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P4[1]: Data plane Programming Language
• Domain-specific high-level language for data plane programming

• Support for user-defined custom protocols, target independence, 
etc.

[1] P. Bosshart, D. Daly, G. Gibby, M. Izzardy, N. McKeown, J. Rexford, C. Schlesinger, D. Talaycoy, A. Vahdat, G. 
Varghese, D. Walker. P4: Programming Protocol-Independent Packet Processors. SIGCOMM’ 14.
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P4 Pipeline: Complex
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P4: Multiple versions and platforms

• Versions: P414 & P416

• Platforms: bmv2, Tofino, eBPF, XDP

• Platform-specific implementations

Interplay between programmable and non-programmable blocks gets complex!
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Bugs happen

• Bugs related to memory safety: buffer overflow, invalid memory 
accesses (detectable by static analysis)

• Runtime bugs related to checksum, ECMP/hash-calculation, 
platform-dependent, etc.
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Runtime bug detection is hard

• P4 is half a program; forwarding rules populated at runtime

• Static Analysis prone to false positives: insufficient

• Switch does not throw any runtime exceptions: hard to catch
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This talk: P4 Runtime bug Detection!
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Example: Platform-Independent Bug

• L3 switch parser of P4 language tutorials does not validate IPv4 
ihl

• Packets with IP options are forwarded with wrong checksum
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Motivating Example: Platform-Dependent Bug

• Conflicting forwarding decisions can lead to unexpected behavior 

• Dependent on implementation of packet replication engine (PRE) 
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More bug 
examples in 
the paper!
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Problem Statement

Is it possible to automatically detect runtime bugs in P4 switches?
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Goal

• Design a system which automatically detects runtime bugs

• Detects both: platform-dependent and –independent bugs

• Is non-intrusive: no changes to the P4 program or switch
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Approach in a nutshell

• Use fuzzing, and guide it through reinforcement learning agent

• Generate +ve rewards if an anomaly is detected in the feedback

• Feedback also guides the agent further
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P4RL

• P4RL Agent – Guides Fuzzing

• p4q – Query Language for expressivity, reducing input search 
space
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Credit: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html
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P4RL Reinforcement Learning

• States: Sequence of bytes forming the packet header

• Actions: Add/modify/delete bytes at position X

• Rewards: 1, if the packet triggered a bug
0, otherwise
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Reducing Input Search Space for Fuzzing

• Pre-generated dictionary created using control plane 
configuration, compiled P4 program and p4q queries

• Compiled P4 program in JSON format aids in knowing accepted 
header layouts 

• Check boundary values first for header fields by queries
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Query Language: p4q

• Goal: Specify expected P4 switch behavior 

• If-then-else conditional statements

• Common boolean expressions & relational operators
(ing.hdr.ipv4 & ing.hdr.ipv4.version !=4, 

egr.egress_port == False, )
15
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P4RL Agent-guided Fuzzing
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P4RL DDQN

• Combination of double Q-learning and deep Q networks with a 
simple form of prioritized experience replay

• Select next action based upon the result of feeding current 
environment state to neural network

• Two separate neural networks for action selection and evaluation
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P4RL Workflow
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Evaluation Strategy

• Target: Publicly available L3 (basic.p4) switch 
(simple_switch_grpc) implementation

• Baseline: Simple Agent relying on random action selection

• Metrics:
• Mean Cumulative Reward (MCR) over 10 runs
• Bug Detection Time
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Bugs found by P4RL in publicly available programs

PI – Platform-independent
PD – Platform-dependent
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Learning Performance: P4RL Agent vs. Baseline
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➔ P4RL generates ~3× rewards
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Detection Time Speedup: P4RL Agent vs. Baseline

➔ P4RL up to 4.42× faster 
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Limitations: Undecidability

23

<Input>

No

P4RL engine

Yes

Credit: https://www.coopertoons.com/education/haltingproblem/haltingproblem.html



Apoorv Shukla| NetAI’19

Conclusion

• P4RL’s machine learning-guided fuzzing enables detection of 
complex runtime bugs (non-intrusively)

• Identifies platform-dependent and -independent bugs

• Ensure correctness in P4 deployments 
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Summary
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Contact: apoorv@inet.tu-berlin.de
Code: gitlab.inet.tu-berlin.de/apoorv/P4ML
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