
Competitive Clustering of Stochastic
Communication Patterns on the Ring

Chen Avin Louis Cohen Stefan Schmid

Nice to meet you!

The Network Matters

❏ Cloud-based applications generate significant network traffic

❏ E.g., scale-out databases, streaming, batch processing applications

❏ E.g., Hadoop Terrasort job:

Shuffle

phase

Example: VM Placememt

❏ Virtual machine placement affects bandwidth costs

❏ Example: map reduce in Clos datacenter

❏ Virtual machine placement affects bandwidth costs

❏ Example: map reduce in Clos datacenter

Example: VM Placememt

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

❏ Virtual machine placement affects bandwidth costs

❏ Example: map reduce in Clos datacenter

Example: VM Placememt

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Distributed across
pods: costly shuffling!

❏ Virtual machine placement affects bandwidth costs

❏ Example: map reduce in Clos datacenter

Example: VM Placememt

mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Locally clustered
within a rack or
pod: efficient!

❏ Virtual machine placement affects bandwidth costs

❏ Example: map reduce in Clos datacenter

Example: VM Placememt

mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Locally clustered
within a rack or
pod: efficient!

Communication patterns are
often clustered (but can change

over time).

How to support local communication?

Option 1: Change the topology (?!)

How to support local communication?

Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

How to support local communication?

Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

How to support local communication?

We are working on
it! E.g., „SplayNets @

TON 2016“.
But not today!

Option 2: Cluster the nodes

❏ Migrate frequently
communicating nodes closer
together

Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

How to support local communication?

Option 2: Cluster the nodes

❏ Migrate frequently
communicating nodes closer
together

Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

How to support local communication?

Today!

Option 2: Cluster the nodes

❏ Migrate frequently
communicating nodes closer
together

Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

❏ Challenges of communication pattern clustering:

❏ Communication patterns are not known ahead of time…

❏ … and may even change over time!

How to support local communication?

Option 2: Cluster the nodes

❏ Migrate frequently
communicating nodes closer
together

Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

❏ Challenges of communication pattern clustering:

❏ Communication patterns are not known ahead of time…

❏ … and may even change over time!

How to support local communication?

Thus: Need to repartition
clusters in an online manner,

depending on demand!

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

How to
cluster?

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

Thickness of line = amount
of communication

How to
cluster?

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

Most communication within
cluster (intra-cluster)…

… little inter-cluster
communication.

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

1

5

❏ Example: 4 clusters of size 4

Example: A RePartitioning Problem

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

Nodes 1 and 5
change clusters!

1

5

A simple and fundamental model (e.g., a rack):

Online RePartitioning

servers („clusters“)

si
ze

k
(„

sl

o
ts

“)

A simple and fundamental model (e.g., a rack):

Online RePartitioning

servers („clusters“)

si
ze

k
(„

sl

o
ts

“)

Minimize inter-cluster
communication…

… maximize
intra-cluster

communication!

A simple and fundamental model (e.g., a rack):

Online RePartitioning

servers („clusters“)

si
ze

k
(„

sl

o
ts

“)

Minimize inter-cluster
communication…

… maximize
intra-cluster

communication!
Also: minimize

migrations (=swap)!

A simple and fundamental model:

Online RePartitioning

servers („clusters“)

si
ze

k
(„

sl

o
ts

“)

Minimize inter-cluster
communication…

… maximize
intra-cluster

communication!
Also: minimize

migrations (=swap)!

In practice: k << (many
more servers than VM

slots per server)!

Problem inputs: k, ,

Online RePartitioning

Communication
pattern over time

Problem inputs: k, ,

Online RePartitioning

Objective:

0

1

αCosts:

Problem inputs: k, ,

Online RePartitioning

Objective:

0

1

αCosts:

Two flavors: (1) online (worst-case) pattern

(2) learning: from a fixed (unkown) distribution

The Crux: Algorithmic Challenges

A) Serve remotely or migrate (“rent or buy”)? When to migrate? If a
communication pattern is short-lived, it may not be worthwhile to
collocate the nodes: the migration cost cannot be amortized.

The Crux: Algorithmic Challenges

A) Serve remotely or migrate (“rent or buy”)? When to migrate? If a
communication pattern is short-lived, it may not be worthwhile to
collocate the nodes: the migration cost cannot be amortized.

B) Where to migrate, and what? If nodes should be collocated, the
question becomes where. Should the first node be migrated to the
cluster of the second or vice versa? Or shall both be moved together to
a new cluster? Moreover, an algorithm may be required to pro-actively
migrate (resp. swap) additional nodes.

The Crux: Algorithmic Challenges

A) Serve remotely or migrate (“rent or buy”)? When to migrate? If a
communication pattern is short-lived, it may not be worthwhile to
collocate the nodes: the migration cost cannot be amortized.

B) Where to migrate, and what? If nodes should be collocated, the
question becomes where. Should the first node be migrated to the
cluster of the second or vice versa? Or shall both be moved together to
a new cluster? Moreover, an algorithm may be required to pro-actively
migrate (resp. swap) additional nodes.

C) Which nodes to evict? There may not exist sufficient space in the
desired destination cluster. In this case, the algorithm needs to decide
which nodes to evict, to free up space.

Online Variant: Competitive Ratio
and Augmentation

❏ Goal: minimize competitive ratio

❏ Goal: minimize competitive ratio

❏ Two flavors: without and with augmentation

Online Variant: Competitive Ratio
and Augmentation

Let’s first look at special case: k=2

Let’s first look at special case: k=2

Need to find pairs!

Let’s first look at special case: k=2

Clusters of size 2: A new
type of online matching

problem!

Need to find pairs!

Special Cases: =2

Special Cases: =2

2 Clusters: A
generalization of online

caching!

Special Cases: =2 (“Online Caching”)

cache disk

❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

Models cache
Models disk

Special Cases: =2 (“Online Caching”)

cache disk

… plus some
dummy item

k-
1

C
ac

h
e…

d

❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

❏ When item i is requested in
original caching problem:
❏ Introduce many requests

between d and i: forces i to
cache (if it is not yet)

cache disk

k-
1

d i

Special Cases: =2 (“Online Caching”)

❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

❏ When item i is requested in
original caching problem:
❏ Introduce many requests

between d and i: forces i to
cache (if it is not yet)

❏ Which one to evict? Caching
problem!

cache disk

k-
1

d i

Special Cases: =2 (“Online Caching”)

❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

❏ When item i is requested in
original caching problem:
❏ Introduce many requests

between d and i: forces i to
cache (if it is not yet)

❏ Which one to evict? Caching
problem!

❏ Note: add many requests
between d and nodes currently
in cache: d stays in cache cache disk

k-
1

d i

Special Cases: =2 (“Online Caching”)

❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

❏ When item i is requested in
original caching problem:
❏ Introduce many requests

between d and i: forces i to
cache (if it is not yet)

❏ Which one to evict? Caching
problem!

❏ Note: add many requests
between d and nodes currently
in cache: d stays in cache cache disk

k-
1

d i

Lower bound k follows
from caching!

Special Cases: =2 (“Online Caching”)

Intriguing: Lower bound even with augmentation!

❏ Assume: requests only from a certain
(ring) order

Intriguing: Lower bound even with augmentation!

❏ Assume: requests only from a certain
(ring) order

❏ Adversarial strategy: Whatever ON does,
adversary will ask cut edge (exists even
with augmentation): pays 1 each time!

Intriguing: Lower bound even with augmentation!

Ouch!

❏ Assume: requests only from a certain
(ring) order

❏ Adversarial strategy: Whatever ON does,
adversary will ask cut edge (exists even
with augmentation): pays 1 each time!

❏ Note: Adversarial request sequence only
depends on ON! So online algo cannot
learn anything about OFF.

Intriguing: Lower bound even with augmentation!

Ouch!

❏ Assume: requests only from a certain
(ring) order

❏ Adversarial strategy: Whatever ON does,
adversary will ask cut edge (exists even
with augmentation): pays 1 each time!

❏ Note: Adversarial request sequence only
depends on ON! So online algo cannot
learn anything about OFF.

❏ OFF can safely move to a partition which
will be asked least frequently (once and
forever)! Pigeon-hole principle: pays only
every k-th time (i.e. k times less)

Intriguing: Lower bound even with augmentation!

Ouch!

❏ k=2 (online matching)
❏ Greedy algorithm 7-competitive

❏ Lower bound: 3-competitive

❏ -competitive algorithm CREP for 4-augmentation
❏ based on on growing components

Online RePartitioning: Overview of Results

❏ k=2 (online matching)
❏ Greedy algorithm 7-competitive

❏ Lower bound: 3-competitive

❏ -competitive algorithm CREP for 4-augmentation
❏ based on on growing components

Online RePartitioning: Overview of Results

Open question: what
about less augmentation?

Learning Variant

❏ Adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from

this distribution

❏ Moreover: Adversary knows
(deterministic or randomized)
«learning» algorithm

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

Learning Variant

❏ Adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from

this distribution

❏ Moreover: Adversary knows
(deterministic or randomized)
«learning» algorithm

❏ Let’s start simple: communication
along ring only
❏ I.e., adversary picks distribution over

ring

w1

w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

Learning Variant

❏ Adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from

this distribution

❏ Moreover: Adversary knows
(deterministic or randomized)
«learning» algorithm

❏ Let’s start simple: communication
along ring only
❏ I.e., adversary picks distribution over

ring

w1

Avoid high-weight
edges on the cut!

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

Waiting can be very costly: maybe
start configuration is very bad and

others similarly good! Not
competitive! Need to move early on,

away from bad locations!

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 2: Pro-actively always move to the lowest
cost configuration seen so far

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 2: Pro-actively always move to the lowest
cost configuration seen so far

Bad: if requests are uniform at
random, you should not move!

Migration costs cannot be
amortized. Crucial difference to

classic distribution learning
problems: guessing costs!

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 1: Pro-actively always move to the lowest
cost configuration seen so far
❏ Bad, e.g., if requests are distributed uniformly at random: better

not to move at all (moving costs cannot be amortized)

Only move when it pays off! But
e.g., how to differentiate

between uniform and „almost
uniform“ distribution?

Learning Algorithm: Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

Learning Algorithm: Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

Define conditions for
configurations: if met, never go

back to it (we can afford it
w.h.p.: seen enough samples)

Learning Algorithm: Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner:
no frequent back and

forth)!

Learning Algorithm: Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner:
no frequent back and

forth)!

Growing radius
strategy: allow to
move further only
once amortized!

Learning Algorithm: Rotate Locally!

❏ Mantra: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner:
no frequent back and

forth)!

Growing radius
strategy: allow to
move further only
once amortized!

log(n)-competitive
w.h.p.

Conclusion

❏ Dynamic repartitioning: a natural new problem!

❏ Competitive ratio super-linear in k: ok in practice
(independent of number of servers!)

❏ Open questions:
❏ Online variant: With less augmentation? Randomized?

❏ Learning variant: General communication pattern, beyond ring?

