
mq-cake: Scaling software rate limiting across CPU cores

Jonas Köppeler
TU Berlin

j.koeppeler@tu-berlin.de

Toke Høiland-Jørgensen
Red Hat

toke@redhat.com

Stefan Schmid
TU Berlin

stefan.schmid@tu-berlin.de

Abstract

Software rate limiting (such as that implemented in sch tbf,
sch htb and sch cake) relies on the global qdisc lock to syn-
chronise state, and thus does not scale across CPU cores. This
makes it challenging to rate limit at higher rates, since single-
core performance has not kept up with network speeds. While
there are workarounds for enforcing rate limits on individual
traffic classes (such as splitting an HTB tree across TXQs), it is
not currently possible to take advantage of multiple hardware
queues and still enforce a global rate limit on the interface,
using the kernel’s qdiscs.
In this work, we implement a multi-queue variant of sch cake
that can scale its rate limiting across hardware queues (and thus
CPU cores). We implement this by adding a small bit of shared
state across multiple sch cake instances installed under the mq
qdisc. This allows most of the qdisc logic to run under separate
per-TXQ qdisc locks, while still supporting a global rate limit
for the whole interface. We perform an extensive performance
evaluation and show that the implementation achieves close to
perfect scaling across cores, with an accuracy deviation of less
than 0.25% of the configured rate.

Keywords
rate limiting, qdisc, cake

Introduction
Software rate limiting is a critical technique for ensuring opti-
mal network performance. It is widely applied in various do-
mains, including ISPs enforcing data plans, WAN bandwidth
allocation systems [12], and home routers [6].

As line rates continue to increase and surpass CPU speeds,
implementing efficient rate limiting becomes increasingly
challenging. This is particularly evident in the Linux kernel,
where access to queueing disciplines is synchronized through
the global qdisc lock, leading to potential contention issues.
To illustrate this issue, in our experiments with a 25G NIC,
sch cake and sch htb were only able to enforce a global rate
limit of up to 8–11 Gbps. The performance even decreased
with an increasing number of transmission queues.

To address these challenges, prior work has focused on
overcoming lock contentions and improving the scalability
of software rate limiters [4, 11, 20]. One of the most effec-
tive solutions is the EDT-BPF approach, presented at Netde-
vconf 0x14 by Fomichev et al. [4], which completely elim-

inates lock contention. This method leverages an BPF pro-
gram to timestamp packets with departure times before for-
warding them to the FQ qdisc.

However, the EDT model decides a packet’s fate before
enqueuing it in FQ, which makes it impossible to effectively
apply AQM algorithms such as CoDel [17]. In order to main-
tain low latencies, the EDT model relies on a backpressure
mechanism to prevent excessive packet queueing in the net-
work stack [20]. The absence of proper backpressure can lead
to performance issues, as observed in the Cilium bandwidth
manager, where it caused spikes in network latency [2, 7].
While backpressure can be enforced on end-hosts — the pri-
mary target of the EDT-BPF approach — it represents only a
subset of rate-limiting applications. In scenarios where direct
control over end-hosts is unavailable, such as rate limiting on
routers or switches, backpressure mechanisms are not feasi-
ble. This limitation is particularly relevant for enforcing data
plans at ISPs or managing traffic on home routers. Further-
more, using EDT-BPF to enforce a global rate limit on an
interface will create a single virtual FIFO across all FQ in-
stances, effectively eliminating any flow queueing behavior.

We introduce a scalable rate-limiting approach for for-
warding devices by implementing a lock-free synchro-
nization mechanism between per-queue sch cake instances.
The proposed method scales efficiently with increasing
CPU core counts while maintaining a deviation of less
than 0.25% from the configured target rate. Our design
achieves global rate limits up to 3x higher than single-queue
CAKE and HTB, while reducing tail latencies between 10x–
2500x as compared to EDT-BPF. The source code is pub-
lished on Github: https://github.com/mq-cake/
linux-mq-cake.

Approach and Implementation
This work builds upon the CAKE (sch cake) qdisc, with a
particular focus on its bandwidth shaper. CAKE implements
Active Queue Management (AQM) and rate limiting during
packet dequeue, effectively eliminating the need for a back-
pressure mechanism. Through its bandwidth shaper, CAKE
enforces a global rate limit on egress network traffic, pre-
venting excessive packet buffering in the lower layers of the
network stack. However, CAKE suffers from the aforemen-
tioned contention of the root qdisc lock, which prevents it
from exploiting the potential of multiple transmission queues.

Approach
Our approach overcomes the aforementioned shortcomings
by enabling a scalable version of sch cake [6] to run in com-
bination with the MQ qdisc [14]. This multi-queue version of
CAKE is referred to as mq-cake. In order to improve scalabil-
ity and correctly enforce a global rate limit a synchronization
mechanism between installed mq-cake instances is necessary.
By synchronizing at regular intervals, mq-cake instances es-
timate their local rate limit based on their sibling mq-cake
instances’ activity. This rate estimation is implemented in a
way that avoids any lock- or atomic operations as a means of
achieving optimal scalability.

The synchronization frequency determines how fast a qdisc
can react to changes in the activity of its sibling qdiscs. If
this frequency is higher, the local rate limit is able to con-
verge more quickly to the correct value but the CPU load also
increases. When this frequency is lower, the CPU load de-
creases but takes longer to converge. Further, the CPU load
increases as the number of hardware queues grows, since
more data structures must be accessed in order to estimate the
local rate. However, if the per-packet CPU load becomes too
high, the achieved throughput lowers, potentially hindering
the system from driving higher rate limits. This phenomenon
will be covered in greater detail in the Evaluation section.

MQ

mq-cake mq-cake mq-cake mq-cake

Queue 0 Queue 1 Queue 2 Queue 3

Figure 1: mq-cake architecture with four hardware transmis-
sion queues

Implementation
This synchronization mechanism consists of a linked list be-
tween all mq-cake instances installed on a network interface.
During the installation process of a new mq-cake instance,
this new instance searches for sibling qdiscs and adds itself
to their linked list. Figure 1 shows an example of the pro-
posed architecture for four hardware queues. This approach
relies on estimating how many instances of mq-cake are ac-
tively sending packets — these instances are referred to as ei-
ther active queues or active qdiscs. According to this number,
a mq-cake instance determines its local rate limit by dividing
the global rate limit by the number of active mq-cake qdiscs.

local rate limit =
global rate limit

number of active qdiscs
(1)

Once the qdisc is installed, each mq-cake instance scans
the list of siblings in regular intervals to count the number

Algorithm 1 Synchronization algorithm

1: procedure GET ACTIVE QUEUES
2: if now - last interval < SYNC INTERVAL then
3: return -1;
4: end if
5: active queues = 1;
6: for all q in qdisc list do
7: if q has packets backlogged then
8: active queues++;
9: else if q has sent packets since last interval then

10: active queues++;
11: end if
12: end for
13: last interval = now
14: return active queues;
15: end procedure

of active qdiscs. This duration of this interval is called the
synchronization time, or synctime for short. The default set-
ting for this value is 200µs, which we found is an appropriate
value to ensure fast convergence and low CPU overhead.

A scanning instance considers another qdisc active if it has
packets enqueued and/or has sent packets since the last scan.
The logic behind these conditions is demonstrated in the fol-
lowing two scenarios: (1) If a qdisc has only large packets
enqueued while the global rate limit is low, the inter-packet
gap may be larger than the synctime. This is due to fact that
qdiscs with large packets are slower in their release time and
are buffered in the qdisc’s queue. This scenario would lead
the qdisc to falsely read the instance as inactive if only con-
sidering the packet sent condition, as the number of sent pack-
ets between the two scans would not have changed. However,
any qdisc with packets enqueued is active, as it will eventually
dequeue them and use its portion of the configured rate limit.
(2) If a qdisc receives very small packets while the global
rate limit is high, the backlog of a qdisc consistently remains
empty, as packets are less likely to be buffered and thus are
immediately sent out. This scenario would also lead the qdisc
to falsely read the instance as inactive if only considering the
has packets backlogged condition, since the packets are only
buffered for a very short interval. Thus, the scanning qdisc
needs to maintain a counter — similar to a heartbeat signal
— to determine if another qdisc has sent packets since the
last synchronization scan.

This external qdisc observation is necessary because a
qdisc cannot accurately determine if it is active or inactive.
For example, in cases where packets are immediately sent
out, the qdisc would oscillate between active and inactive,
leading to inaccurate values for other qdiscs.

The two activity indicators are read and written using the
READ/WRITE ONCE macros. Thus, the reads and writes
are racy — however, this does not present a problem, since
this approach evaluates the activity indicators in intervals
rather than in precise events. In the unlucky event that a
qdisc’s state would change exactly at the same time as another
qdisc executes its scan, the change in state will be captured in
the worst case during the next scan. This approach has the

benefit of not building contention points while still achieving
accurate local rate limit estimations. Algorithm 1 shows this
synchronization algorithm.

Evaluation
In this section we evaluate mq-cake and show its capabilities
of accurately enforcing rate limits up to the network card’s
capabilities of 25 Gbps and achieves excellent linear scaling
with an increasing number of hardware queues. Further, mq-
cake achieves 10–2500X lower tail-latencies as compared to
EDT-BPF approach.

This section is organized as follows: The first subsection
describes the experimental setup. Next, we evaluate mq-
cake’s rate limiting capabilities and the corresponding accu-
racy as well as its scaling properties in comparison to HTB
and single-queue CAKE. In the third subsection we test and
evaluate mq-cake and EDT-BPF under TCP traffic as well as
the corresponding latencies using the Flent [5] network test-
ing tool. The fourth subsection considers the dynamic prop-
erties of mq-cake, especially its behavior when the number
of active queues and synctime change. The fifth subsection
discusses the limitations of the current approach, especially
focusing on imbalances in load between queues. Lastly, we
summarize the evaluation results and outline further direc-
tions for future works in this field.

Experimental Setup
The experimental setup consists of two identical servers,
both of which are equipped with: (1) an Intel CPU (In-
tel(R) Xeon(R) Gold 6209U CPU@2.10GHz) with 20 phys-
ical cores and hyperthreading capabilities; (2) 192GB RAM;
(3) two 25G NICs (Intel XXV710 for 25GbE SFP28 (rev
02)). Both servers run an Ubuntu 22.04.4 LTS with a 6.5.0-
35-generic kernel that contains mq-cake. These machines are
connected back-to-back, where one machine generates traf-
fic and measures throughput either using MoonGen [3] or
Flent [5] and the other machine — the Device under Test
(DuT) — receives the traffic, enforces a rate limit, and sends
the traffic back to the traffic generating device. The gener-
ated traffic using MoonGen consists only of UDP flows, with
a transmission speed of 25 Gbps. In case of the Flent tests,
1024 TCP streams are used to saturate the link. If not men-
tioned otherwise, hyperthreading is enabled on the DuT.

The receiving interface of the DuT distributes the incoming
flows in a round-robin fashion across its receive queues. The
interrupts of each receive queue are mapped to exactly one
CPU core and irqbalance daemon [9] is disabled. To avoid
any side effects from existing firewall and routing rules, the
ingress and egress interface of the DuT are attached to a sep-
arate network namespace [16]. The intel iommu [8] feature
is also explicitly disabled, since it is enabled by default in
the 6.5 Linux kernel version and massively degrades the per-
formance of network IO operations. Further, NIC offload-
ing capabilities like GRO, GSO and TSO [18] are disabled
on each interface on the DuT. The TIPSY framework [13]
is used to orchestrate tests. For configuring and installing
mq-cake, the tc command line tool is extended [15]. Further,
in case of the MoonGen UDP flood tests, the installed mq-
cake instances are configured with besteffort flows overhead

Algorithm 2 EDT-BPF implementation

1: procedure RATE LIMIT(skb)
2: pkt len = skb→len + compensation
3: delay ns = pkt len*NS PER SEC/global rate limit
4: next tstamp = global next tstamp
5:
6: if next tstamp ≤ now then
7: global next tstamp = now + delay ns
8: return TC ACT OK
9: end if

10:
11: if next tstamp−now ≥ DROP HORIZON then
12: return TC ACT SHOT
13: end if
14:
15: skb→tstamp = next tstamp
16: sync fetch and add(global next tstamp, delay ns)
17: end procedure

18 mpu 64 noatm [1]. The same options are used for single-
queue CAKE. The overhead compensation is configured so
that the rate calculation of MoonGen and mq-cake/single-
queue CAKE are identical. In order to enforce a global rate
limit using HTB, we install a single class at the root-qdisc,
which rate limits all network traffic. As mentioned above,
the EDT-BPF approach as presented in prior work is not suit-
able to enforce a global rate limit. To enable a comparison
with mq-cake, we modify the BPF program implementation
to enforce such a global rate limit and incorporate the afore-
mentioned overhead compensation. The drop-horizon is set
to 2s, following the value proposed by the authors [4]. The
adjusted BPF program is detailed in Algorithm 2.

To align with the expected buffer occupation, the limit
and flow limit parameters of the FQ instances are config-
ured based on the following formula:

Limit =
Rate Limit · Drop Horizon

FQ instances · MTU size · 8
If the FQ buffer sizes are not properly adjusted, FQ may

drop packets unnoticed by the BPF program, ultimately im-
pacting performance.

Accuracy and Scalability
The most pressing questions about the presented approach
is: How accurately does it enforce the configured rate limit?
And how does it scale with an increasing number of hard-
ware queues? In this section, we present an in-depth anal-
ysis of mq-cake’s performance using an unresponsive UDP
traffic flood and compare it to the single-queue sch cake and
sch htb. We demonstrate that mq-cake not only achieves ex-
cellent rate conformance but also exhibits near-perfect scaling
properties.

Figure 2a shows the achieved throughput for varying rate
limits, ranging from 10 Mbps to 24 Gbps. In this test run, the
network traffic consists of 120 UDP flows containing only full
MTU-sized packets. The number of receive and transmission
queues is set to 40, meaning that every available logical CPU

(a) Achieved throughput (b) Total deviation (c) Relative absolute deviation

Figure 2: Achieved throughput and deviation from the target rate at various rate limits under network traffic containing only
full MTU-sized packets

is assigned one receive and transmission queue. These set-
tings maximize the achievable throughput and reduce concur-
rent access to the same qdisc by distributing packet handling
across the per-transmission queue qdisc instances. Figure 2b
highlights the total deviation from the configured maximum
rate limit as well as a relative percentage of the rate limit (Fig-
ure 2c). Together, these plots demonstrate that both mq-cake
is able to shape traffic up to 24 Gbps, with a maximum devi-
ation of less than 0.25%. HTB and single-queue CAKE, on
the other hand, plateau at around 7–8 Gbps.

Figure 3: Achieved throughput in relation to the number of
available hardware queues for 64 byte packets and a 20 Gbps
rate limit

To show the scalability traits of mq-cake, we configure
the next experiment with a rate limit of 20 Gbps and reduce
the UDP packet sizes to 64 bytes. Further, we ensure that
the number of receive queues always matches the number of
transmission queues, preventing imbalances in the traffic load
between qdiscs. The effect of these imbalances are further ex-
plained in the Limitations section.

Figure 3 reveals the throughput achieved by mq-cake,
HTB, and single-queue CAKE in relation to the number of
available hardware queues. The test shows that both HTB’s
and single-queue CAKE’s performance degrades as more
hardware queues become available. This is due to lock con-
tention, which increases as the number of receive queues
grows. Under these conditions, an increasing number of
CPUs attempt to access the qdisc, which then increases the
overall wait time to acquire the root lock. mq-cake, on the
other hand, scales linearly — the achieved throughput in-

Figure 4: mq-cake’s behavior when switching from 4 to 40
flows with a 200µs synchronization time, full MTU-sized
packets, and 40 transmission queues

creases at a quicker rate up to 20 transmission queues, after
which point the improvement reduces due the use of hyper-
threading cores. This effect is due to resource-sharing be-
tween the two logical cores residing in one physical core:
Thus, their performance is not completely independent from
one another. However, even with hyperthreading enabled,
mq-cake is still able to increase the throughput.

Impact of Synctime
Up to this point, the traffic in the previous evaluations has
been held static, meaning that the number of flows, and thus
the number of active queues did not change. With our next
experiment, we show and evaluate the impact of the synctime
on the rate limiter’s accuracy, particularly when the number
of active queues changes. To gain insights in mq-cake’s accu-
racy and responsiveness, we induce a change in the number
of active queues by increasing the UDP traffic from initial 4
flows to 40 flows.

Figure 4 shows such a switching event at around 4.94s.
During the switch, the throughput spikes due to mq-cake’s
inaccurate estimation of the number of active queues. Be-
fore the switch, only 4 queues were active; during the switch,
the remaining 36 inactive queues are activated and then scan
all other qdiscs to estimate their local rate limit. Since this
scanning is not necessarily executed simultaneously, the ac-
tive queue estimation per qdisc will likely be lower than 40
— not all qdiscs will have already enqueued or transmitted a

(a) Rate limit 2 Gbps. (b) Rate limit 8 Gbps. (c) Rate limit 15 Gbps.

Figure 5: Induced queue lengths and delays at varying synctimes and at a configured global rate limit of 2, 8, and 15 Gbps

packet at the point of scanning. Further, the 4 already-active
qdiscs will not immediately update their estimated rate upon
new flow arrivals, which can delay their local rate limit re-
duction. These conditions result in the observed overshoot in
Figure 4.

Figure 6: Achieved packet rate based on the available trans-
mission queues for varying synctimes. The traffic consists of
4 flows containing only 64 byte packets. In case of a synctime
of 0us, the rate estimation is done for every packet.

When evaluating accuracy, it is important to consider the
induced queue length at the next bottleneck in the packet path,
which is caused by the throughput spike, as well as the in-
creased latencies it produces. The width of the spike can
be controlled by manipulating the synctime. Exceeding the
global rate limit leads to buffering packets in the next device
that is in control of a bottleneck link. This buffering increases
latencies and may lead to packet drops. To gain insights into
the amount of induced latencies and to provision buffer sizes,
the next step is to examine these metrics in relation to the
synchronization time. Figure 5 outlines the induced queue
lengths as well as the corresponding induced queueing delays
at three different global rate limits. Synchronization times be-
yond 100µs increase the spike’s overshoot as well as its du-
ration for the reasons described above. The longer the sync-
time, the longer queues will send an inordinately high number
of bytes due to their inaccurate local rate estimation. These
plots also clearly show that reducing the syncime also inhibits
the spike intensity as well as the queueing delay. However, if
the synctime is too greatly reduced (i.e. less than 50µs in the

(a) Throughput

(b) Ping

Figure 7: Flent tcp nup test with 1024 TCP streams, a con-
figured rate limit of 20 Gbps, and a 2s drop horizon for EDT-
BPF

conducted experiments), the overhead of the synchronization
loop increases, lowering the achieved throughput. Figure 6
shows the relation between the achieved rate and the num-
ber of transmission queues for different synctimes. This plot
clearly shows that when the synctime is too low, the achieved
packet rate decreases due to the synchronization overhead. A
greater number of transmission queues increases the mq-cake
instances’ scanning time and may well lead to cache misses
when accessing the other qdiscs’ activity metrics.

TCP and Latencies
The previous experiments are based on unresponsive UDP
traffic. To review how these approaches perform with a
packet-loss sensitive transport protocol, we inspect the rate
conformance under TCP traffic and the resulting latencies us-
ing the network testing tool Flent [5] and the TCP Cubic [19]
algorithm. Flent’s tcp nup test is executed using 1024 TCP
upload streams. Figure 7 compares the performance of mq-
cake and EDT-BPF under a global rate limit of 20 Gbps.

(a) Throughput

(b) Ping

Figure 8: Flent tcp nup test with 1024 TCP streams, a con-
figured rate limit of 20 Gbps, and a 5ms drop horizon for
EDT-BPF

mq-cake maintains stable rate enforcement, remaining
slightly below the configured limit, whereas EDT-BPF
initially exceeds the rate limit before gradually reducing
throughput in the latter half of the test (Figure 7a). Figure 7b
shows the latencies measured during the test execution. mq-
cake achieves 0.4ms latencies at the 99th percentile, a 2500x
improvement as compared to EDT-BPF. The drop horizon of
EDT-BPF directly corresponds with the expected latencies.

Figure 8 shows the same test execution as before but with
a reduced drop horizon of 5ms for the EDT-BPF approach.
Figure 8a reveals that lowering the drop horizon to 5ms not
only stabilizes EDT-BPF’s rate conformance but also reduces
the tail latencies to 5ms (Figure 8b). However, reducing the
drop horizon only works effectively, if the RTT’s of the TCP
flows have similar values as the drop horizon, thus high RTT
flows would suffer from such a low drop horizon. Even with
this configuration mq-cake achieves 10x lower latencies as
compared to EDT-BPF.

These experiments highlight mq-cake’s ability to maintain
low latencies without the need of a backpressure mechanism,
thus making it suitable not only for end hosts but also in
packet forwarding use cases.

Limitations
Over the course of the evaluation, we showed that mq-cake
scales excellent with increasing number of hardware queues
as well as reducing tail latencies. However, we identified that
the current approach has a reduced accuracy when network
traffic is suboptimal distributed across the mq-cake instances.
So far, our experimental setup ensures that the qdisc layer of
the Linux kernel is saturated with packets. However, under
real-world conditions, this might not always be the case, as
not all flows are sent at full speed or evenly distributed across
transmission queues. In the worst case, this can lead to im-

Figure 9: Achieved throughput in relation to the number of
available hardware transmission queues with different sync-
times for flows with full MTU-sized packets, where the rate
limit is set to 20 Gbps and the number of receive queues is
held at 40

balances between the loads of different mq-cake instances,
where traffic enqueued in one qdisc cannot saturate the esti-
mated local rate limit while another qdisc instance is heavily
flooded with packets. These imbalances taint the active queue
estimation and lead to much lower throughput.

For example, consider a case where the global rate limit is
set to 10 Gbps and there is an incoming traffic of 10 Gbps.
In this example, 80% of the incoming traffic is enqueued in
Qdisc A and the remaining 20% of the traffic is steered to
Qdisc B. In this case, both Qdiscs will estimate two active
queues and lower their rate limit to 5 Gbps each. However,
since Qdisc B can only forward 2 Gbps and Qdisc A is capped
at 5 Gbps, the resulting throughput is only 7 Gbps. Figure 9
shows such an imbalance scenario. In this experiment, the
number of receive queues is held at 40 as the number of trans-
mission queues increases. Concentrating first on a synctime
of 200µs, this plot shows that the achieved rate worsens when
the number of transmission queues surpasses half the num-
ber of receive queues. At this critical juncture, the receive
queues no longer distribute traffic equally across the trans-
mission queues, which leads to the imbalanced scenario de-
scribed above. For example, when there are 24 transmission
queues, 16 transmission queues receive double the amount
of packets compared to the remaining 8 transmission queues.
The estimated rate of the 8 transmission queues is higher than
the traffic they receive, leading to unused bandwidth and a
declining throughput. However, as more transmission queues
are added, the imbalance is reduced. At the same time, the
estimated rate for each transmission queue also decreases,
leading to less unused bandwidth. These imbalances in multi-
queue networking environments are well known in the litera-
ture [10, 21, 22].

Discussion and Future Work
The presented experiments reveal that mq-cake is able to
shape traffic up to 25 Gbps while achieving high accu-
racy with a deviation around 0.25%. Further, mq-cake
increases throughput with a greater number of hardware
queues, achieving 14x higher packet rates as compared to
single-queue CAKE and HTB. mq-cake also improves tail-
latencies while being as accurate as the EDT-BPF approach.

The analysis of the synctime shows that setting its value
too low increases the CPU overhead. As a lower bound, the
synchronization time should be higher than the time it takes to
complete one scan over all qdiscs. On the other hand, higher
synctimes lead to less CPU load but also increase the time it
takes mq-cake to converge. To balance between CPU load and
accuracy, the experiments show that a synctime value between
100–200µs is ideal.

Looking ahead, we aim to further explore solutions for ad-
dressing load imbalances between mq-cake instances as well
as approaches to mitigate overshooting above the configured
rate limit during switching events. Concerning imbalances, in
initial tests, we could already observe that it is feasible to add
a rebalance mechanism to mq-cake, which can improve lo-
cal rate limit estimations. In addition, we seek to investigate
automated approaches to adjust and configure the synctime
interval and other internal configurations such as for example
the memlimit. In our experiments, we observed that reducing
the memlimit had positive impacts on accuracy. Furthermore,
to deepen our understanding of mq-cake’s applicability, we
plan to evaluate its performance with higher-speed network
cards and test it under real-world traffic conditions. There is
also potential to investigate other applications that could ben-
efit from our proposed synchronization mechanisms.

Upstreaming the code
The results presented above are based on an implementation
that localises all changes to the sch cake qdisc itself. This in-
volves the mq-cake initialisation code walking the qdisc tree
to find its own siblings to initialise the cross-qdisc synchroni-
sation data structure.

While this works well to evaluate the concept, this ap-
proach is not appropriate for inclusion into the mainline
Linux kernel (upstreaming). So when proposing these
changes for inclusion into the kernel, we aim to include a
proposal for a better API for this shared state.

Specifically, we propose introducing a generalised notion
of shared qdisc state that will be managed by the parent qdisc
(in this case the mq qdisc). This shared state will be allo-
cated and freed by the parent mq instance, and is passed to
the sub-qdisc when it is attached to the parent. The shared
state is keyed to a qdisc module owner, which means there
will be one instance of shared state across all identical qdiscs
attached to each mq instance.

To use this state, a qdisc module only needs define how
much memory is needed by its shared data structure (by set-
ting a shared size parameter in its qdisc operations parame-
ters), and define a function to receive the assignment from
the parent, and (optionally) an initialisation function that is
called the first time the shared state is allocated for a given
parent instance.

The assignment function will be called whenever the qdisc
is attached to a parent that manages shared state, and will
contain a pointer to an object of the size defined by the qdisc
module. The child qdisc can assign this pointer to its internal
state and use it while running for any cross-qdisc operations.
When the sub-qdisc is detached, it will be notified of removal
of the shared state, so it can detach itself.

It is up to the qdisc module itself to manage concurrency
across multiple instances accessing the shared state while
running, which is no different from the implementation we
have used for the evaluations in this paper. This also means
that using this shared state API does not change the function-
ing of the multiqueue synchronisation algorithm itself, only
the initialisation code used to setup the data structures it uses
to do its work.

Conclusion
In this work, we present and evaluate a scalable, lock-less
synchronization mechanism which allows for the correct en-
forcement of a global rate limit when scaling to multiple
hardware queues. We integrated this synchronization mecha-
nism into the CAKE queueing discipline, thus enabling run-
ning CAKE in combination with the MQ qdisc. We showed
that mq-cake overcomes the scaling limitations of HTB and
CAKE, while achieving an accuracy deviation of less than
0.25% across a variety of rate limits up to 25 Gbps. Fur-
ther, mq-cake reduces tail latencies up to 2500x as compared
to EDT-BPF. We believe that the proposed synchronization
mechanism is a promising approach to effectively share state
across queueing disciplines. As our next steps, we plan to in-
vestigate mitigation strategies to address imbalances and min-
imize overshoot above the rate limit during switching events,
enhancing overall accuracy. Additionally, we aim to evaluate
our approach using even faster network cards, assess its per-
formance under real-world traffic conditions, and deepen our
understanding of parameter configurations.

Acknowledgement
This project has received funding from the German Research
Foundation (DFG), grant 470029389 (FlexNets).

References
[1] tc-cake(8) — linux manual page. https:
//man7.org/linux/man-pages/man8/
tc-cake.8.html.

[2] 2023. Cfp: Bandwidth manager with fq codel.
https://github.com/cilium/cilium/
issues/29083.

[3] Emmerich, P.; Gallenmüller, S.; Raumer, D.; Wohlfart,
F.; and Carle, G. 2015. Moongen: A scriptable high-speed
packet generator. In Proceedings of the 2015 Internet Mea-
surement Conference, IMC ’15, 275–287. New York, NY,
USA: Association for Computing Machinery.

[4] Fomichev, S.; Dumazet, E.; de Bruijn, W.; Dumitrescu,
V.; Sommerfeld, B.; and Oskolkov, P. 2020. Replacing htb
with edt and bpf.

[5] Høiland-Jørgensen, T.; Grazia, C. A.; Hurtig, P.; and
Brunstrom, A. 2017. Flent: The flexible network tester. In
Proceedings of the 11th EAI International Conference on
Performance Evaluation Methodologies and Tools, VAL-
UETOOLS 2017, 120–125. New York, NY, USA: Associ-
ation for Computing Machinery.

[6] Høiland-Jørgensen, T.; Täht, D.; and Morton, J. 2018.
Piece of cake: A comprehensive queue management solu-
tion for home gateways. In 2018 IEEE International Sym-
posium on Local and Metropolitan Area Networks (LAN-
MAN), 37–42.

[7] Høiland-Jørgensen, T. 2023. The big fifo in
the cloud. https://blog.tohojo.dk/2023/12/
the-big-fifo-in-the-cloud.html.

[8] Linux iommu support. https://www.kernel.
org/doc/Documentation/Intel-IOMMU.txt.

[9] irqbalance. https://linux.die.net/man/1/
irqbalance.

[10] Jang, K.; Sherry, J.; Ballani, H.; and Moncaster, T.
2015. Silo: Predictable message latency in the cloud. SIG-
COMM Comput. Commun. Rev. 45(4):435–448.

[11] Jeyakumar, V.; Alizadeh, M.; Mazières, D.; Prabhakar,
B.; Greenberg, A.; and Kim, C. 2013. EyeQ: Practical net-
work performance isolation at the edge. In 10th USENIX
Symposium on Networked Systems Design and Implemen-
tation (NSDI 13), 297–311. Lombard, IL: USENIX Asso-
ciation.

[12] Kumar, A.; Jain, S.; Naik, U.; Raghuraman, A.; Kasi-
nadhuni, N.; Zermeno, E. C.; Gunn, C. S.; Ai, J.; Car-
lin, B.; Amarandei-Stavila, M.; Robin, M.; Siganporia, A.;
Stuart, S.; and Vahdat, A. 2015. Bwe: Flexible, hierarchi-
cal bandwidth allocation for wan distributed computing.
SIGCOMM Comput. Commun. Rev. 45(4):1–14.

[13] Lévai, T.; Pongrácz, G.; Megyesi, P.; Vörös, P.; Laki,
S.; Németh, F.; and Rétvári, G. 2018. The price for pro-
grammability in the software data plane: The vendor per-
spective. IEEE Journal on Selected Areas in Communica-
tions 36(12):2621–2630.

[14] McHardy, P. 2009. net sched 00/07: classful
multiqueue dummy scheduler. https://lwn.net/
Articles/351021/.

[15] iproute2-6.5. https://github.com/mq-cake/
iproute2/tree/tc-mq-cake.

[16] network namespaces. https://man7.
org/linux/man-pages/man7/network_
namespaces.7.html.

[17] Nichols, K., and Jacobson, V. 2012. Controlling queue
delay. Communications of the ACM 55(7):42–50.

[18] Segmentation offloads. https://docs.kernel.
org/networking/segmentation-offloads.
html.

[19] Rhee, I.; Xu, L.; Ha, S.; Zimmermann, A.; Eggert,
L.; and Scheffenegger, R. 2018. CUBIC for Fast Long-
Distance Networks. RFC 8312.

[20] Saeed, A.; Dukkipati, N.; Valancius, V.; The Lam, V.;
Contavalli, C.; and Vahdat, A. 2017. Carousel: Scalable
traffic shaping at end hosts. In Proceedings of the Confer-
ence of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM ’17, 404–417. New York, NY, USA:
Association for Computing Machinery.

[21] Stephens, B.; Akella, A.; and Swift, M. 2019. Loom:
Flexible and efficient NIC packet scheduling. In 16th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), 33–46. Boston, MA: USENIX
Association.

[22] Stephens, B.; Singhvi, A.; Akella, A.; and Swift, M.
2017. Titan: Fair packet scheduling for commodity mul-
tiqueue NICs. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17), 431–444. Santa Clara, CA:
USENIX Association.

