
Apoorv Shukla| NetAI’19

Runtime Verification of P4 Switches
with Reinforcement Learning

Apoorv Shukla 
(TU Berlin)

with Kevin Nico Hudemann (TU Berlin), Artur Hecker (Huawei), Stefan Schmid (Vienna Uni.)



Apoorv Shukla| NetAI’19

P4[1]: Data plane Programming Language
• Domain-specific high-level language for data plane programming

• Support for user-defined custom protocols, target independence, 
etc.

[1] P. Bosshart, D. Daly, G. Gibby, M. Izzardy, N. McKeown, J. Rexford, C. Schlesinger, D. Talaycoy, A. Vahdat, G. 
Varghese, D. Walker. P4: Programming Protocol-Independent Packet Processors. SIGCOMM’ 14.

2



Apoorv Shukla| NetAI’19

P4 Pipeline: Complex

3

PSA Architecture with programmable (yellow) and non-
programmable blocks (grey)

Ingress 
Match-
Action

Packet 
Replication 

Engine 
(PRE)

Packet

Egress 
Parser

Egress Match-
Action

Egress 
Deparser

Ingress 
Deparser

Buffer 
Queuing 
Engine 
(BQE)

Ingress Parser



Apoorv Shukla| NetAI’19

P4: Multiple versions and platforms

• Versions: P414 & P416

• Platforms: bmv2, Tofino, eBPF, XDP

• Platform-specific implementations

Interplay between programmable and non-programmable blocks gets complex!

4



Apoorv Shukla| NetAI’19

Bugs happen

• Bugs related to memory safety: buffer overflow, invalid memory 
accesses (detectable by static analysis)

• Runtime bugs related to checksum, ECMP/hash-calculation, 
platform-dependent, etc.

5



Apoorv Shukla| NetAI’19

Runtime bug detection is hard

• P4 is half a program; forwarding rules populated at runtime

• Static Analysis prone to false positives: insufficient

• Switch does not throw any runtime exceptions: hard to catch

6

This talk: P4 Runtime bug Detection!



Apoorv Shukla| NetAI’19

Example: Platform-Independent Bug

• L3 switch parser of P4 language tutorials does not validate IPv4 
ihl

• Packets with IP options are forwarded with wrong checksum

7



Apoorv Shukla| NetAI’19

Motivating Example: Platform-Dependent Bug

• Conflicting forwarding decisions can lead to unexpected behavior 

• Dependent on implementation of packet replication engine (PRE) 

8

More bug 
examples in 
the paper!



Apoorv Shukla| NetAI’19

Problem Statement

Is it possible to automatically detect runtime bugs in P4 switches?

9



Apoorv Shukla| NetAI’19

Goal

• Design a system which automatically detects runtime bugs

• Detects both: platform-dependent and –independent bugs

• Is non-intrusive: no changes to the P4 program or switch

10



Apoorv Shukla| NetAI’19

Approach in a nutshell

• Use fuzzing, and guide it through reinforcement learning agent

• Generate +ve rewards if an anomaly is detected in the feedback

• Feedback also guides the agent further

11



Apoorv Shukla| NetAI’19

P4RL

• P4RL Agent – Guides Fuzzing

• p4q – Query Language for expressivity, reducing input search 
space

At

Agent

Environment

RtSt
Rt+1

St+1

12

Credit: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html



Apoorv Shukla| NetAI’19

P4RL Reinforcement Learning

• States: Sequence of bytes forming the packet header

• Actions: Add/modify/delete bytes at position X

• Rewards: 1, if the packet triggered a bug
0, otherwise

13



Apoorv Shukla| NetAI’19

Reducing Input Search Space for Fuzzing

• Pre-generated dictionary created using control plane 
configuration, compiled P4 program and p4q queries

• Compiled P4 program in JSON format aids in knowing accepted 
header layouts 

• Check boundary values first for header fields by queries

14



Apoorv Shukla| NetAI’19

Query Language: p4q

• Goal: Specify expected P4 switch behavior 

• If-then-else conditional statements

• Common boolean expressions & relational operators
(ing.hdr.ipv4 & ing.hdr.ipv4.version !=4, 

egr.egress_port == False, )
15



Apoorv Shukla| NetAI’19

P4RL Agent-guided Fuzzing

16



Apoorv Shukla| NetAI’19

P4RL DDQN

• Combination of double Q-learning and deep Q networks with a 
simple form of prioritized experience replay

• Select next action based upon the result of feeding current 
environment state to neural network

• Two separate neural networks for action selection and evaluation

17



Apoorv Shukla| NetAI’19

P4RL Workflow

P4 Network

1. Get control plane config

P4 Switch
P4Runtime Control 

Plane
User written 
queries

Agent

Reward 
System

P4RL

2. Select 
fuzz 
action

4. Get 
Reward

3. Send packets & 
monitor behaviour

18



Apoorv Shukla| NetAI’19

Evaluation Strategy

• Target: Publicly available L3 (basic.p4) switch 
(simple_switch_grpc) implementation

• Baseline: Simple Agent relying on random action selection

• Metrics:
• Mean Cumulative Reward (MCR) over 10 runs
• Bug Detection Time

19



Apoorv Shukla| NetAI’19

Bugs found by P4RL in publicly available programs

PI – Platform-independent
PD – Platform-dependent

20



Apoorv Shukla| NetAI’19

Learning Performance: P4RL Agent vs. Baseline

21

➔ P4RL generates ~3× rewards



Apoorv Shukla| NetAI’19

Detection Time Speedup: P4RL Agent vs. Baseline

➔ P4RL up to 4.42× faster 

22



Apoorv Shukla| NetAI’19

Limitations: Undecidability

23

<Input>

No

P4RL engine

Yes

Credit: https://www.coopertoons.com/education/haltingproblem/haltingproblem.html



Apoorv Shukla| NetAI’19

Conclusion

• P4RL’s machine learning-guided fuzzing enables detection of 
complex runtime bugs (non-intrusively)

• Identifies platform-dependent and -independent bugs

• Ensure correctness in P4 deployments 

24



Apoorv Shukla| NetAI’19

Summary

25

1. Get control plane 
config

P4 
Switch

P4Runtime Control 
Plane

User 
written 
queries

Agent

Reward 
System

P4RL

2. Select 
fuzz action 4. Get 

Reward

3. Send packets & 
monitor behavior

P4 Network

Contact: apoorv@inet.tu-berlin.de
Code: gitlab.inet.tu-berlin.de/apoorv/P4ML

mailto:apoorv@inet.tu-berlin.de

