments

filed that is set to infinity. When AM is the first container to allocate,

the mappers are next, and the reducers are initialized after some slow

start time (a percent of the whole map progress,

mapreduce.job.reduce.slowstart.completedmaps). Thus, setting the

maximum amount of containers per heartbeat to m
#nodes will result in

equal sharing of the mappers in the cluster, a better distribution of

mappers in comparison to the default one. But it is possible, when each

computer can allocate m
#nodes containers.

MapReduce Related Work Non-Adaptive Multiway Join (NO) Adaptive Multiway Join Idea More Results

Drawbacks

Speculative execution.

First-fit algorithm for mappers allocation.

Unnecessary duplication.

Implementation Conclusion YARN

O. Raz (BGU - ECE) Nap September 26, 2019 23 / 23

Drawbacks

Speculative execution.

First-fit algorithm for mappers allocation.

Unnecessary duplication.

Implementation Conclusion YARN

2
0
1
9
-0
9
-2
5

Nap
More Results

Drawbacks

When using more keys than the number of reducers, there is a possibility
of sending data to different virtual reducers that reside on the same
computer;
Thus, adding more logic to the mappers for checking this kind of problem
before writing the output to HDFS, in the map function, could reduce
this overhead.
Furthermore, it introduces a trade-off between the cost of increasing the
map function time and the benefit of shuffling fewer data, and reducing
the completion time.
Improvement

The idea of MapReduce that some of the keys must go to the same

reducer for efficiency and correctness of the job, limits the programmer

options for partitioning and controlling the size of tuples under each key,

in the reduce function. Our adaptive way for spreading the data

replicates the input to more buckets (keys) than in the non-adaptive,

when we use v > r buckets. However, this can be improved when finding

another multiway join implementation that only changes the size of each

bucket without using more buckets, then we can decrease C better.

	Introduction and Motivation
	Model and Problem
	Nap
	Proof-of-Concept and Conclusion
	MapReduce
	Related Work
	Related Work

	Non-Adaptive Multiway Join (NO)
	Adaptive Multiway Join Idea
	More Results

