
“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Programmable Intelligent Networks:

Opportunities and Challenges

Stefan Schmid

Acknowledgements:

“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Programmable Intelligent Networks:

Opportunities and Challenges

Stefan Schmid

Acknowledgements:

Two tales:
performance and
dependability

“We cannot direct the wind,
but we can adjust the sails.”
(Folklore)

Programmable Intelligent Networks:

Opportunities and Challenges

Stefan Schmid

Acknowledgements:

Proudly hosting
IEEE NetSoft

2026 ☺

It`s a Great Time to Be a

IEEE NetSoft Researcher!

1

It`s a Great Time to Be a

IEEE NetSoft Researcher!

Automation and
Innovation

1

It`s a Great Time to Be a

IEEE NetSoft Researcher!

Enables and motivates

self-driving networks!

Automation and
Innovation

1

2

Time is right indeed
Network performance is critical

Credits: Nicola Calabretta

⇢ Increasing gap between network and compute

3

Time is right indeed
Network performance is critical

⇢ In general: transistor density

rates, power density rates are

stalling

⇢ Hence: more equipment,

larger networks

⇢ Resource intensive and:

inefficient
G
b
p
s
/
€

Time

Emerging Flexibilities

10

1G-4G Sector antenna

Fixed radiation pattern

Fortunate user

Unfortunate user

5G: Adaptive multi-user beamforming
6G: Control objects in the environment?

?

From generation to generation more…

Flexibilities in Cellular

credit: Emil Björnson, Christos Liaskos

11

Wall penetration:

− 20 dB or more

Reflection

Base station

Traditionally limited by

Line of Sight Only

credit: Emil Björnson

12

Reconfigurable

intelligent surface (RIS)

Base station

Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable

Surface: Two-dimensional array of elements

Beyond Line of Sight: Virtual LoS with

Programmable Surfaces

credit: Emil Björnson

13

Reconfigurable

intelligent surface (RIS)

Base station

Reconfigurable: Properties can be changed

Intelligent: Real-time programmable/controllable

Surface: Two-dimensional array of elements

Literature: Software-Defined Reconfigurable Intelligent Surfaces: From Theory to End-to-End
Implementation. Liaskos et al. Proceedings IEEE, 2022.

Beyond Line of Sight: Virtual LoS with

Programmable Surfaces

6

How to interconnect?

Another Example: Flexibilities with

Topology Programming

7

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

Another Example: Flexibilities with

Topology Programming

7

Highway which ignores

actual traffic:

frustrating!

Many flavors,

but in common:

fixed and

oblivious to

actual demand.

Another Example: Flexibilities with

Topology Programming

7

Another Example: Flexibilities with

Topology Programming

7

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

Another Example: Flexibilities with

Topology Programming

7

1 2 3 4 5 6 7 8

e.g.,

mirrors

new flexible

interconnect

demand

matrix:

Another Example: Flexibilities with

Topology Programming

7

1 2 3 4 5 6 7 8

Matches demand

demand

matrix:

e.g.,

mirrors

new flexible

interconnect

Another Example: Flexibilities with

Topology Programming

7

1 2 3 4 5 6 7 8

new

demand:

e.g.,

mirrors

new flexible

interconnect

Another Example: Flexibilities with

Topology Programming

7

1 2 3 4 5 6 7 8

new

demand:

Matches demand

e.g.,

mirrors

new flexible

interconnect

Another Example: Flexibilities with

Topology Programming

7

1 2 3 4 5 6 7 8

Self-Adjusting

Networks

new

demand:

e.g.,

mirrors

new flexible

interconnect

Another Example: Flexibilities with

Topology Programming

7

Reconfigurable Optics
Optical Circuit Switch

⇢ Optical Circuit Switch rapid adaption of physical layer
⇀ Based on rotating mirrors

Optical Circuit Switch
By Nathan Farrington, SIGCOMM 2010

Lenses
Fixed
Mirror

Mirrors on Motors

Rotate Mirror

8

Another Example
Tunable Lasers (e.g., Microsoft’s Sirius)

Multi-
wavelength

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Electrical switch

with tunable laser
Optical switch

Passive

9

Another Example
Tunable Lasers (e.g., Microsoft’s Sirius)

Multi-
wavelength

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Electrical switch

with tunable laser
Optical switch

Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 9

Another Example
Tunable Lasers (e.g., Microsoft’s Sirius)

Multi-
wavelength

source

Wavelength
selector

⇢ Depending on wavelength, forwarded differently

⇢ Optical switch is passive

Electrical switch

with tunable laser
Optical switch

Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 9

Analogy

Golden Gate Zipper

10

11

⇢ Scalable control plane such dynamic programmable networks?

⇢ Implications on other layers of the networking stack?

How to do routing, congestion control, buffer management

on dynamic networks?

See interview with Amin
Vahdat, Google in June
issue of CACM‘25:
https://www.youtube.com/
watch?v=IxcV1gu8ETA

Many research avenues for dynamic networks:

Control and Network Stack

Roadmap

⇢ Traffic: structure in traffic = optimization opportunity

for NetSoft researchers

⇢ Dependability: Flexibility may introduce complexity,

a case for ML and formal methods?

Two tales:

Roadmap

⇢ Traffic: structure in traffic = optimization opportunity

for NetSoft researchers

⇢ Dependability: Flexibility may introduce complexity,

a case for ML and formal methods?

Two tales:

Datacenters (“hyper-scale”)

Traffic
Growth

Interconnecting networks:

a critical infrastructure

of our digital society.

+network

Why Innovations Needed?

Explosive Traffic

13

Can we exploit this

for optimization?

Empirical studies:

s
o
u
r
c
e
s

destinations

Facebook

s
o
u
r
c
e
s

destinations

Microsoft

traffic bursty over time

M
b
p
s

Facebook

Time (seconds)

traffic matrices sparse and skewed

But good news: traffic also has

Much Structure

14

Diverse patterns:

⇀ Shuffling/Hadoop:

all-to-all

⇀ Collective communications/All-

reduce/ML: ring or tree traffic

patterns
⇀ Elephant flows

⇀ Query traffic: skewed
⇀ Mice flows

⇀ Control traffic: does not evolve

but has non-temporal structure

Diverse requirements:

⇀ ML is bandwidth hungry,

small flows are latency-

sensitive

Shuffling

All-to-All

ML

Large flows

Delay
sensitive

Telemetry
/ control

34

Be Aware of Your Application

Traffic Diversity

15

Flexibility

Structure

Performance,

Sustainability,

etc.

More!

Self-Driving

and Adaptive

Networks

Now is the time!

New!

The big picture of

Self-Driving Networks

16

A fundamental question:

How much structure is
there? And how to
measure and model
structure in workloads?

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

vs

18

Intuition
Which demand has more structure?

vs

⇢ Traffic matrices of two different distributed

ML applications

⇀ GPU-to-GPU

More uniform More structure

vs

18

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

vsvs

19

Intuition
Spatial vs temporal structure

⇢ Two different ways to generate same traffic matrix:

⇀ Same non-temporal structure

⇢ Which one has more structure?

Systematically?

vsvs

19

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

T
i
m
e

Original

20

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows Uniform

More structure (compresses better)

Increasing complexity (systematically randomized)

Original

20

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Randomize rows UniformOriginal

20

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

20

Trace Complexity
Information-Theoretic Approach

“Shuffle&Compress”

Difference in size
(entropy)?

Randomize rows UniformOriginal

Compress

Shuffle

Difference in size
(entropy)?

Can be used to define
2-dimensional

complexity map!

20

bursty uniform

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

temporal complexity

Avin et al. (Sigmetrics’2020)

Complexity Map

No structure

bursty & skewed
skewed

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

21

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Different

structures!

bursty uniform

bursty & skewed
skewed

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

21

n
o
n
-
t
e
m
p
o
r
a
l

c
o
m
p
l
e
x
i
t
y

pF

CNS ML

DB

Web

HadMulti
Grid

temporal complexity

Potential

gain!

bursty & skewed
skewed

bursty uniform

NN

Avin et al. (Sigmetrics’2020)

Complexity Map

Our approach: iterative

randomization and

compression of trace to

identify dimensions of

structure.

demand

oblivious

demand

aware

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

Traffic is also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Literature: Analyzing the Communication Clusters in Datacenters. Foerster et al. WWW Conference, 2023.

22

⇢ Observation 1: Different apps have different flow size distributions

⇢ Observation 2: Most flows are small, most bytes in elephant flows

Websearch- 2010

Datamining- 2011

Hadoop- 2015

Pareto distribution

103 104 105 106 107 108 109 1010
0

0.25

0.5

0.75

1

100ns 1 s 10 s 100 s 1ms 10ms 100ms 1s

Flow size (bytes)

C
D

F
o
f

b
y
te

s
Flow transmission time (40Gbps)

50

Even more structure:

Flow Size Distribution

23

⇢ We know properties but researchers have limited data currently.

⇢ How to reproduce similar patterns synthetically? Can use Markov

chains to „emulate“ arbitrary points in complexity map!

⇢ But what is “similar”? How different shall they be?

⇀ Similar = maps to same point in complexity map? Many more dimensions!

⇀ Is playing trace backward still similar?

⇀ How to generate similar traffic for larger networks?

⇢ How to efficiently emulate application behavior? Use of „mini-

apps“ (no-op for compute)? Simulators like SimAI – efficient?

Can we use LLMs?

Synthesis for

Researchers?

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

How to exploit structure
programmatically?

Example: Exploit Structure with

Smart Switches

24

⇢ What if switches become smart?

Example: Exploit Structure with

Smart Switches

24

The Challenge: How to use shared memory?

Scenario 1

Packet arrives

for violet port!

25

Admit to buffer!

The Challenge: How to use shared memory?

Scenario 1

25

The Challenge: How to use shared memory?

Scenario 1

Packet arrives

for violet port!

25

Admit to buffer!

The Challenge: How to use shared memory?

Scenario 1

25

The Challenge: How to use shared memory?

Scenario 1

Packet arrives

for violet port!

25

The Challenge: How to use shared memory?

Scenario 1

Admit to buffer!

25

The Challenge: How to use shared memory?

Scenario 1

Packet arrives

for green port!

25

The Challenge: How to use shared memory?

Scenario 1

Need to drop: no

more buffer space!

25

The Challenge: How to use shared memory?

Scenario 1

⇢ The problem: missed opportunity for higher throughput

⇢ With green packet can transmit packets in parallel on 2 ports

25

The Challenge: How to use shared memory?

Scenario 1

⇢ The problem: missed opportunity for higher throughput

⇢ With green packet can transmit packets in parallel on 2 ports

25

The Challenge: How to use shared memory?

Scenario 2

3 packets arrive

for violet port!

26

The Challenge: How to use shared memory?

Scenario 2

Accept two of them! But safe

one slot for green: potential

for more throughput!

26

The Challenge: How to use shared memory?

Scenario 2

Accept two of them! But safe

one slot for green: potential

for more throughput!

26

The Challenge: How to use shared memory?

Scenario 2

⇢ The problem: what if many more violet packets arrive?

⇢ Missed opportunity to use buffer!

26

The Challenge: How to use shared memory?

Scenario 2

⇢ The problem: what if many more violet packets arrive?

⇢ Missed opportunity to use buffer!

⇢ Realm of online algorithms and competitive analysis: algorithms

which perform well without knowing the future!

26

⇢ Idea: as traffic is often

fairly predictable and has

structure…

⇢ … can we employ predictions for

smarter buffer management?

⇢ E.g., using random forests:

feasible on programmable

switches at line rate.

The Opportunity

Smart Buffer Management

27

⇢ Idea: as traffic is often

fairly predictable and has

structure…

⇢ … can we employ predictions for

smarter buffer management?

⇢ E.g., using random forests:

feasible on programmable

switches at line rate.

The Opportunity

Smart Buffer Management

How to evaluate

online algorithms:

algorithms which do

not know the future?

27

Classic goal of line algorithms:

⇢ Perform (almost) like offline algorithm

⇢ Minimize competitive ratio: CostON/CostOFF

Metrics
for Online Algorithms with Predictions

28

Classic goal of line algorithms:

⇢ Perform (almost) like offline algorithm

⇢ Minimize competitive ratio: CostON/CostOFF

With prediction:

⇢ If prediction is true: perform better than ON (consistency)

⇢ If prediction is wrong: don’t perform much worse (robustness)

Metrics
for Online Algorithms with Predictions

28

Classic goal of line algorithms:

⇢ Perform (almost) like offline algorithm

⇢ Minimize competitive ratio: CostON/CostOFF

With prediction:

⇢ If prediction is true: perform better than ON (consistency)

⇢ If prediction is wrong: don’t perform much worse (robustness)

Metrics
for Online Algorithms with Predictions

Hot topic

(so far)

in theory

28

A first approach: Addanki et al. (NSDI 2024)

Credence

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki, Maciej Pacut, and Stefan Schmid.

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2024.

⇢ Predictions are powerful: allow simple drop-tail algorithm to

perform as well as push-out algorithms

https://schmiste.github.io/nsdi24credence.pdf

How to support such
more dynamic networks?

⇢ When some parts of networks become more dynamic,

other layers may have to adapt too.

⇢ Example: dynamic topology programming may challenge buffer

management, routing performance and congestion control

⇢ General ideas:

⇢ More local network control? Greedy routing can

deal with dynamic topologies.

⇢ Make better use of visibility into the network: telemetry, INT

⇢ Lessons from other dynamic networks? P2P? Ad-hoc networks?

Research Challenge

Stack for Dynamic Networks

31

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Case Study:

Congestion Control (CC)

32

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Case Study:

Congestion Control (CC)

☺ Can achieve near-

zero queue equilibrium

 Slow reaction

32

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Case Study:

Congestion Control (CC)

☺ Fast reaction

 No equilibrium

32

Existing congestion control algorithms based on either

⇢ State (“voltage”) like BDP, queue length,

loss, e.g.:

⇢ DCTCP: uses ECN/loss

⇢ Swift: RTT

⇢ HPCC: inflight packets

⇢ Gradient (“current”) like reaction to queue

length change

⇢ Timely: RTT-gradient based

Limitation: using only one of the two may miss useful information

for fine-grained adaptions!

Case Study:

Congestion Control (CC)

32

Limitation of SOTA

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

33

Limitation of SOTA

2 and 3: impossible to

distinguish for voltage-based CCA

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

33

Limitation of SOTA

1 and 3: impossible to

distinguish for current-based CC

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

33

Limitation of SOTA

We need both: Power (Voltage x Current)

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

33

Limitation of SOTA

We need both: Power (Voltage x Current)

1

growing

2

shrinking

3

growing

⇢ Consider a queue which may be in three different states:

Inspired:

33

⇢ Telemetry provides opportunities to further improve CC,

but so far limited to switches

⇢ Would be nice to enable telemetry-based congestion control

in the kernel without changing end-host

⇢ First proofs-of-concepts* show that using eBPF we can run CC

algorithms that execute different control laws

⇢ Promising: TCP incast workloads experience less queuing,

faster convergence and better fairness

* TCP's Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control. Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo

Jepsen, and Stefan Schmid. SIGCOMM Workshop on eBPF and Kernel Extensions (eBPF), 2023.

Improving Performance Further with

Telemetry Powered CC

34

⇢ It would be nice to see further telemetry-based protocols

´ at end-hosts

⇢ e.g. for routing storage traffic, path load balancing, flow scheduling

⇢ With future support for offloading eBPF to hardware they

could even run directly in the NIC

⇢ Would be nice: standardize use of INT at lower-level protocols—like

IP header options. Feature support from the eBPF community?

Looking Forward

35

Roadmap

⇢ Traffic: structure in traffic = optimization opportunity

for NetSoft researchers

⇢ Dependability: Flexibility may introduce complexity,

a case for ML and formal methods?

Two tales:

Roadmap

⇢ Traffic: structure in traffic = optimization opportunity

for NetSoft researchers

⇢ Dependability: Flexibility may introduce complexity,

a case for ML and formal methods?

Two tales:

Roadmap

⇢ If networks break, it can have

knock-on effects

⇢ For example, Facebook outage in

2021: not only took down their

social networking site, but also

Instagram, WhatsApp, …

⇢ … and their own internal systems,

which manage the doors:

engineers had to break into their

own buildings to bring the

network back up

Networks:

Critical Infrastructure

Credits: Nate Foster

Roadmap
The Challenge: Most Outages due to Human Errors

Human Errors

Countries disconnected Passengers stranded Even 911 affected

Even tech-savvy companies struggle:

Mainly:

human

errors!

Slide credits: Nate Foster and Laurent Vanbever

38

93

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

39

94

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

39

95

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

39

96

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

Cluster with globally

reachable services

Cluster with internally

accessible services

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

39

97

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

39

98

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

39

99

A Reason: Complexity
Especially Under Failures (Policy Compliance)

Example: BGP in
Microsoft
datacenter

G1 G2

C

A

D

B

X Y

P1 P2

G

E

H

F

Internet

D
a
t
a
c
e
n
t
e
r

If link (G,X) fails and traffic from G is rerouted via Y and C to X:

X announces (does not block) G and H as it comes from C. (Note: BGP.)

X,Y: allow from G* X,Y: block from P*

What can

go wrong?

39

Particularly Difficult

Fast Rerouting

Particularly Difficult

Fast Rerouting

Routing
Algorithm

data
plane

control
plane

40

Particularly Difficult

Fast Rerouting

Routing
Algorithm

data
plane

control
plane

Slow but
global

40

Particularly Difficult

Fast Rerouting

Routing
Algorithm

data
plane

control
plane

Fast but
local

40

Information at Switch for

Local Decision Making?

41

Information at Switch for

Local Decision Making?

Forwarding
table

match action

⇢ Nodes locally store a forwarding Match -> Action table

41

Information at Switch for

Local Decision Making?

Forwarding
table

match action

⇢ The Packet Header (e.g., source, destination)

header

41

⇢ The Inport of the received packet

Information at Switch for

Local Decision Making?

Forwarding
table

match action

header

int1

int0

int3

int2

41

⇢ Which incident links failed

Information at Switch for

Local Decision Making?

Forwarding
table

match action

header

int1

int0

int3

int2

41

⇢ … for robust networks tolerating many link failures.

⇢ Verification: Are the current forwarding rules policy

compliant (reachability, waypoint traversal) even

under failures?

⇢ Synthesis: Can we pre-install local fast failover rules

which ensure reachability under multiple failures?

⇢ In general: How many failures can be tolerated by static

forwarding tables?

Objective

What-if Analysis & Synthesis

42

⇢ … for robust networks tolerating many link failures.

⇢ Verification: Are the current forwarding rules policy

compliant (reachability, waypoint traversal) even

under failures?

⇢ Synthesis: Can we pre-install local fast failover rules

which ensure reachability under multiple failures?

⇢ In general: How many failures can be tolerated by static

forwarding tables?

Imagine SDN model where we can directly program the dataplane.

Objective

What-if Analysis & Synthesis

42

Two fundamental

Notions of Resilience

Ideal resilience

Given a k-connected

graphs, fast reroute

can tolerate any k-1

link failures.

Perfect resilience

Fast reroute can tolerate
any failures as long as
the unterlying network is
physically connected.

⇢ What is the difference? Which is stronger?

43

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

A big open challenge

Ideal Resilience

44

A big open challenge

Ideal Resilience

ts

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

44

A big open challenge

Ideal Resilience

s t

Yes! k disjoint paths: try
one after the other, routing
back to source each time.

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

44

⇢ Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.

⇢ Assume: cannot change header, but can match inport, src and dst

A big open challenge

Ideal Resilience

What if I cannot
match source?!
Open conjecture.

ts

44

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

45

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1

45

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2

45

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2 3

45

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2 3 4

45

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

t

⇢ Fact: k-connected network has k-arborescence decomposition

⇢ Basically disjoint spanning trees directed to destination

Arborescences

1 2 3 4

45

(k/2-1)-resilient with circular

Arborescence Routing

t
Arborescences

1 2 3 4

46

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

Arborescences

1 2 3 4

46

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

Arborescences

1 2 3 4

46

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

Arborescences

1 2 3 4

46

(k/2-1)-resilient with circular

Arborescence Routing

t

⇢ Try arborescences in order

⇢ k/2-1 resilient: link failure affects at most 2 arborescences

Arborescences

1 2 3 4

46

Research Challenges

⇢ Complexity of verifying resilience and policy-compliance?

⇢ Algorithms for synthesizing resilient fast reroute mechanisms?

⇢ Application to specific protocols, like MPLS or Segment Routing?

May be
simpler!

47

⇢ Binary decision diagrams (BDDs) allow

us to synthesize resilient routings

⇢ … or to repair

⇢ Attractive: all solutions, compactly

represented

⇢ Supports operator preferences!

⇢ Better alternative to e.g. ILPs

⇢ Still somewhat slow

A General Solution: Automation

Synthesis with BDDs

48

⇢ Binary decision diagrams (BDDs) allow

us to synthesize resilient routings

⇢ … or to repair

⇢ Attractive: all solutions, compactly

represented

⇢ Supports operator preferences!

⇢ Better alternative to e.g. ILPs

⇢ Still somewhat slow

A General Solution: Automation

Synthesis with BDDs

Network:

BDD 2-resilient

routing:s

48

⇢ Binary decision diagrams (BDDs) allow

us to synthesize resilient routings

⇢ … or to repair

⇢ Attractive: all solutions, compactly

represented

⇢ Supports operator preferences!

⇢ Better alternative to e.g. ILPs

⇢ Still somewhat slow

For specific protocols we can be faster!

A General Solution: Automation

Synthesis with BDDs

Network:

BDD 2-resilient

routing:s

48

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

flow 1

flow 2

⇢ Forwarding based on top label of label stack

49

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

push swap swap pop

pop

⇢ Forwarding based on top label of label stack

49

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

⇢ Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure:
push 30: route
around (v2,v3)

31|11
31|21

49

Faster for specific protocol:

MPLS Fast Reroute (FRR)

Default
routing of
two flows

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21

⇢ Forwarding based on top label of label stack

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

2230|11
30|21

11
21

One failure:
push 30: route
around (v2,v3)

31|11
31|21

Pop

Normal
swap

If (v2,v3) failed,
push 30 and

forward to v6.

49

Faster for specific protocol:

MPLS Fast Reroute (FRR)

⇢ Multiple link failures: simply recursive

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

v1 v2 v3 v4

v5 v6 v7 v8

in1

in2

out1

out2

12

22

10
20

11
21 12

22

10
20

11
21 12

22

30|11
30|21

11
21

31|11
31|21

40|30|11
40|30|21

30|11
30|21

11
21

31|11
31|21

Original
Routing

One failure:
push 30: route
around (v2,v3)

Two failures:
first push 30: route

around (v2,v3)

Push recursively
40: route around

(v2,v6)

Push 30

Push 40

pop pop

49

Faster for specific protocol:

MPLS Fast Reroute (FRR)

⇢ Specific structure of MPLS networks can
be exploited for fast what-if analysis:
it‘s a stack machine

⇢ Can use the result by Büchi: set of all
reachable configurations of pushdown
automaton is regular set

⇢ We hence simply use Nondeterministic
Finite Automata when reasoning about the
pushdown automata

⇢ The resulting regular operations are all
polynomial time

Julius Richard Büchi

1924-1984

Swiss logician

50

Faster for specific protocol:

MPLS Fast Reroute (FRR)

⇢ Specific structure of MPLS networks can
be exploited for fast what-if analysis:
it‘s a stack machine

⇢ Can use the result by Büchi: set of all
reachable configurations of pushdown
automaton is regular set

⇢ We hence simply use Nondeterministic
Finite Automata when reasoning about the
pushdown automata

⇢ The resulting regular operations are all
polynomial time

Julius Richard Büchi

1924-1984

Swiss logician

What about complexity of other special networks?

50

⇢ Segment routing (SR): shortest path

routing on segments (between waypoints)

⇢ Waypoints can perform functions (also

NFVs), like pushing another waypoint

to header

⇢ A little bit like Valiant Routing

⇢ Waypoint “stack” can be used for fast

reroute

Example:

Segment Routing FRR

s2s1

s

w

t

Shortest
path

segment

51

⇢ When a node v on route from s to t

locally detects failure on link e, it

can push a waypoint w.

⇢ Rule: v should push a w such that the

shortest path s1 (from v to w) and

the shortest path s2 (from w to t)

does not include e again! So can

route around failed link.

⇢ Which waypoint w should

fast reroute push?

Example:

How to Re-Route in SR?

Local link
failure!

vs

w

link e

s1

52

We need two definitions:

⇢ P-Space: nodes which v reaches on shortest paths without e

⇢ Q-Space: nodes which reach t on shortest paths without e

Example:

How to Re-Route in SR?

e

tv

w

53

We need two definitions:

⇢ P-Space: nodes which v reaches on shortest paths without e

⇢ Q-Space: nodes which reach t on shortest paths without e

Example:

How to Re-Route in SR?

e

tv

w

⇢ Choose any waypoint w at intersection* for rerouting!

*If intersection empty, spaces must be

adjacent and there is also a (different) solution.

Opportunity: Fast reroute and robust networks with

Automation

Router configurations
(Cisco, Juniper, etc.)

What if?!

54

9

Router configurations
(Cisco, Juniper, etc.)

What if?!

Formal
methods?
Machine

learning?

Opportunity: Fast reroute and robust networks with

Automation

54

9
Router configurations
(Cisco, Juniper, etc.)

What if?!

Both!

FM ML

Opportunity: Fast reroute and robust networks with

Automation

54

9

Example:

MPLS and Segment Routing

Formal language
which supports

automated analysis

Compilation

Verification

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

⇢ Verification fast: MPLS+SR networks are pushdown automata

⇢ Many alternatives: automata theory, binary decision diagrams

(BDDs), games (e.g., Stackelberg, Petri nets), SMTs, ILPs …

Example:

MPLS and Segment Routing

Formal language
which supports

automated analysis

Compilation

Fix?

pX ⇒ qXX
pX ⇒ qYX
qY ⇒ rYY
rY ⇒ r
rX ⇒ pX

What if?!

⇢ But synthesis slow: a case for machine learning?

54

⇢ Ideally ML+FM: guarantees from formal

methods, performance from ML

⇢ For example: synthesize with ML then

verify with formal methods

⇢ Examples: DeepMPLS, DeepBGP, …

⇢ Self-driving networks! AI FM

Fast Synthesis: FM+ML

55

Can cover many policies!

Sysadmin responsible for:

● Reachability: Can traffic from

ingress port A reach egress

port B?

● Loop-freedom: Are the routes

implied by the forwarding rules

loop-free?

● Policy: Is it ensured that

traffic from A to B never goes

via C?

● Waypoint enforcement: Is it

ensured that traffic from A to

B is always routed via a node C

(e.g., intrusion detection

system or a firewall)?

A

B

C

E.g. IDS

… and everything under multiple failures! 56

Example: AalWiNes Tool

Tool: https://demo.aalwines.cs.aau.dk/
Youtube: https://www.youtube.com/watch?v=mvXAn9i7_Q0

https://demo.aalwines.cs.aau.dk/
https://www.youtube.com/watch?v=mvXAn9i7_Q0

Summary

⇢ Opportunity: adaptable networks and structure in demand

⇢ Opportunity: AI/ML for performance and formal methods

for dependability

⇢ Enables self-driving networks

⇢ Requires: models and automated, computer-driven designs

⇢ Great research opportunities ahead!

150

Online Video Course

151
38

YouTube Interview & CACM

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Websites

June Issue CACM’25

154

References (1)
On the Complexity of Traffic Traces and Implications
Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA, June 2020.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Revolutionizing Datacenter Networks via Reconfigurable Topologies

Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)
Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Mumbai, India, June 2022.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks
Peter Gjøl Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri
Srba.
16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona,
Spain, December 2020.

Latte: Improving the Latency of Transiently Consistent Network Update Schedules
Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.
38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE)
and ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.

Model-Based Insights on the Performance, Fairness, and Stability of BBR (IRTF Applied Networking Research
Prize)
Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid.
ACM Internet Measurement Conference (IMC), Nice, France, October 2022.

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions
Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, California, USA,
April 2024.

https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/ccr18san.pdf
https://schmiste.github.io/cacm25.pdf
https://schmiste.github.io/sigmetrics22cerberus.pdf
https://schmiste.github.io/conext20.pdf
https://schmiste.github.io/perf20latte.pdf
https://schmiste.github.io/imc22.pdf
https://schmiste.github.io/nsdi24credence.pdf

References (2)

Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks
Vamsi Addanki, Chen Avin, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control
Johannes Zerwas, Csaba Györgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

SyPer: Synthesis of Perfectly Resilient Local Fast Rerouting Rules for Highly Dependable Networks
Csaba Györgyi, Kim G. Larsen, Stefan Schmid, and Jiri Srba.
IEEE Conference on Computer Communications (INFOCOM), Vancouver, Canada, May 2024.

Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2022.

A Survey of Reconfigurable Optical Networks
Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
Optical Switching and Networking (OSN), Elsevier, 2021.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.

TCP's Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control
Jörn-Thorben Hinz, Vamsi Addanki, Csaba Györgyi, Theo Jepsen, and Stefan Schmid.
SIGCOMM Workshop on eBPF and Kernel Extensions (eBPF), Columbia University, New York City, New York, USA, September
2023.

PowerTCP: Pushing the Performance Limits of Datacenter Networks
Vamsi Addanki, Oliver Michel, and Stefan Schmid.
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Renton, Washington, USA, April 2022.

.

https://schmiste.github.io/sigmetrics23mars.pdf
https://schmiste.github.io/sigmetrics23duo.pdf
https://schmiste.github.io/infocom24syper.pdf
https://schmiste.github.io/ton22dan.pdf
https://schmiste.github.io/osn21.pdf
https://schmiste.github.io/ton15splay.pdf
https://schmiste.github.io/ebpf23.pdf
https://schmiste.github.io/nsdi22powertcp.pdf

Questions?

Slides

available

here:

