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Abstract—Recent mobility scaling research, using new data
sources, often relies on aggregated data alone. Hence, these
studies face difficulties characterizing the influence of factors
such as transportation mode on mobility patterns.

This paper attempts to complement this research by looking
at a category-rich mobility data set. In order to shed light on
the impact of categories, as a case study, we use conventionally
collected German mobility data. In contrast to ‘check-in’-based
data, our results are not biased by Euclidean distance approxi-
mations.

In our analysis, we show that aggregation can hide crucial
differences between trip length distributions, when subdivided
by categories. For example, we see that on an urban scale (0 to
~ 15 km), walking, versus driving, exhibits a highly different
scaling exponent, thus universality class. Moreover, mode share
and trip length are responsive to day-of-week and time-of-day.
For example, in Germany, although driving is relatively less
frequent on Sundays than on Wednesdays, trips seem to be longer.

In addition, our work may shed new light on the debate
between distance-based and intervening-opportunity mechanisms
affecting mobility patterns, since mode may be chosen both
according to trip length and urban form.

I. INTRODUCTION

It is important to understand mobility for a variety of
reasons, including uncertainty reduction for allocation of re-
sources such as communications and computing [1] infras-
tructure usage, robustness and interdependence [2], wireless
networking applications [3], social network analysis [4], in-
telligent transportation [5], economic development [6], crisis
response [7], [8], and large-scale energy consumption and CO2
emissions [9]-[11], to name a few.

The data sources in recent papers in the ‘big’ mobility-
scaling literature have been dollar bill movements, mobile call-
data records (CDRs), and geo-tagged social media such as
Foursquare, Twitter, Gowalla, Facebook, and others [4], [12]-
[14]. The defining characteristic of this big mobility data is not
only its size, which can be smaller than some conventional
sources — the number of trips or movements in these ‘big’
sources can range from 10° to 10? or broader — but most often
they are characterized by new forms of large-scale automatic
data collection using ‘check-ins’ (phone calls, tweets, etc.),
for some purpose other than their eventual research use, at
relatively low cost.

The Where’s George, CDRs, and social media contain either
little or no categorical data about the trip or individual, or are
limited due to privacy concerns. Spatial resolution can vary
from cell-tower radius (~ 3 km) to less than a few meters in

the case of GPS-based social media [4], [12]-[14]. There are
several challenges posed by these data sources, stemming from
the large geographic- and time-scales, as well as the incidental
sampling method, to be discussed below.

A. Our Contributions

Here, we are interested in the ability of conventionally-
collected (‘little’) mobility data to contribute to scientific
research on mobility patterns. The availability of categorical
information allows us to ask and address questions that are
challenging using exclusively check-in mobility data. Trans-
portation mode, city size, and trip purpose are particularly
helpful to shed light on mobility patterns at an urban scale.
We say this data is conventional because it was collected as
a large effort including survey design by experts as part of a
series running over many years, with an intentional focus on
understanding of mobility patterns.

Based on this we ask — how can mode, trip purpose,
and other categories further our understanding of mobility
generally, and especially of urban mobility? Also, how can
we begin to address the challenges faced by big mobility
research above? For example, in contrast to most check-
in displacements, which are inherently based on misleading
Euclidean distances and may not correspond to actual trip start
and end, we have reported lengths of the trips themselves.

Our main findings are:

o We argue that assuming that trips are i.i.d. is imprudent,
and that categories matter in refining our understanding
of mobility patterns. Mode matters, helping to character-
ize mobility universality classes, both at the urban and
inter-urban scales. E.g. there are significant differences
between walking, bicycling, and automobile driving trip
length distributions. In addition, looking at trip lengths
rescaled by maximum length for each mode, there are
significant distinguishable universal properties.

o Even for trip lengths at and below the urban scale (~ 10
km), mode differences are evident, a fact that is at odds
with previous claims [14]. On a related note, it seems
that city population is not a strong determinant of mean
trip length, with only a slight difference found in large
vs. small cities.

e Scaling of mobility confirms previous findings, when
histograms of daily trips and overnight travel are taken



together, yielding a scaling exponent of 1.44 for trip
lengths within Germany.

o We show that other categories and dependencies are also
important. Trip lengths respond differently to different
purposes, shopping and business, for example. It is also
evident that mobility is time-dependent. E.g. trip lengths
on Sunday vary from those on Wednesday.

More broadly, we see that: Scaling in response to categories
hints at the existence of different universality classes in mo-
bility patterns; purpose, along with mode, may give us insight
into how to form a bridge between distance and intervening
opportunity arguments for trip length form in cities; since this
dataset is less prone to sampling error, we believe it can also
offer the ability to understand trip length changes in time, and
helps elucidate some of the factors that are averaged together
when using large-scale check-in data.

II. RELATED WORK AND CHALLENGES

There has recently been progress characterizing scaling of
long-distance trips (~ 102 to ~ 10* km), fitting them with
power law having scaling exponent ranging between 1.50 and
1.75 [12]-[14]. Since at the longer scale fewer (motorized)
modes dominate mobility, and they are somewhat clustered
compared to non-motorized modes (see Fig. la and Table.
I), it is not surprising that these trips are easier to charac-
terize. There has been some success modelling these long
trips and attempting to determine major mechanisms driving
them. These mechanisms — some also found in past research
using conventional data — are based on distance (Random
Walks and Levy Flights) [12], [13], ‘intervening opportunity’
(place density) [15], [16], along with social networks [4], and
others [17].

Longer trips are very different from spontaneous, inexpen-
sive, dense infrastructure, dense location, urban-scale mobility,
occurring at distances less than or close to 10! km [14], [18].
Mobility research has been facing an ‘urban challenge’, due
to: A. Difficulties fitting shorter distance trips, or the necessity
of using distance transformations [13], [14], B. the limits of
spatial resolution (e.g. in CDRs) [13], and C. because heavy-
tail research is focused exactly on the fail of distributions,
due to the systemic and mathematical property of power law
scaling — to break down at small data values [19].

Recently, this work has attempted to address the apparent
debate between two schools of thought about mechanisms
influencing mobility patterns on the urban scale: A. distance-
based mechanisms [13], [20], versus B. intervening oppor-
tunity [14], [16]. Basically, their question is: Is there some
inherent property of human behavior — purely related to
distance — that leads to heavy-tailed trip-length distributions,
or are these trip length patterns driven more by urban form,
as seen in the density of ‘places’?

This mobility research faces some significant challenges:

First, these check-in sources do not usually contain very
much ancillary categorical information about a trip such as
mode, weather, purpose, number of passengers, etc. Thus, if

one wants to know the effect of external factors, one may be
limited by resources to determine all of them accurately [21].

Second is sampling bias. Between check-ins, it may be
impossible to know actual travel patterns, and check-in rates
may not be independent of factors (such as mode) that affect
these patterns. Trips may not begin and end at check-ins,
and very rarely follow a linear path — the terms ‘travel’
and ‘displacement’ are intermingled [12]—-[14], which may be
appropriate at distances mostly traversed by air, but certainly
can be misleading at urban scales. Shorter trips length mea-
surements may be more sensitive to these inaccuracies.

With one or two significant exceptions, existing mobility
scaling research seems to implicitly assume that ‘mean field’,
random, independent characteristics apply — due to the large
data size — and that these approximations are sufficient to
account for sampling bias [12]-[14], so that check-in dis-
placements are assumed to reflect actual displacements or trip
lengths.

Finally, related to sampling bias is stability of mobility
patterns over time. There is no question that mode share and
trip length change, and that this needs to be considered.

III. DATA AND METHODOLOGY

This work is based on the Mobility in Germany 2008 (MID
2008) survey data set, which was collected and is maintained
by the Infas Institute for Applied Social Science Research and
the German Aerospace Center (DLR), with the main survey
between the dates of February 2008 and March 2009. The
final survey involved 25,922 Households, 60,713 Individuals,
193,290 Trips and 36,182 Travel events. “Trips’ describe daily
journeys, where a return journey was counted as a separate trip,
while ‘travel’ data describe mobility that included an overnight
stay [22].

MID 2008 was designed carefully, as a continuation of
the West German Kontiv surveys in 1976, 1982 and 1989,
and MID 2002. It included a pre-survey, pretest, and used a
mixed methodology combination of computer-aided telephone
interview (CATI), online, and mail surveys in order to avoid
bias and maintain continuity with past surveys. Querying a
large number of households from different federal states, it was
the largest household survey apart from the official German
microscensus.

The trip lengths (¢) in our data correspond to the actual
traveled distances, reported by subjects. Hence, in contrast to
check-in data, we do not have to approximate trip lengths by
Euclidean displacements (Ar) [12]-[14], which may introduce
a bias to the scaling exponent, especially for short trips.
This is particularly interesting, since our data features a high
resolution, recorded down to the 100m scale.

If not otherwise stated, lengths shown are for trips only,
not travel, and trips are counted over the entire measurement
period. Categorical information describe trip origination and
mode describes the main transportation mode for a trip. We
define urban trips as those starting in a city (pop. > 100, 000),
and other categorical information is stated explicitly. °‘All



modes’ is composed of a weighted average of walking, bi-
cycling, automobile drivers, automobile passengers and public
transportation trips. We have removed the automobile passen-
ger mode from figures for ease of visibility, but note that its
scaling and statistical characteristics are similar to those of
public transportation (Table I).
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Fig. 1: (la) Trip length distributions (CCDF) of all trips
starting in German cities with population > 100, 000 by major
transportation mode. (1b) CCDF of trip lengths rescaled by
maximum trip length (¢/4,,,) for each respective mode.

We simply use best-fit power law scaling exponents («) to
give a sense of relative scaling in what are visibly truncated
heavy-tailed distributions, not as claim to fit. Power laws are
of the form p(¢) = C¢~2, for normalization constant C, trip
length ¢, scaling exponent «, and ¢ > {;, the minimum fit trip
length. Here we have shown trip lengths as log-log CCDFs,
p(L > £), as is common in scaling literature [19].

Statistical fitting was carried out by a method that uses max-
imum likelihood estimators and Kolmogorov-Smirnov statis-
tics to fit data with a power law. (See [19].)

IV. THE IMPORTANCE OF CATEGORIES
A. Mode Matters for Mobility Scaling

Mode Count o Lo (km) | € (km) o2

I. All Modes 52973 | 2.13 | 29.40 9.99 | 1313.79
A. Walk 14303 | 3.99 6.37 1.37 3.77
B. Bicycle 5581 | 2.72 6.37 3.47 30.06
C. Auto. Driver | 18484 | 229 | 39.90 13.06 | 1331.84
D. Public Trans. 6944 1.97 27.98 16.34 2875.92
Auto. Passenger | 7658 | 2.00 | 24.32 17.69 | 2949.11

TABLE I: Sample size, best-fit scaling exponent «, beginning
of fit £y, and moments — mean trip length ¢ and variance o
for the major modes.

Check-in-based mobility data research must average to-
gether displacements of substantially different modes. With
our conventional categorical data we can distinguish between
modes, seeing a visible discrepancy in scaling between walk-
ing, bicycling, automobile drivers, and those using public
transport (Fig. la). For comparison of the scaling, best-fit
power laws are drawn, with corresponding exponents shown
in Table I. With a > 3 for walking (A), the first two moments
— mean and variance — are defined. For bicycling and driving

(B, C), with 2 < a < 3, the mean is defined but variance
diverges. For public transport (D), with 1 < o < 2, neither
the mean nor variance is defined [23].

Scaling exponent () and mean trip length (/) for walk-
ing and bicycling (Table I: A,B), both non-motorized, differ
greatly from that of motorized modes- automobile driving and
public transportation usage (C, D), as one might expect. We
also note that walking and bicycling have exponents differing
by more than one, and that the exponent for walking, nearly
4, implies that it behaves quite differently than other modes.

Note that trip lengths, representing daily trips originating
within Germany, are truncated at approximately the diameter
of Germany' (674 km ~~ 10%%3 km, see Fig. la). This is
confirmed by intuition, since it is perhaps less likely that trips
beginning in Germany, not including an overnight stay, will
end in another country.

Rescaling trip lengths by the maximum trip length for
each respective mode, we also observe that certain modes
have somewhat similar heavy tails (Fig. 1b), again suggesting
distinct universality classes, and thus some mechanism at work
causing these differences. Between ~ 1072 and ~ 107! of
maximum trip length, trips seem clustered into two groups by
scaling, non-motorized — walking and bicycling, and motorized
— auto. driving and public transport. From 10~ to 10° of max.
trip length, scaling for the various modes seems to diverge.

Generally, correlation of mode with trip length scaling has
considerable implications for human systems such as cities.
A small change in a mode’s scaling exponent can imply a
large difference in total trips of a certain length, and therefore
total energy. Mode share also implies a significantly different
energy consumption budget. (E.g. walking vs. automobile
modes.) Since these statistics describe system characteristics
of large-scale random processes — sometimes called ‘urban
metabolism’ [10], [11], [24], [25] — and therefore substantial
amounts of energy and C'O3 emissions, they are very impor-
tant to understand.

B. Urban Mobility Patterns

Length Mode %
walking | bicycling auto. public auto.
driving | trans. | passenger
intra-urban 28.30 11.91 38.06 6.99 14.73
inter-urban 0.31 1.83 58.60 14.57 24.68

TABLE 1II: Mode share (%) for intra-urban (< 10™!7 km)
and inter-urban trips (> 10%'7 km) for large cities (pop. >
100, 000) in Germany.

For Germany’s 76 cities with over 100,000 population, the
average area is 174.02 km? [26]. Using a similar approxima-
tion as for Germany?, this yields an urban diameter of 14.89
km (=~ 1017 km).

Mode is therefore also revealing about urban scale mobility,
since we can now use trip length statistics separated by

1Using a simplifying approximation of a disc, we calculate log; o (diameter)

=logi9(24/ 4) & 2.83, where A = 357,021 km?, Germany’s square area.
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Fig. 2: CCDFs of (2a) trip length according to urban population, (2b) daily trip and overnight travel lengths originating in

Germany, taken together, (2c) trip length according to purpose.

mode to distinguish between patterns near and below this
scale (Fig. 1a). For intra-urban trip lengths below the urban
diameter, non-motorized modes contribute significantly to trip
statistics (Table II) At the inter-urban scale, trip statistics are
mostly the result of motorized modes, as expected.

It is important to note these scaling differences, especially in
intra-urban region. Here, averaging together all of these modes
(‘all modes’) is essentially averaging the heads of some trip
length distributions together with the tails of others (See ¢y and
¢, Table T and Fig. 1a), and thereby aggregating the results
of processes belonging to significantly distinct universality
classes. It is therefore not surprising that urban scale mobility
patterns have posed a challenge to those using aggregated
check-in data.

As noted above, the non-motorized versus motorized modes
each seem to be the product of some unique mobility process
at the urban scale — since both their absolute and rescaled
trip length distributions stand apart (Figs. 1a and 1b). These
largely different exponents imply that trips by certain modes
are caused by different processes and system characteristics,
belonging to distinct universality classes — plausible when
comparing these groups of modes. This also suggests that
we may be able to consider modes as making up separate
phases of the underlying process of mobility [23], [27], [28].
Also, due to the different form of rescaled trip lengths for non-
motorized modes — perhaps exponential — this is interesting to
consider in the context of mobility behavior of other organisms
[29]. Thus with this information, we can begin to investigate
causal mechanisms more carefully.

It seems that mode allows us to describe trip lengths
primarily by their scaling exponent within the intra-urban
region, perhaps down as far as fy = 6.37 km (10 km)
(Table I). However, below that distance other factors may be
at work, and the behavior may be better described primarily
by something other than scaling with respect to the mode
category.

On a related note, trip lengths seem related to urban popula-

Urban Population Count « Lo (km) | € (km) o2
small (< 20k) 23433 | 241 43.32 10.52 1202.28
medium (20k-100k) | 53038 | 2.35 30.38 10.62 1329.72
large (> 100k) 53011 | 2.13 29.40 9.99 1312.92

TABLE III: Sample size (Count), best-fit s_caling exponent (),
beginning of fit (£y), mean trip length (/) and variance (c?)
according to city population.

tion, but not strongly (Fig. 2a and Table III), confirming other
results [18]. For example, there is a small difference between
mean trip lengths (¢) in low-population rural municipalities
versus larger urban populations. It therefore seems further
investigation is needed to determine whether mean trip length
scales allometrically with city population alone, as has been
found for other urban parameters [30].

Also, this indeterminate response by trip length to city
population may support previous results about the indepen-
dence of trip length and city area [14], but since the Pearson
correlation of urban population and area in Germany is not
high (r = 0.51) [26], this cannot yet be confirmed.

C. Trips taken together with overnight travel confirm previous
findings

Regime Count « £y (km) 2 (km) o2
A 209,045 1.44 1.81 48.97 14,727.00
B 8,055 2.17 816.00 1,670.36 | 2,172,741.49
C 380 591 | 11,000.00 | 11,312.92 | 7,047,781.70

TABLE IV: Count, o, ¢, ¢ and o2 for the three distance
regimes of trips and travel taken together.

Furthermore, if we take daily trips and overnight travel
together (Fig. 2b), there seem to be three regimes: (A) Within
Germany, (B) outside of Germany, and (C) near the maximum
distance that can be traveled from Germany to the other side
of the world.



For trips within Germany (Regime A), our best-fit gives
us a scaling exponent of @ = 1.44, which is proximate to
that found for Foursquare data (v = 1.50) [14], and for the
Where’s George data (o« = 1.59) [12], though not as near to
that found using call data records (o = 1.75) [13]. Similar to
trips without overnight travel (Fig. 1a), this is truncated by the
diameter of Germany (~ 102-%3 km).

For longer trips outside of Germany (Regime B), our best-
fit result is quite different from others (o« = 2.24). However,
big mobility data sources can include trips from all possible
origins. Since our data was collected differently and only
includes journeys originating within Germany, is not surprising
that we see a marked decrease in the number of trips of
this length. This second regime is truncated at roughly the
distance of the furthest significant travel destination, Southeast
Asia. (E.g. The flying distance from Germany to Thailand is
approximately 8667 km ~ 1034 km.) This truncation seems
to agree with 2008 travel planning statistics, which show that
few journeys (< 1%) were planned farther than Asia [31].

D. Distance-based and intervening opportunity arguments

Purpose Count o lo (km) | ¢ (km) o2

education 12704 | 3.06 31.07 8.15 574.29
shopping 40322 | 2.88 35.15 5.19 196.73
work 25808 | 2.71 38.95 17.40 1654.51
errands 23716 | 2.51 45.13 8.06 593.81
accompanying driver | 16447 | 2.50 32.30 7.74 476.70
free time 61152 | 2.10 30.38 13.55 | 2209.65
business 2706 1.82 12.35 36.58 | 8011.00

TABLE V: Count, o, £, ¢ and o2 for trips by purpose.

This mode information lets us address the central premise
of a previous work, which suggested that trip length patterns
cannot be distinguished at an urban scale [14]. These authors
then went on to give convincing arguments that ‘intervening
opportunity’ — using rank-distance of place — can largely
explain urban trip length patterns, rather than purely distance-
based mechanisms.

Here, however, we have seen that trip lengths according
to mode are distinguishable at this scale, lending credence to
distance-based mechanisms. Our evidence does not necessarily
contradict their conclusions, but rather allows us to hypothe-
size that mode, together with trip purpose — both obviously
strongly correlated with trip length (Figs. 1 and 2c) — can
help elucidate the debate between these apparently disparate
schools of thought. The distinct response of trip length to
purpose (Fig. 2c) seems to support this line of thinking, since
by necessity trip length according to purpose must respond to
urban form (density and location of schools or grocery stores,
for example). Another work analyzing earlier versions of our
data set has also suggested that trip distance is a function of
facility location (urban form), which then determines mode
[18]. Certainly, further work is needed, such as multivariate
analysis and clustering.
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Fig. 3: (3a) Weekday hourly trip frequency according to mode.
(3b) CCDF of weekday hourly trip lengths. (3c) Day-of-week
trip frequency according to mode. (3d) CCDF of trip lengths
by day-of-week.

Time of Day | Count o £o (km) | € (km) o2
before 5 AM 1670 | 2.01 25.27 32.92 10,123.99
5to7 AM 7026 | 2.41 20.58 23.71 3,268.39
7 to 9 AM 21991 | 2.33 16.15 11.29 1,717.64
9to 11 AM 24511 | 2.03 10.45 11.31 2,159.07
11 to 2 PM 37693 | 2.32 31.36 9.49 1,046.26
2to 5 PM 43375 | 2.43 51.30 10.34 868.00
5to 8 PM 34742 | 2.55 31.36 9.68 705.90
8 to 10 PM 7819 | 2.39 34.30 9.58 684.20
after 10 PM 4060 | 2.89 30.40 10.94 550.62

TABLE VI: Count, «, ¢, ¢ and o2 for trips by time of day.

Day of Week | Count | «a | £ (km) | £ (km) o?
Sunday 17768 | 2.11 | 32.34 15.84 | 2,652.07
Monday 28476 | 2.42 | 34.20 9.66 | 1,026.79
Tuesday 28449 | 242 | 3881 9.47 919.62
Wednesday 28649 | 246 | 48.45 9.86 966.94
Thursday 27787 | 2.38 | 3895 1007 | 943.46
Friday 27878 | 222 | 43.23 11.46 | 1,507.96
Saturday 23880 | 223 | 3230 12.60 | 1,789.28

TABLE VII: Count, «, ¢y, ¢ and o2 for trips by day of week.

V. THE INFLUENCE OF TIME
Finally, we see that trip frequency, mode share, and trip
lengths are clearly dependent on time. On weekdays, according
to time-of-day, we see an expected daily pattern of increased
trips in morning (~ 7 AM) and evening (~ 5 PM) (Fig. 3a).



We also note a change in the relative mode share at different
times of day. Driving, for example, makes up a much higher
proportion of trips during the day, lower in evening hours. Trip
lengths are also notably responsive to time-of-day, e.g. from
5 to 7AM, trips tend to be longer (Fig. 3b).

Similar observations can be made about day-of-week pat-
terns. For example, on Sundays we see a change in trip
frequency and mode share from weekday levels, with fewer
overall trips and less driving relative to other modes. (Fig. 3c).
Trip lengths are also clearly responsive to day-of-week, with
a higher proportion of long trips also on Sunday (Fig. 3d).

Aggregation over all time periods can therefore also obscure
time-dependency and potentially bias results. We must con-
clude that sampling time needs thorough investigation when
making statements characterizing average mobility patterns.

VI. CONCLUSIONS AND FURTHER WORK

We have argued that aggregate data misses important aspects
of mobility patterns. As a case study, we have analyzed a
category-rich set of German mobility data and found that
mode, city size, population, purpose, and temporal aspects of
trips can be illustrative. This conventional data can expose both
inter- and intra- urban-scale mobility, and possibly address
related issues such as urban metabolism, allometric scaling,
and the debate between distance- and intervening-opportunity-
based mechanisms for mobility patterns.

We understand our work as a first step toward a more
refined understanding. In particular, we have only focused
on Germany and will be interested whether other countries
have similar characteristics. Our data may still have some bias
and errors, and we would like to address those. Moreover, so
far we have focused on data analysis only. In future work,
it would be interesting to come up with models explaining
the observed statistics. Based on our work, mode, purpose,
urban population, and time look like useful categories to
investigate. From other research, density, mode availability,
and other urban parameters also seem relevant [14], [18],
[32]. Further work fitting trip length along with duration,
analyzing mean squared distance, and using clustering and
dimensionality reduction to understand the main categories
and dependencies making up the space of mobility universality
classes all seem promising.
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