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Abstract—Data plane programming gained much attention
in the past years, having a fast-growing community both in
academia and industry. Many tools have emerged to simplify
and/or help the development of reliable data plane programs,
including fuzzing, formal verification, and different code genera-
tors. However, even the tools themselves must be verified to meet
the most stringent dependability requirements. In this paper, we
investigate various tools and methods to verify code generators
leveraging P4 through the example of P4RROT (an open source
code generator focusing on the application layer). We show that
our approach is efficient and can indeed successfully find bugs.
We identify two bugs and propose reusable ideas, such as the
use of ghost code.

Index Terms—code generation, in-network computing, data
plane verification, P4

I. INTRODUCTION

Many novel applications leveraging the high-throughput and
ultra-low latency of programmable data planes have recently
been proposed in the literature [1]. Certain applications —
including complex event detection, caching, data aggregation,
and in-network security, among many others — describe quite
complex functionalities. One way to increase productivity
and adaptability in software development is by using higher
abstraction levels. Just like it is much faster to implement the
same functionality in Python than in Assembly, the different
levels of abstraction are also observable in the world of
programmable data planes.

However, higher abstraction levels require dependable tools
that accurately translate the specified high-level intentions to
a lower-level code (e.g., P4). In this paper, we focus on
the verification of the open source P4 code generator called
P4RROT [2], [3] that compiles Python constructs to P4. Al-
though P4RROT is a single tool, the challenges we encounter
are common to other similar tools, and the methodology
we propose can easily be adapted to other data plane code
generators.

Our contributions are as follows:

• We analyze and decompose the verification task of
P4RROT;

• We investigate different state-of-the-art and state-of-the-
school tools and methods, and carry out an evaluation
based on P4testgen [4] and Atheris;

• We derive reusable methodologies, such as the use of
ghost code.

After developing and implementing our method, we found
two real bugs in the P4RROT source code, showing the need
for verification methodologies of data plane code generators.
Our method can increase the trust in the code generator tools in
an easy-to-integrate manner. Moreover, this case study led us
to a better understanding of how to further develop P4RROT,
and the observations we have taken could also be applied to
other code generators.

II. MOTIVATION

A. Software-Defined Networking and P4

Software-Defined Networking divides a programmable net-
work device into two main components: the Data Plane
describes the packet processing pipeline and the Control
Plane that configures the first one. While control plane pro-
grammability has a long history (e.g.: OpenFlow), data plane
programmability is relatively new. One of the most popular
data plane programming languages is P4.

P4 is a domain-specific language tailored for packet process-
ing. A P4 program always describes the processing of a single
packet based on the architecture of the target device (e.g.: soft-
ware switches, smartNICs, NetFPGAs or even programmable
ASIC switches such as the Intel Tofino). Since P4 is a domain-
specific language, it has different strengths and limitations
compared to a general-purpose language. Different targets can
pose additional constraints to enforce or even guarantee fast
and efficiently executable solutions.

B. Code generators

Broadly speaking, we use different abstraction levels during
the software development process to transform high-level
requirements and designs into low-level deployable artefacts.
Part of the process is manual (e.g., high-level UML diagram to
a more detailed one), while others can be automated (e.g., C
to Assembly). Since humans deal better with higher levels of
abstraction, automating the majority of the development pro-
cess offers benefits in development time and costs. Moreover,
these tools often build on top of one another. A well-known
example is the different database management libraries such as
Hibernate for Java. They generate SQL tables and SQL queries
based on code written in a general-purpose language. A more
exotic example is AtelierB which provides a programming
language suited for formal verification of the program that
can be later exported into Ada or C.
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Fig. 1. Different tools offer different abstraction levels for programmable
data planes.
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Fig. 2. The high-level overview of the use of P4RROT. [2]

The same holds for programmable data planes as well.
Figure 1 depicts different data plane programming tools
corresponding to different abstraction levels. Target devices
usually require a deployable binary to execute the implemented
behaviour which is not suited for human beings. DPDK, eBPF,
and microC allow us to use C (or a restricted/slightly modified
version of it) to describe our solution using a well-known
language. P4 offers a higher level of abstraction tailored to
packet processing. There are even compiler backends that
transform P4 code into C using DPDK or eBPF. Thanks to P4’s
success, many tools started to build on top of P4. Lucid [5] is a
programming language providing an event-driven abstraction
for implementing control functionalities for the Intel Tofino
switch. Sonata [6] offers a scalable and flexible query language
to collect information about the network traffic. Poise [7]
is able to define context-aware security policies. Marple [8]
offers real-time performance monitoring using its Python-like
query language. Finally, P4RROT [2], [3] aims to generate
code for the application layer and general computing tasks.
These exampples all emit P4 code among many others [9]–
[11].

Verifying the correctness of automated translations is crucial
in high-stake projects that require reliable tools.

C. P4RROT introduction

P4RROT [2] is a code generator library aiming to speed up
the prototyping and development of data plane programming
projects. It mainly focuses on the application layer and general
computing tasks.

The use of P4RROT is depicted in Figure 2. The code
generator takes 2 inputs: 1) a P4 template code, 2) the custom
logic described in Python using the library. The result is a P4
program that can be compiled to the desired target using the
respective compiler.

The templates are usual P4 programs describing often
used functionalities and referencing generated files using the
#include pragma.1

The Python script describes two kinds of main components:
FlowProcessors and FlowSelectors. FlowProcessors describe
the computation logic using so-called Commands that can
hide very simple and very complex behaviours. Flow Selectors
are responsible for picking the packets that are subject to the
defined computation.

To promote early testing, P4RROT offers a mechanism
to simulate the behaviour of the described computations.
Besides the code generation process, commands also contain
the expected behaviour described in Python.

P4RROT is a very thin code generator focusing on tricks
and workarounds to overcome limitations and compiler bugs.
A successful code generation does not guarantee that the P4
compiles to the target. Instead, it helps the programmer to
detect bottlenecks as fast as possible and quickly alter the
solution.

D. Testing and Validation of P4

To make P4 solutions reliable many methods and tools have
been already proposed in the past. Some of them target the
testing of individual programs while others hunt for bugs in
the compilers.

For those looking for a simple unit-test-like experience,
the STF and PTF frameworks offer a quick solution. FP4
offers line rate grey-box fuzzing for P4 programs using an
extra switch generating packets and evaluating the results.
P6 is a reinforcement learning guided fuzzer that can also
automatically patch P4 programs in certain cases. P4testgen [4]
uses Z3 semantics to generate input packets for maximum path
coverage. Similarly, Gauntlet uses Z3 semantics to compare
the meaning of the program between compiler steps. It also
generates input packets that trigger the detected differences.
P4Fuzz also targets the compiler. It generates random P4
programs and compares the yielded output using different
targets (differential testing).

Besides the mentioned ones, many other projects investi-
gated the subject [12]–[19].

III. METHODS AND IMPLEMENTATIONS

A. Problem analysis and challenges

A usual way of testing compilers and code generators is
finding inputs that crash the compiler. P4RROT’s method is
to quickly identify what are the resource bottlenecks and ar-
chitectural constraints through try-and-fail rounds and quickly
find an alternative solution. In this context, the role of P4RROT
is to quickly identify failing implementations. Based on this
consideration, finding inputs that result in non-compilable P4
code is not helpful.

Moreover, P4RROT does not perform strict semantic vali-
dations making it very easy to generate P4 code, which will
most certainly fail. Because of the lack of semantic checks, it

1Most P4 pragmas have the same meaning as in C or C++.



is challenging to create meaningful code without the original
P4 compiler.

FlowSelectors are fairly simple, while the abstractions of
FlowProcessors can hide very complex behaviour. Thus, we
expect to find the majority of defects in the latter one and
thus we focus on this in our study.

How can we ensure that when a meaningful FlowProces-
sor generates a compiling P4 code, the P4 code behaves
as expected? FlowProcessors use so-called Commands and
StatefulElements to describe their behaviour. One approach is
to require and define a formal specification for these elements
and compare it with the formal semantics of the generated P4
code. Although this seems possible since prior work achieved
significant results in this area, providing a formal specification
seems impractical for an average tool developer. A second
approach is to leverage the built-in simulation capabilities of
P4RROT. P4RROT’s design allows programmers to express
the Python equivalent of their generated P4 code, thus pro-
moting the early testing of algorithms. We decided to compare
the behaviour of the Python code and the P4 code.

Besides ensuring that the generated code does what it
should, we must also check that generated code segments do
not interfere with each other (e.g., defining 2 helper variables
under the same name).

We decompose the testing task into 2 subtasks. First,
we should show that the Commands indeed calculate what
they are expected to do. Second, we must ensure that the
internal workings of different code parts and representations
are isolated.

B. Functional correctness

Our main goal is to find bugs by comparing the results of
the P4-based calculations and the Python-based simulations.
A simple state-of-the-school approach is differential testing.

To derive test cases, we can use both the Python simulation
and the generated P4 code. Test cases based on the Python
simulation could reveal bugs related to faulty code generation.
On the other hand, the P4 code-based test generation could
reveal too simplistic simulations, for example not taking into
account the overflows and underflows of the P4 language.

We would like to automate the test case generation as
much as possible. As mentioned before, generating meaningful
FlowProcessors is challenging. Moreover, a Command or
Stateful element is excerciseable by a single well-designed
FlowProcessor. On the other hand, generating test inputs (test
packets in this case) for a given program has a variety of tools
available. Based on these considerations, we write FlowPro-
cessors manually that exercise a specific abstraction, while the
test inputs are generated automatically using available tooling.

Generating input packets based on the Python simulation we
experimented with both Hypothesis and Atheris. Hypothesis is
a property-based testing library, while Atheris is a coverage-
guided fuzzer. Due to page limitations, we only show evalua-
tion results for Atheris. Note that Atheris proved to be more
powerful than the black-box testing approach of Hypothesis.

Generating test cases based on P4 programs is also possible
thanks to a big variety of analyzers and fuzzers. Our final
choice is P4testgen, a young project lately integrated into the
P4 reference compiler suggesting serious long-term support.
Moreover, it promises to support multiple target architectures.
It performs symbolic execution after converting the P4 code
into Z3 expressions. It can emit input packets that execute
all reachable paths. After feeding the input packets to the
Python simulator and a real P4 deployment, we can compare
the results.

We further improve the effectiveness of the P4-based test
case generation by introducing the concept of ghost code to
P4RROT. Ghost code is a piece of program, that is available
for the compiler but does not affect the generated executable.
We implemented special Commands that generate P4 code
guarded by #ifdef pragmas. With the appropriate compiler flag,
this will be included in the p4testgen analysis but not in the
compiled code that processes the input packets.

To illustrate the applicability of our ghost code extension we
present two different use case scenarios. First, in the case of
testing arithmetic operations (e.g., addition, subtraction), we
produce a sequential pipeline that can be discovered with a
single input packet containing only 0 bits. Using ghost Com-
mands, the tester can give further guidance to the symbolic
executor troughout artificially introduced execution paths (e.g.,
checking for boundary values). A second use case could be to
force p4testgen to generate input packets for interesting value
constellations in the middle of the pipeline (e.g., could this
intermediate value be 0, could these 2 values be equal, etc.).

Ghost code can be introduced through not just dedicated
Commands but also by the developer of the component (e.g.:
Command, StatefulElement) to increase the testability of the
solution.

C. Isolation

Our second subtask is ensuring that Commands and State-
fulElements do not interfere with each other’s operation. The
most probable way of this happening is by using the same
variable, or the same name for different purposes.

P4RROT has a built-in method for generating unique iden-
tifiers that are used as a postfix in the generated name to help
prevent this kind of issue. Static analysis of the generated
P4 code can help in checking whether the code generation
actually uses appropriate names or not. A big advantage of
static analysis is that the generated P4 code does not have to
comply with any resource constraints or other limitations since
we do not have to execute the code on a real target.

Only considering names requires the partial parsing of the
program’s abstract syntax tree (AST), simplifying our work.
Writing a fully functional parser for every P4 architecture
would be quite time-consuming. Instead, we take the source
code and feed each line to a simplified parser identifying the
names. To this end, we use Lark, a parser generator library.

We should check every generated P4 identifier including but
not limited to: variables, tables actions, action- and function
parameters. If variable-, table and action names are used more
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Fig. 3. Zero command with an artificial bug in the Python simulation.

than once, the P4 compiler should also catch them as double
declarations making them less dangerous and easier to detect.
However, shadowing of names can be more dangerous as
we see through a real-world bug detected by our tool in the
Subsection IV-C.

IV. EVALUATION

A. Effectiveness of Atheris-based testing

To investigate the effectiveness of the Atheris-based testing
(for Python), we extended P4RROT with a synthetic Zero
command that sets the value of a given variable to 0. We
intentionally introduced a bug to the python simulation: it only
performs the required assignment when the variable’s current
value is not equal to a predefined constant (597597). Figure 3
highlights the relevant snippets of the implementation and the
generated P4 code.

Our Python-based fuzzing using Atheris indeed discovers
this bug. The fuzzer was started to run a maximum of 100000
calls. During the fuzzing, we save the inputs and outputs.
Later, we convert these inputs into STF test cases and execute
them to compare the output of the Python-based simulation
against the output of the generated P4 data plane.

This example also demonstrates the usefulness of Python-
based testing. Catching this bug based on the generated P4
code is almost impossible, the output of the P4 code (i.e., the
effect of Zero command) is independent of the input.

Finally, we also investigated the time required to perform the
Atheris-based testing. Figure 4 depicts the execution time for a
representative set of test cases. The test was run using a single
fuzzing process. The time spent on testing can be divided
into 3 main parts: 1) generating the inputs and discovering
the Python code using Atheris, 2) running the STF tests
and 3) other setup and conversion logic. Generating the test
cases accounts for the majority of the runtime. This can be
further divided into instrumenting the functions and running
the fuzzer itself. The instrumenting of every function takes
18-26 seconds.

These numbers can be further improved, by instrument-
ing only the simulation code instead of instrumenting every
available function. However, to do it in an efficient and
easy-to-automate way, we need to slightly alter P4RROT’s
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class Zero(Command): 

    ... 

 

    def get_generated_code(self): 

        ... 

 

    def execute(self,test_env): 

        test_env[self.vname] = 0 

 

 

... 

if (hdr.test_header.testfield==597597) 
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Fig. 5. Zero command with an artificial bug in the P4 code generation.

design. By placing the functions responsible for the simu-
lation in a different Python module, one can leverage the
instrument_imports of Atheris to instrument only the
necessary code parts. By separating the Command and its sim-
ulation we also open an easy way to use different simulations
for the same command, which can be useful when working
with approximations and probabilistic data structures.

B. Effectiveness of P4Testgen-based testing

Similarly to the evaluation of the Atheris-based testing, we
implemented the Zero command with an artificial bug in the
P4 code generation as depicted in Figure 5.

Since p4testgen discovers every possible path in the P4
code, it also discovers the hidden bug. Also, the P4-based
testing can not be replaced by the Python-based fuzzing, since
the Python simulation does not depend on the input at all.

Figure 6 presents the runtime of the same tests as presented
for the Atheris-based testing. We make three key observations:
1) it usually requires much less time, 2) the generation of test
cases is not the major part of the process in most cases, and
3) the exception is the first test case exercising the simple
arithmetic operations. The first one can be explained by the
different nature of the fuzzing and the constraint solvers.
Fuzzing generates many inputs and tries to mutate them in
a way to discover bigger new parts and paths of the code,
while p4testgen intentionally creates a single packet for every
possible path using the Z3 semantics of the code. The second
one is explained by the fact, that although test generation takes
less time, some aspects are independent of the number of
test cases, e.g., compiling the P4 code, and starting a switch.
The third one is caused by the excessive use of ghost code
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in the first test case. Introducing new independent branches
exponentially increases the number of paths the constraint
solver has to account for. This also warns us, that solutions
with too many branches can overwhelm p4testgen.

C. Effectiveness of Static Analysis

Each test finished within 0.07 seconds, showcasing the
practicality of our solution. These results are not unexpected,
since we parse every line separately not leaving room for very
complex abstract syntax trees.

The analysis raised 24 warnings in total, 14 of which were
false-positive. 9 out of the 10 remaining warnings were caused
by the same bug, and there was another independent bug. Thus,
we managed to discovered 2 real bugs in P4RROT with the
use of SA.

The first bug is relatively simple and harmful. P4RROT
allows the use of variables that are declared within a control
block but outside of the apply block. In P4RROT, it was
treated as a local variable, while in P4 it is more similar
to a global one. Automatically appending unique IDs to the
end of these variables can quickly fix the bug. Also, it is
relatively harmless, since the P4 compiler would also detect
if two variables have the same name.

The second bug is trickier and the P4 compiler would
not detect it. The code generator uses Python f-strings to
generate certain code parts, which allows the programmer to
easily insert variables in the middle of strings while converting
them into text. E.g., f"calculation(int {vname}){
..." inserts the value of vname into the text. For simplicity
reasons, we use this analogue example. In our particular case,
vname is an optional parameter with a None default value.
Since None can be converted to a string, the code produced the
f"calculation(int None){ ..." output without any
error. However, this None is a perfectly valid P4 identifier as
well, that is able to shadow another None value thus potentially
altering the meaning of the program without raising any errors
during compilation.

V. CONCLUSION AND FUTURE WORK

We embarked on a journey of verifying the code generators
through the P4RROT case study. After experimenting with
different tools and methods, we found two bugs and proposed
methods such as the use of ghost code that can help in
verifying other P4 code generators. Though we have already

increased our confidence in the code generator, certain aspects
remain for future work like testing approximations, random
behaviour, or target-specific state transitions.
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