v

Stefan Schmid

“We cannot direct the wind,

but we can adjust the sails.”
(Folklore)

Acknowledgements:

Stefan Schmid

“We cannot direct the wind,
but we can adjust the sails.”

(Folklore) o O O

Two tales:
performance and
dependability

Acknowledgements:

v

Stefan Schmid

“We cannot direct the wind,

but we can adjust the sails.”
(Folklore)

Proudly hosting
IEEE NetSoft
2026 ©

Acknowledgements:

It s a Great Time to Be a

IEEE NetSoft Researcher!

3 Al/ 1%/ and \.QESQ\

It s a Great Time to Be a

IEEE NetSoft Researcher!

L_\Nh QﬁQ\QﬁSQ\
methods

It s a Great Time to Be a
IEEE NetSoft Researcher!

Enables and motivates
self-driving networks!

-3

Increasing gap between network and compute

Processor Flops/s (3x / 2 years)
Ethernet switch capacity (2x / 2 years)
DRAM bandwidth (1.6x / 2 years)

Ethernet lane speed (1.4x / 2 years)

¢10x

~ Itanium 2

Computer interconnect speed (1.4x / 2 years)

Al parameter count (400x / 2 years) ® GIXx5808
L)

ot GDDR4
o GDDR3 £
R10000

2 i PCle 3.0
Pentium Il Xeon PCle 1.0a 1q gppe®
1Gbps

NVLink 4.0

NVLink 5.0

100 Gbps

Figure after [1] and [2]

200 Gbps|

LS B SR BRSNS N BN RN N B RN
1996 1999 2002 2005 2008

1 1
2011

LESSLELI
2014

LESLNLI
2017

LESLUSLEEL B L)
2020 2023

Credits:

T
2026

Nicola Calabretta

~> In general: transistor density '3 P ian

rates, power density rates are : /7
stalling E '
w
-» Hence: more equipment, 8 :

larger networks

-» Resource intensive and:
inefficient

5G: Adaptive multi-user beamforming _ _ _
6G: Control objects in the environment?

yd

\

)

”fortunate user

Q 1G-4G Sector antenna
Fixed radiation pattern

Fortunate user Q

i

credit: Emil Bjoérnson, Christos Liaskos

Traditionally limited by

Line of Sight Only

Base station

Wall penetration:
— 20 dB or more

credit: Emil Bjérnson

Beyond Line of Sight: Virtual LoS with
Programmable Surfaces

Base station

Reconfigurable
intelligent surface (RIS)

AV 'EEEENENEEEEE
\\\ NEENEEN

IIIIIIIIIIIII

Reconfigurable: Properties can be changed
Intelligent: Real-time programmable/controllable
Surface: Two-dimensional array of elements

credit: Emil Bjérnson

Beyond Line of Sight: Virtual LoS with
Programmable Surfaces

Base station

Reconfigurable
intelligent surface (RIS)

lllllllllllllllllll
\\\EEEREEN]

IIIIIIIIIIIII

Reconfigurable: Properties can be changed
Intelligent: Real-time programmable/controllable
Surface: Two-dimensional array of elements

Literature: Software-Defined Reconfigurable Intelligent Surfaces: From Theory to End-to-End
Implementation. Liaskos et al. Proceedings IEEE, 2022.

Another Example: Flexibilities with

Topology Programming

How to interconnect?

000
©
000
©
o] o]
000
©
o]e]
000
©
000
©
o]e]
000
©
000
©
000
©

Another Example: Flexibilities with

Topology Programming

.............
oooooooooooo
ooooooooooooo

Many flavors,
but in common:
fixed and

oblivious to
actual demand.

oo
©

Another Example: Flexibilities with

Topology Programming

Many flavors,
but in common:
fixed and

oblivious to

actual demand.

Highway which ignores

actual traffic:

frustrating!

Another Example: Flexibilities with

Topology Programming

ooo
©
(o]o]

oo
©
o T o]

oo
©
00

oo
©

oo
©
00

oo
©

oo
©

oo
©

Another Example: Flexibilities with

Topology Programming

i) o T,
e e & & &

e.g.,
mirrors

new flexible
interconnect

Another Example: Flexibilities with

Topology Programming

123 4567 8

demand
matrix:

00 N OV B W N R

e.g.,
mirrors

new flexible
interconnect

Another Example: Flexibilities with

Topology Programming

demand
matrix:

Matches demand

00 N OB W N

12 3 456 7 8

e
o

new flexible
interconnect

e.g.,
mirrors

Another Example: Flexibilities with

Topology Programming

123 456 7 8

new
demand:

0 N O s W N

e.g.,
mirrors

new flexible
interconnect

Another Example: Flexibilities with

Topology Programming

1 23 456 7 8

new
demand:

Matches demand

0 N OV R W

e.g.,
mirrors

new flexible
\ \ interconnect

Another Example: Flexibilities with

Topology Programming

123 456 78

new
demand:

Self-Adjusting
Networks

0 N OV A W

e.g.,
mirrors

new flexible
interconnect

-» Optical Circuit Switch rapid adaption of physical layer

— Based on rotating mirrors

Fixed
Mirror

/

L X

Rotate Mirror &

Optical Circuit Switch

By Nathan Farrington, SIGCOMM 2010

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020. 9

Another Example

Tunable Lasers (e.g., Microsoft’s Sirius)

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Another Example

Tunable Lasers (e.g., Microsoft’s Sirius)

-> Depending on wavelength, forwarded differently
-» Optical switch is passive

Wavelength

selector

Electrical switch Optical switch
with tunable laser Passive

Ballani et al., Sirius, ACM SIGCOMM 2020.

Golden Gate Zipper

Many research avenues for dynamic networks:

Control and Network Stack

-» Scalable control plane such dynamic programmable networks?

~» Implications on other layers of the networking stack?
How to do routing, congestion control, buffer management

on dynamic networks?

3 YouTube

See interview with Amin
Vahdat, Google in June
issue of CACM‘25:
https://www.youtube.com/
watch?v=IxcV1gu8ETA

Two tales:

-» Traffic: structure in traffic = optimization opportunity
for NetSoft researchers

-> Dependability: Flexibility may introduce complexity,
a case for ML and formal methods?

Two tales:

-» Traffic: structure in traffic = optimization opportunity
for NetSoft researchers

-> Dependability: Flexibility may introduce complexity,
a case for ML and formal methods?

NETFLIX ——

Datacenters (“hyper-scale”)

Interconnecting networks:
a critical infrastructure
of our digital society.

Traffic
Growt

sources

Empirical studies:

traffic matrices sparse and skewed

destinations

Microsoft
e N
- :- .. +
| — s -
i:—-~:"~n-- - e B
n ‘
o
o
>
o - - - "
Ml L e b e e 1
|] .
] L) "
*-Q?b’-d‘.—--’—— P T] 0-—~~'-‘—‘_l-l

destinations \/

Mbps

traffic bursty over time

Facebook

Time (seconds)

Diverse patterns:

— Shuffling/Hadoop:
all-to-all

— (Collective communications/All-
reduce/ML: ring or tree traffic

patterns
— Elephant flows

— Query traffic: skewed
— Mice flows

— Control traffic: does not evolve
but has non-temporal structure

Diverse requirements:

— ML is bandwidth hungry,
small flows are latency-
sensitive

54
4
?

Shuffling
All-to-All

LL_,.LI Y

ML

Large flows

Delay
sensitive

]
Telemetry

/ control

15

Flexibility Self-Driving

and Adaptive

A
R Networks Performance,
\J ' Sustainability,
etc.

Structure —

Now is the time!

16

-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU

18

-» Traffic matrices of two different distributed
ML applications
—~ GPU-to-GPU

More uniform More structure

18

-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

-» Which one has more structure?

el

0 500 1000 1500
Time

LR L

— 0 500 1000 1500
Time

19

-> Two different ways to generate same traffic matrix:
— Same non-temporal structure

-» Which one has more structure?

el

0 500 1000 1500
Time

AL AR

0 500 1000 1500
Time

19

Original

JauTl

20

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Increasing complexity (systematically randomized) >

< More structure (compresses better)

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

»

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

Zh
y

Shuffle

Compress U

»

Iiiii!!!!!liiiiiiii

e«\Q
oNe

\ J \ J
| |

Difference in size Difference in size
(entropy)? (entropy)?

Trace Complexity

Information-Theoretic Approach
“Shuffle&Compress”

Original Randomize rows Uniform

EEI» »E=EW'
» :(_G“\QO(‘ 4 e (\0‘\
0\1 (A ?\ e“\0
Can be used to define

Shuffle

g
2-dimensional

Compress U U complexity map!

\ J \ J
| |

Difference in size Difference in size
(entropy)? (entropy)?

non-temporal complexity

bursty uniform

No structure

bursty & skewed
skewed

temporal complexity

Mops
s EEHUEUES

non-temporal complexity

bursty uniform
pF
CNS
Mu
Gni
O
bursty & skewed
skewed

temporal complexity

Mops.
S sEEREEEES

“Time (soconds)

bursty uniform

demand
oblivious

-temporal complexity

demand
aware >.. N

bursty & skewed

skewed

temporal complexity

Mops.
S sEEREEEES

“Time (soconds)

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

Traffic 1s also clustered:

Small Stable Clusters

reordering based on
bicluster structure

Opportunity: exploit with little reconfigurations!

Literature: Analyzing the Communication Clusters in Datacenters. Foerster et al. WWW Conference, 2023.

Flow transmission time (40Gbps)

1F o3 O
) =0O= Websearch- 2010
£ 0.75}
o =/ Datamining- 2011
I_CL) 05! == Hadoop- 2015
a)) T
O == Pareto distribution A
0.25 / /
. o\’

108 100 105 108 107 1P 10° 10%
Flow size (bytes)

-> Observation 1: Different apps have different flow size distributions
-> Observation 2: Most flows are small, most bytes in elephant flows

23

~> We know properties but researchers have limited data currently.

-> How to reproduce similar patterns synthetically? Can use Markov
chains to ,,emulate” arbitrary points in complexity map!

-» But what is “similar”? How different shall they be?
— Similar = maps to same point in complexity map? Many more dimensions!
— Is playing trace backward still similar?
— How to generate similar traffic for larger networks?

-» How to efficiently emulate application behavior? Use of ,mini-
apps“ (no-op for compute)? Simulators like SimAI - efficient?

Can we use LLMs?

Literature: On the Complexity of Traffic Traces and Implications. Avin et al., ACM SIGMETRICS, 2020.

-»> What if switches become smart?

24

Packet arrives
for violet port!

25

Admit to buffer!

25

Packet arrives
for violet port!

25

Admit to buffer!

25

Packet arrives
for violet port!

25

Admit to buffer!

25

Packet arrives
for green port!

25

Need to drop: no
more buffer space!

25

~> The problem: missed opportunity for higher throughput
-> With green packet can transmit packets in parallel on 2 ports

25

~> The problem: missed opportunity for higher throughput
-> With green packet can transmit packets in parallel on 2 ports

25

3 packets arrive
for violet port!

26

Accept two of them! But safe
one slot for green: potential
for more throughput!

26

Accept two of them! But safe
one slot for green: potential
for more throughput!

26

-> The problem: what if many more violet packets arrive?
~> Missed opportunity to use buffer!

26

-> The problem: what if many more violet packets arrive?
~> Missed opportunity to use buffer!

-> Realm of online algorithms and competitive analysis: algorithms
which perform well without knowing the future!

26

->» Idea: as traffic is often
fairly predictable and has
structure..

~> .. can we employ predictions for
smarter buffer management?

-> E.g., using random forests:
feasible on programmable
switches at line rate.

27

->» Idea: as traffic is often
fairly predictable and has
structure..

~> .. can we employ predictions for
smarter buffer management?

-> E.g., using random forests:
feasible on programmable
switches at line rate.

How to evaluate
online algorithms:
algorithms which do
not know the future?

27

Classic goal of line algorithms:

~> Perform (almost) Like offline algorithm

~» Minimize competitive ratio: CostON/CostOFF

28

Classic goal of line algorithms:

~> Perform (almost) Like offline algorithm

~> Minimize competitive ratio: CostON/CostOFF

With prediction:

~» If prediction is true: perform better than ON (consistency)

-» If prediction is wrong: don’t perform much worse (robustness)

28

Classic goal of line algorithms:
~> Perform (almost) Like offline algorithm

~» Minimize competitive ratio: CostON/CostOFF

With prediction:
~» If prediction is true: perform better than ON (consistency)

-» If prediction is wrong: don’t perform much worse (robustness)

28

-» Predictions are powerful: allow simple drop-tail algorithm to
perform as well as push-out algorithms

Perfect
Predictions

Arbitrarily
Large Error

with predictions
without predictions

Push-out Drop-tail :
: —— Dynamic Complete
LQD ¢ Harmonic Thresholds Sharing

L i 2 L L i .
1 . E :) N "
Optimal CompeiiveRato Lower
Throughput Throughput

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions
Vamsi Addanki, Maciej Pacut, and Stefan Schmid.
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2024.

https://schmiste.github.io/nsdi24credence.pdf

-> When some parts of networks become more dynamic,
other layers may have to adapt too.

~» Example: dynamic topology programming may challenge buffer
management, routing performance and congestion control

~» General ideas:
~» More local network control? Greedy routing can
deal with dynamic topologies.
~» Make better use of visibility into the network: telemetry, INT
-» Lessons from other dynamic networks? P2P? Ad-hoc networks?

31

Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length,

loss, e.g.:
~> DCTCP: uses ECN/loss
-> Swift: RTT

-» HPCC: inflight packets

-» Gradient (“current”) like reaction to queue

length change
~» Timely: RTT-gradient based

32

Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length, — © Can achieve near-

loss, e.g.: zero queue equilibrium
~» DCTCP: uses ECN/loss —

~» Swift: RTT ® Slow reaction

-» HPCC: inflight packets —

-» Gradient (“current”) like reaction to queue

length change
~» Timely: RTT-gradient based

32

Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length,

loss, e.g.:
~> DCTCP: uses ECN/loss
-> Swift: RTT

-» HPCC: inflight packets

-» Gradient (“current”) like reaction to queue

length change
~» Timely: RTT-gradient based

—_

© Fast reaction

® No equilibrium

32

Existing congestion control algorithms based on either

-» State (“voltage”) like BDP, queue length,

loss, e.g.:
~> DCTCP: uses ECN/loss
-> Swift: RTT

-» HPCC: inflight packets
-» Gradient (“current”) like reaction to queue
length change
~» Timely: RTT-gradient based

Limitation: using only one of the two may miss useful information
for fine-grained adaptions!

32

-» Consider a queue which may be in three different states:

growing shrinking growing

33

-» Consider a queue which may be in three different states:

growing shrinking growing

2 and 3: impossible to
distinguish for voltage-based CCA

33

-» Consider a queue which may be in three different states:

growing shrinking growing

1 and 3: impossible to
distinguish for current-based CC

33

-» Consider a queue which may be in three different states:

growing shrinking growing

We need both: Power (Voltage x Current)

33

-» Consider a queue which may be in three different states:

shrinking growing

We need both: Power (Voltage x Current)

33

]
H
H

A4

Telemetry provides opportunities to further improve CC,
but so far limited to switches

]
H
H

A4

Would be nice to enable telemetry-based congestion control
in the kernel without changing end-host

'
H
H

v

First proofs-of-concepts* show that using eBPF we can run CC
algorithms that execute different control laws

'
'
'

v

Promising: TCP incast workloads experience less queuing,
faster convergence and better fairness

* TCP's Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control. Jérn-Thorben Hinz, Vamsi Addanki, Csaba Gyorgyi, Theo
Jepsen, and Stefan Schmid. SIGCOMM Workshop on eBPF and Kernel Extensions (eBPF), 2023.

34

-» It would be nice to see further telemetry-based protocols
at end-hosts

-»> e.g. for routing storage traffic, path load balancing, flow scheduling

~» With future support for offloading eBPF to hardware they
could even run directly in the NIC

~» Would be nice: standardize use of INT at lower-level protocols—-like
IP header options. Feature support from the eBPF community?

35

Two tales:

-» Traffic: structure in traffic = optimization opportunity
for NetSoft researchers

-> Dependability: Flexibility may introduce complexity,
a case for ML and formal methods?

Two tales:

->» Traffic: structure in traffic = optimization opportunity
for NetSoft researchers

-»> Dependability: Flexibility may introduce complexity,
a case for ML and formal methods?

-> If networks break, it can have
knock-on effects

-» For example, Facebook outage in
2021: not only took down their
social networking site, but also
Instagram, WhatsApp,

~» .. and their own internal systems,
which manage the doors:
engineers had to break into their
own buildings to bring the
network back up

€he New Nork Times

Gone in Minutes, Out for Hours:

Outage Shakes Facebook

‘When apps used by billions of people worldwide blinked out,
lives were disrupted, businesses were cut off from customers —
and some Facebook employees were locked out of their offices.

f shareullarticle 2> [[Clsss

Facebook’s internal communications platform, Workplace, was also taken out, leaving
most employees unable to do their jobs. Kelsey McClelian for The New York Times

Credits: Nate Foster

Countries disconnected

Data Centre » Networks

Google routing blunder sent Japan's
Internet dark on Friday

Another big BGP blunder

By Richard Chirgwin 27 Aug 2017 at 22:35 400 SHARE Y

Last Friday, someone in Google fat-thumbed a border gateway protocol
(BGP) advertisement and sent Japanese Internet traffic into a black hole.

The trouble began when The Chocolate Factory “leaked” a big route
table to Verizon, the result of which was traffic from Japanese giants like
NTT and KDDI was sent to Google on the expectation it would be treated
as transit.

Passengers stranded

British Airways' latest Total Inability To
Support Upwardness of Planes*
caused by Amadeus system outage

Stuck on the ground awaiting a load sheet? Here's
why
By Gareth Corfield 19 Jul 2018 at 11:16 1090) SHARE ¥

BA Blnbte anniind tha iindld simen sensdart.as.a sasidb nftha Amedase artane

Even tech-savvy companies struggle:

o4 : United |
Dbl HZUD ifines)

s
‘iiramazon

17 webservices

Slide credits: Nate Foster and Laurent Vanbever

Even 911 affected

Officials: Human error to blame in Minn. 911
outage

According to a press release, CenturyLink told department of public safety that
human error by an employee of a third party vendor was to blame for the outage

Aug 16,2018

Duluth News Tribune

SAINT PAUL, Minn. — The Minnesota Department of Public Safety Emergency Communication Networks division
was told by its 911 provider that an Aug. 1 outage was caused by human error.

38

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

Datacenter

39

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

Datacenter

Cluster with globally Cluster with internally
reachable services accessible services

39

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

Cluster with globally Cluster with internally
reachable services accessible services

39

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

Cluster with globally Cluster with internally
reachable services accessible services

39

Example: BGP in
Microsoft

datacenter i;:l_izfijiz;;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

39

Example: BGP in
Microsoft

datacenter i;:;_EEEiEEEJ;ZB

X,Y: allow from G* X,Y: block from P*

Datacenter

If link (G,X) fails and traffic from G is rerouted via Y and C to X:
X announces (does not block) G and H as it comes from C. (Note: BGP.)

39

Example: BGP in
Microsoft
datacenter

-

Tnter‘net

X,Y: allow from G* X,Y: block from P*

Datacenter

If link (G,X) fails and traffic from G is rerouted via Y and C to X:
X announces (does not block) G and H as it comes from C. (Note: BGP.)

39

Local forwarding
table

header

output

0100
0110
0111
1001

3

2
2
1

40

Slow but
global

Local forwarding
table

header

output

0100
0110
0111

1001

40

Local forwarding
table

header

output

0100
0110
0111
1001

3

2
2
1

Fast but
local

40

-> Nodes locally store a forwarding Match -> Action table

Forwarding
table

match action\

| —

41

-» The Packet Header (e.g., source, destination)

Forwarding
table

41

-» The Inport of the received packet

Forwarding
table

match action\

| —

41

~> Which incident links failed

Forwarding
table

41

f
.
.

v

.. for robust networks tolerating many link failures.

f
.
.

v

Verification: Are the current forwarding rules policy
compliant (reachability, waypoint traversal) even
under failures?

]
H
H

A\ 4

Synthesis: Can we pre-install local fast failover rules
which ensure reachability under multiple failures?

-> In general: How many failures can be tolerated by static
forwarding tables?

42

f
.
.

v

.. for robust networks tolerating many link failures.

f
.
.

v

Verification: Are the current forwarding rules policy
compliant (reachability, waypoint traversal) even
under failures?

]
H
H

A\ 4

Synthesis: Can we pre-install local fast failover rules
which ensure reachability under multiple failures?

-> In general: How many failures can be tolerated by static
forwarding tables?

Imagine SDN model where we can directly program the dataplane.

42

/// Ideal resilience

Given a k-connected

graphs, fast reroute

can tolerate any k-1
Link failures.

-

~

/

//, Perfect resilience \\\

Fast reroute can tolerate
any failures as long as
the unterlying network is
physically connected.

- /

-» What is the difference? Which is stronger?

43

-» @Given a k-connected network: how many link failures can
a fast re-routing mechanism tolerate? Conjecture: k-1.
~» Assume: cannot change header, but can match inport, src and dst

44

-» @Given a k-connected network: how many link failures can
a fast re-routing mechanism tolerate? Conjecture: k-1.
~» Assume: cannot change header, but can match inport, src and dst

44

A big open challenge

Ideal Resilience

-» @Given a k-connected network: how many link failures can
a fast re-routing mechanism tolerate? Conjecture: k-1.
-> Assume: cannot change header, but can match inport, src and dst

/

Yes! k disjoint paths: try
one after the other, routing
back to source each time.

-» @Given a k-connected network: how many link failures can

a fast re-routing mechanism tolerate? Conjecture: k-1.
~» Assume: cannot change header, but can match inport, xand dst

What if I cannot
match source?!
Open conjecture.

44

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

45

State-of-the-Art Approach for Ideal Resilience

Spanning Arborescences

Arborescences / \

\/
v/\

-»> Fact: k-connected network has k-arborescence decomposition
-»> Basically disjoint spanning trees directed to destination

Arborescences ////// \{iiit\

\/
v/\

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

45

Arborescences

/\\

\//A

W.Z
Cat

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

>’

45

Arborescences

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

45

Arborescences

-» Fact: k-connected network has k-arborescence decomposition
~» Basically disjoint spanning trees directed to destination

45

Arborescences

-»> Try arborescences in order

-» k/2-1 resilient: link failure affects at most 2 arborescences
46

-> Complexity of verifying resilience and policy-compliance?

~» Algorithms for synthesizing resilient fast reroute mechanisms?

-» Application to specific protocols, like MPLS or Segment Routing?

May be
simpler!

47

~» Binary decision diagrams (BDDs) allow

us to synthesize resilient routings
-» .. or to repair

-» Attractive: all solutions, compactly

represented
-» Supports operator preferences!
-» Better alternative to e.g. ILPs

-> Still somewhat slow

48

Network:

i,
~» Binary decision diagrams (BDDs) allow v
us to synthesize resilient routings

-» .. or to repair
BDD 2-resilient

routing:s
-» Attractive: all solutions, compactly

represented
-» Supports operator preferences!
-» Better alternative to e.g. ILPs

-> Still somewhat slow

48

Network:

b,
~» Binary decision diagrams (BDDs) allow v
us to synthesize resilient routings

-» .. or to repair
BDD 2-resilient

routing:s
-» Attractive: all solutions, compactly

represented
-» Supports operator preferences!
-» Better alternative to e.g. ILPs

-> Still somewhat slow

For specific protocols we can be faster!

48

-» Forwarding based on top label of label stack

flow 1

Default
routing of
two flows

49

-» Forwarding based on top label of label stack

Default
routing of
two flows

49

-» Forwarding based on top label of label stack

20 2

12
-’.} out,
in,

22
P> out,

4.} out,

2
P> out,

in,

— ¥

31|11
31|21

Default
routing of
two flows

One failure:
push 30: route
around (v,,V;)

49

-» Forwarding based on top label of label stack

If (v,,v3) failed,
push 30 and
forward to vg.

Default
routing of
two flows

One failure:
push 30: route
around (v,,V;)

49

-» Multiple 1link failures: simply recursive

in,

P> out; Original
Routing

One failure:
push 30: route
around (v,,V;)

Two failures:
first push 30: route
around (v,,V;)

Push recursively
40: route around

Vo,V
(Vave) .

-» Specific structure of MPLS networks can
be exploited for fast what-if analysis:
it‘s a stack machine

-» Can use the result by Bichi: set of all
reachable configurations of pushdown
automaton is regular set

-» We hence simply use Nondeterministic
Finite Automata when reasoning about the
pushdown automata

Julius Richard Biichi
1924-1984

Swiss logician

-» The resulting regular operations are all
polynomial time

50

-» Specific structure of MPLS networks can
be exploited for fast what-if analysis:
it‘s a stack machine

-» Can use the result by Bichi: set of all
reachable configurations of pushdown
automaton is regular set

-» We hence simply use Nondeterministic
Finite Automata when reasoning about the
pushdown automata

Julius Richard Biichi
1924-1984

Swiss logician

-» The resulting regular operations are all
polynomial time

What about complexity of other special networks?

50

]
H
H

A\ 4

]
H
H

A\ 4

'
H
'

v

'
'
'

A\ 4

Shortest
path
segment

Segment routing (SR): shortest path
routing on segments (between waypoints)

Waypoints can perform functions (also
NFVs), like pushing another waypoint
to header

A little bit like Valiant Routing

Waypoint “stack” can be used for fast
reroute

51

Local link

-> When a node v on route from s to t failure!

Locally detects failure on link e, it
can push a waypoint w. o

-> Rule: v should push a w such that the w
shortest path s1 (from v to w) and
the shortest path s2 (from w to t)

does not include e again! So can s1
route around failed link.

-> Which waypoint w should
fast reroute push?

52

We need two definitions:
~» P-Space: nodes which v reaches on shortest paths without e
~» @Q-Space: nodes which reach t on shortest paths without e

Q.SPQCQ

“ T "y
Nagge® Tuags® e

53

We need two definitions:
~» P-Space: nodes which v reaches on shortest paths without e
~» @Q-Space: nodes which reach t on shortest paths without e

(Q'EHDEN:e

“ LN | CLN J
e '..." "agge L4

~» Choose any waypoint w at intersection* for rerouting!

*If intersection empty, spaces must be
adjacent and there is also a (different) solution.

FT Tn-T_ | In-Label | Out-l op
Tor iy L [(o, wg) | push(10)
iy Lo | (ewe) | push(20)
Te (vi,ve) [10 f (g, vg) | swap(1l)
(vy,va) [20 (vg.vg) | swap(21)
Tes (v2,v3) 1] {va ua) | swap(12)

(2, va) 21 (va,vs) | swap(22)
(7, v3) n (vg,v4) | swap(12)
(vrym) [21 (v3.v8) | swap(22)

L (va,) 12 ouly pop
Tus (2, v3) 40 (w3, 1) pap
Tug (va,ve) | 30 | (va,vr) | swap(31)

(vs,vs) | 30 | (vg.vs) | swap(31)
(vs,me) | 61 (v6. v7) | swap(62)
(vg,vg) [71 (vg.vr) | swap(72)
Ter (v, v7) 3 (vz,vg) pop
(ve,vr) | 62 | (vrova) | swap(11)
(wave) | 72 | (vrove) | swap(22)

foo | Cme)| 2| outy | opop
(vrvs) | 22 outy pop
in, .
- out,
il'lz 2
= out,
local FFT Out-I | In-Label | Out-1 op
Tug (w2, 03) 1 (v2,v6) | push(30)
(v2,v3) 21 (v2,v6) | push(30)
(v2, v5) 30 (v, vs) | push(40)
global FFT | Out-I | In-Label | Out-1 op

T;,g (12, va) 11 (2. v6) | swap(G1)
(v2.v3) 21 (va.vg) | swap(71)
(va. v6) 61 (2. v5) | push(40)
(v2, v5) 71 (v, vs) | push(40)

Router configurations
(Cisco, Juniper, etc.)

54

FT Tn-T_ | In-Label | Out-l op
T iy 4 (o1, vg) | push(10)
ny 4 (v1,0g) | push(20)
Tex (w1, v2) 10 (v2.v9) | swap(11)
(vrva) | 20 | (g.vg) | swap(21)
Tes (w2, v3) 1 (v3.14) | swap(12)
(v2, 12} 21 (va,vs) | swap(22)
(v7,v3) 1 (vg,1) | swap(12)
(vr,va) 21 (v3.us) | swap(22)
Tu (va,wa) [12 outy pop
T | (vaws) | 40 | (esve) | pep
Tug (va,ve) | 30 | (va,vr) | swap(31)
(5, 75) 30 (v, v7) | swap(31)
(w5,) 61 (vg.v7) | swap(62)
(vs,ve) | 71 (vg.vr) | swap(72)
Ter (v, v7) 3 (v7,v3) pop
(v, v7) 62 (vr,va) | swap(11)
(gevs) | 72 | (vrou) | swap(22)
To (g, 08) 22 oy pop
(rovs) | 22 out pop
'nl 12
=P OUut;
in, 2
= out,
local FFT Out-1 In-Label Out-T op
Tug (va. v3) 11 (v2,v6) | push(30)
(v2, va) 21 (2, vg) | push(30)
(2, v5) 30 (vz,vs) | push(40)
global FFT | Out-I | In-Label | Out-1 op
i (v2. v3) 11 (vz,v6) | swap(61)
(vg. v3) 21 (vg,vg) | swap(71l)
(va, v6) 61 (v2,v5) | push(40)
(va, v5) 71 (va,v5) | push(40)

Router configurations
(Cisco, Juniper, etc.)

Formal
methods?
Machine
learning?

54

FT Tn-T_ | In-Label | Out-l op
T iy 4 (o1, vg) | push(10)
ny 4 (v1,0g) | push(20)
Tex (w1, v2) 10 (v2.v9) | swap(11)
(vrva) | 20 | (g.vg) | swap(21)
Tes (w2, v3) 1 (v3.14) | swap(12)
(v2, 12} 21 (va,vs) | swap(22)
(v7,v3) 1 (vg,1) | swap(12)
(vr,va) 21 (v3.us) | swap(22)
Tu (va,wa) [12 outy pop
T | (vaws) | 40 | (esve) | pep
Tug (va,ve) | 30 | (va,vr) | swap(31)
(5, 75) 30 (v, v7) | swap(31)
(w5,) 61 (vg.v7) | swap(62)
(vs,ve) | 71 (vg.vr) | swap(72)
Ter (v, v7) 3 (v7,v3) pop
(v, v7) 62 (vr,va) | swap(11)
(gevs) | 72 | (vrou) | swap(22)
To (g, 08) 22 oy pop
(rovs) | 22 out pop
'nl 12
=P OUut;
in, 2
= out,
local FFT Out-1 In-Label Out-T op
Tug (va. v3) 11 (v2,v6) | push(30)
(v2, va) 21 (2, vg) | push(30)
(2, v5) 30 (vz,vs) | push(40)
global FFT | Out-I | In-Label | Out-1 op
i (v2. v3) 11 (vz,v6) | swap(61)
(vg. v3) 21 (vg,vg) | swap(71l)
(va, v6) 61 (v2,v5) | push(40)
(va, v5) 71 (va,v5) | push(40)

Router configurations
(Cisco, Juniper, etc.)

FM "\ ML

oth!

54

Compilation

DX = gXX
pX = gYx
qy = rYy
rY = r
rxX = pX
local FFT Out-I | In-Label | Out-1 op‘
S| A | | Verification
(v2, vg) 30 (v2,v5) | push(40)
B ooy [T Toneoey [an(e) Formal language
(I:g.lja) é: (ii?.!‘-ﬁ} swuf('ié) h . h
e | 71| (o) | et which supports

automated analysis

-» VVerification fast: MPLS+SR networks are pushdown automata
~» Many alternatives: automata theory, binary decision diagrams
(BDDs), games (e.g., Stackelberg, Petri nets), SMTs, ILPs

FT Tnl_ [In-Label | Oucl ap
Tor e T [(onva) | push(10]
ing 1| (onws) | push(20)

Tes (vrove) | 10| (v.vs) | swap(11)
(vrova) | 20| (v.vg) | swap(21)

Tus (w22} | 11| (va,va) | swap(12)

(va,vs) | 21| (vs,vs) | swap(22)
(orovg) | 11| (vg,vq) | smap(12)
(vrova) | 20| (va.vs) | swap(22)

SO R i Compilation

T | (as) | 40| (o) | pop

T (vave) | 30| (vvur) | swap(31)
. o) | 30 | Ggeny | swan(31) pX z q XX
(w5,) 61 (vg.v7) | swap(62)
(wsws) | 71| (v vr) | swap(72)

Ter (v, v7) 3 (v7,v3) pop

(woyer) | 62 | (vrouy) | swap(11) pX z qYX
(wyve) | 72| (r.ue) | swap(22)

To (g, 08) 22 oy pop

(mws) | 22 outs pop qY z ’nYY
& = =p Out; r Y z r

inz 2
> out, rxX = pX
local FFT Out-I | In-Label | Out-1 op
Tug (va. v3) 11 (v2,v6) | push(30)

(v2, va) 21 (2, vg) | push(30)
(va, vg) 30 (vz,v5) | push(40)
global FFT | Out-I | In-Label | Out-1 op A

To (12, va) 11 (2, v6) | swap(G1) Formal language

(vg. v3) 21 (vg,vg) | swap(71l)

| 5 || e which supports
automated analysis

-» But synthesis slow: a case for machine learning?

54

'
H
v

'
H
v

'
H
v

Ideally ML+FM: guarantees from formal
methods, performance from ML

For example: synthesize with ML then
verify with formal methods

Examples: DeepMPLS, DeepBGP, ..

Self-driving networks!

Al /FM

55

Sysadmin responsible for:

® Reachability: Can traffic from

/ ingress port A reach egress
—— éB port B?
™ ® Loop-freedom: Are the routes
implied by the forwarding rules
loop-free?
o ® Policy: Is it ensured that
@1 traffic from A to B never goes
c via C?
[E.g. IDS ® Waypoint enforcement: Is it

ensured that traffic from A to
B is always routed via a node C
(e.g., intrusion detection
system or a firewall)?

. and everything under multiple failures! 56

Example: AalWiNes Tool

About
MPLS Reachability Analysis & Visualization Tool
= 2 5= b A tool for MPLS reachability analysis and visualization
Model >pemonet< from:

« Aalborg University

» University of Vienna

<ip> [.#V0] [~V2#V3]* [V3£.] <ip> 1 Have a look at the
#V0] .* [V3#.] <smpls ip> 0
<[s10, 520] ip> .+ [V3#.] <mpls* smpls ip> 1

[.#V0] .* [V3#.] <mpls+ smpls ip> 1 " - p
L #V0]> [V3#.] <ip> Tps e Aay i @ AalWiNes Quick Intro

Initial header:

Route restriction: i

Final header: . .) = Foland
y V2

Max link failures: [

Hungary

Options

Libya

»wy h

Afghanistan

Mongolia
Oman
Ethiopia

Angola K Somalia

Tool: https://demo.aalwines.cs.aau.dk/
Youtube: https://www.youtube.com/watch?v=mvXAn9i7 00

https://demo.aalwines.cs.aau.dk/
https://www.youtube.com/watch?v=mvXAn9i7_Q0

:
Vv

!
v

!
v

!
v

!
v

Opportunity: adaptable networks and structure in demand

Opportunity: AI/ML for performance and formal methods
for dependability

Enables self-driving networks

Requires: models and automated, computer-driven designs

Great research opportunities ahead!

Online Video Course

I I
Invitation to]

Self=Adjusting NetworKs

A short video course

demand:

= =25

self-adjusting datacenter self-adjusting bridge

We cannot direct the wind,
but we can adjust the sails.
(Folklore)

iEjE 'i'ﬁ ’)éi

https://self-adjusting.net/course jrj

Check out our YouTube interviews
on Reconfigurable Datacenter Networks:

N

Prof. Chen Avin - Prof. Stefan Schmid
(BGU, Israel) W (TU Berlin, Germany

=
| ISRAEL

(l SCIENCE

AP/ Founpation

Revolutionizing Datacenter Networks via Reconfigurable Topologies
Chen Avin and Stefan Schmid.

Communications of the ACM (CACM), 2025.

Watch here: https://www.youtube.com/@self-adjusting-networks-course

https://schmiste.github.io/cacm25.pdf
https://www.youtube.com/@self-adjusting-networks-course

Websites

SELF-ADJUSTING NETWORKS

AdjustNet

t

Our Vision:
Flexible and Demand-Aware Topologies

\ s LT
A self-adjusting -
Networks -~
-

TRACE COLLECTION

O h—o0 T AT

Publication ~ Team Download Traces

http://self-adjusting.net/
Project website

https://trace-collection.net/
Trace collection website

Revolutionizing Datacenter Networks via Reconfigurable Topologies

CHEN AVIN, is a Professor at Ben-Gurion University of the Negev, Beersheva, Israel
STEFAN SCHMID, is a Professor at TU Berlin, Berlin, Germany

With the popularity of cloud computing and data-intensive applications such as machine learning, datacenter networks have become a
critical infrastructure for our digital society. Given the explosive growth of datacenter traffic and the slowdown of Moore’s law, significant
efforts have been made to improve datacenter network performance over the last decade. A particularly innovative solution is reconfigurable
datacenter networks (RDCNs): datacenter networks whose topologies dynamically change over time, in either a demand-oblivious or
a demand-aware manner. Such dynamic topologies are enabled by recent optical switching technologies and stand in stark contrast to
state-of-the-art datacenter network topologies, which are fixed and oblivious to the actual traffic demand. In particular, reconfigurable
demand-aware and “self-adjusting” datacenter networks are motivated empirically by the significant spatial and temporal structures
observed in datacenter communication traffic. This paper presents an overview of reconfigurable datacenter networks. In particular, we
discuss the motivation for such reconfigurable architectures, review the technological enablers, and present a taxonomy that classifies
the design space into two dimensions: static vs. dynamic and demand-oblivious vs. demand-aware. We further present a formal model
and discuss related research challenges. Our article comes with complementary video interviews in which three leading experts, Manya
Ghobadi, Amin Vahdat, and George Papen, share with us their perspectives on reconfigurable datacenter networks.

KEY INSIGHTS

» Datacenter networks have become a critical infrastructure for our digital society, serving explosively growing
communication traffic.

» Reconfigurable datacenter networks (RDCNs) which can adapt their topology dynamically, based on innovative
optical switching technologies, bear the potential to improve datacenter network performance, and to simplify
datacenter planning and operations.

» Demand-aware dynamic topologies are particularly interesting because of the significant spatial and temporal
structures observed in real-world traffic, e.g., related to distributed machine learning,.

The study of RDCNs and self-adjusting networks raises many novel technological and research challenges related

to their design, control, and performance.

On the Complexity of Traffic Traces and Implications

Chen Avin, Manya Ghobadi, Chen Griner, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Boston, Massachusetts, USA, June 2020.

Toward Demand-Aware Networking: A Theory for Self-Adjusting Networks (Editorial)
Chen Avin and Stefan Schmid.
ACM SIGCOMM Computer Communication Review (CCR), October 2018.

Revolutionizing Datacenter Networks via Reconfigurable Topologies
Chen Avin and Stefan Schmid.
Communications of the ACM (CACM), 2025.

Cerberus: The Power of Choices in Datacenter Topology Design (A Throughput Perspective)
Chen Griner, Johannes Zerwas, Andreas Blenk, Manya Ghobadi, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Mumbai, India, June 2022.

AalWiNes: A Fast and Quantitative What-If Analysis Tool for MPLS Networks

Peter Gjg¢l Jensen, Morten Konggaard, Dan Kristiansen, Stefan Schmid, Bernhard Clemens Schrenk, and Jiri
Srba.

16th ACM International Conference on emerging Networking EXperiments and Technologies (CoNEXT), Barcelona,
Spain, December 2020.

Latte: Improving the Latency of Transiently Consistent Network Update Schedules

Mark Glavind, Niels Christensen, Jiri Srba, and Stefan Schmid.

38th International Symposium on Computer Performance, Modeling, Measurements and Evaluation (PERFORMANCE)
and ACM Performance Evaluation Review (PER), Milan, Italy, November 2020.

Model-Based Insights on the Performance, Fairness, and Stability of BBR (IRTF Applied Networking Research
Prize)

Simon Scherrer, Markus Legner, Adrian Perrig, and Stefan Schmid.

ACM Internet Measurement Conference (IMC), Nice, France, October 2022.

Credence: Augmenting Datacenter Switch Buffer Sharing with ML Predictions

Vamsi Addanki, Maciej Pacut, and Stefan Schmid.

21st USENIX Symposium on Networked Systems Design and Implementation (NSDI), Santa Clara, California, USA,
April 2024.

https://schmiste.github.io/sigmetrics20complexity.pdf
https://schmiste.github.io/ccr18san.pdf
https://schmiste.github.io/cacm25.pdf
https://schmiste.github.io/sigmetrics22cerberus.pdf
https://schmiste.github.io/conext20.pdf
https://schmiste.github.io/perf20latte.pdf
https://schmiste.github.io/imc22.pdf
https://schmiste.github.io/nsdi24credence.pdf

Mars: Near-Optimal Throughput with Shallow Buffers in Reconfigurable Datacenter Networks
Vamsi Addanki, Chen Avin, and Stefan Schmid.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

Duo: A High-Throughput Reconfigurable Datacenter Network Using Local Routing and Control
Johannes Zerwas, Csaba Gydérgyi, Andreas Blenk, Stefan Schmid, and Chen Avin.
ACM SIGMETRICS and ACM Performance Evaluation Review (PER), Orlando, Florida, USA, June 2023.

SyPer: Synthesis of Perfectly Resilient Local Fast Rerouting Rules for Highly Dependable Networks
Csaba Gyorgyi, Kim G. Larsen, Stefan Schmid, and Jiri Srba.
IEEE Conference on Computer Communications (INFOCOM), Vancouver, Canada, May 2024.

Demand-Aware Network Design with Minimal Congestion and Route Lengths
Chen Avin, Kaushik Mondal, and Stefan Schmid.
IEEE/ACM Transactions on Networking (TON), 2022.

A Survey of Reconfigurable Optical Networks
Matthew Nance Hall, Klaus-Tycho Foerster, Stefan Schmid, and Ramakrishnan Durairajan.
Optical Switching and Networking (OSN), Elsevier, 2021.

SplayNet: Towards Locally Self-Adjusting Networks
Stefan Schmid, Chen Avin, Christian Scheideler, Michael Borokhovich, Bernhard Haeupler, and Zvi Lotker.
IEEE/ACM Transactions on Networking (TON), Volume 24, Issue 3, 2016.

TCP's Third Eye: Leveraging eBPF for Telemetry-Powered Congestion Control

Joérn-Thorben Hinz, Vamsi Addanki, Csaba Gyorgyi, Theo Jepsen, and Stefan Schmid.

SIGCOMM Workshop on eBPF and Kernel Extensions (eBPF), Columbia University, New York City, New York, USA, September
2023.

PowerTCP: Pushing the Performance Limits of Datacenter Networks
Vamsi Addanki, Oliver Michel, and Stefan Schmid.
19th USENIX Symposium on Networked Systems Design and Implementation (NSDI), Renton, Washington, USA, April 2022.

https://schmiste.github.io/sigmetrics23mars.pdf
https://schmiste.github.io/sigmetrics23duo.pdf
https://schmiste.github.io/infocom24syper.pdf
https://schmiste.github.io/ton22dan.pdf
https://schmiste.github.io/osn21.pdf
https://schmiste.github.io/ton15splay.pdf
https://schmiste.github.io/ebpf23.pdf
https://schmiste.github.io/nsdi22powertcp.pdf

Questions?

P> Pl o) 028/1:20

Slides
available
here:

