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Example: VM Placememt

mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Locally clustered
within a rack or
pod: efficient!

Communication patterns are
often clustered (but can change

over time).
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❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

How to support local communication?

We are working on 
it! E.g., „SplayNets @ 

TON 2016“.
But not today!
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Option 1: Change the topology (?!)

❏ Theory of demand-aware networks

❏ Prototypes emerging: e.g., ProjectToR
(SIGCOMM 2016)

❏ Based on lasers and mirrors

❏ Challenges of communication pattern clustering:

❏ Communication patterns are not known ahead of time…

❏ … and may even change over time!

How to support local communication?

Thus: Need to repartition
clusters in an online manner, 

depending on demand!
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… little inter-cluster 
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Example: A RePartitioning Problem
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❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

Nodes 1 and 5 
change clusters!

1

5
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Minimize inter-cluster 
communication…

… maximize
intra-cluster 

communication!
Also: minimize

migrations (=swap)!

In practice: k <<   (many
more servers than VM 

slots per server)!
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Online RePartitioning

Objective: 

0

1

αCosts: 

Two flavors:  (1) online (worst-case) pattern

(2) learning: from a fixed (unkown) distribution
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A) Serve remotely or migrate (“rent or buy”)? When to migrate? If a 
communication pattern is short-lived, it may not be worthwhile to 
collocate the nodes: the migration cost cannot be amortized. 

B) Where to migrate, and what? If nodes should be collocated, the 
question becomes where. Should the first node be migrated to the 
cluster of the second or vice versa? Or shall both be moved together to 
a new cluster? Moreover, an algorithm may be required to pro-actively
migrate (resp. swap) additional nodes. 

C) Which nodes to evict? There may not exist sufficient space in the 
desired destination cluster. In this case, the algorithm needs to decide 
which nodes to evict, to free up space. 
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❏ For 2 clusters: can emulate
online caching!
❏ k items, cache size k-1

❏ When item i is requested in 
original caching problem:
❏ Introduce many requests

between d and i: forces i to
cache (if it is not yet)

❏ Which one to evict? Caching 
problem!

❏ Note: add many requests
between d and nodes currently
in cache: d stays in cache cache disk

k-
1

d i

Lower bound k follows
from caching!

Special Cases:   =2 (“Online Caching”)



Intriguing: Lower bound even with augmentation!



❏ Assume: requests only from a certain
(ring) order

Intriguing: Lower bound even with augmentation!



❏ Assume: requests only from a certain
(ring) order

❏ Adversarial strategy: Whatever ON does, 
adversary will ask cut edge (exists even
with augmentation): pays 1 each time!

Intriguing: Lower bound even with augmentation!

Ouch!



❏ Assume: requests only from a certain
(ring) order

❏ Adversarial strategy: Whatever ON does, 
adversary will ask cut edge (exists even
with augmentation): pays 1 each time!

❏ Note: Adversarial request sequence only
depends on ON! So online algo cannot
learn anything about OFF.

Intriguing: Lower bound even with augmentation!

Ouch!



❏ Assume: requests only from a certain
(ring) order

❏ Adversarial strategy: Whatever ON does, 
adversary will ask cut edge (exists even
with augmentation): pays 1 each time!

❏ Note: Adversarial request sequence only
depends on ON! So online algo cannot
learn anything about OFF.

❏ OFF can safely move to a partition which
will be asked least frequently (once and 
forever)! Pigeon-hole principle: pays only
every k-th time (i.e. k times less)

Intriguing: Lower bound even with augmentation!

Ouch!
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❏ k=2 (online matching)
❏ Greedy algorithm 7-competitive

❏ Lower bound: 3-competitive 

❏ -competitive algorithm CREP for 4-augmentation
❏ based on on growing components

Online RePartitioning: Overview of Results

Open question: what
about less augmentation?



Learning Variant

❏ Adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from

this distribution

❏ Moreover: Adversary knows
(deterministic or randomized) 
«learning» algorithm



w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

Learning Variant

❏ Adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from

this distribution

❏ Moreover: Adversary knows
(deterministic or randomized) 
«learning» algorithm

❏ Let’s start simple: communication
along ring only
❏ I.e., adversary picks distribution over

ring

w1



w2

w3

w4

w5

w6

w7

w8

w9

w10

w11

w12

Learning Variant

❏ Adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from

this distribution

❏ Moreover: Adversary knows
(deterministic or randomized) 
«learning» algorithm

❏ Let’s start simple: communication
along ring only
❏ I.e., adversary picks distribution over

ring

w1

Avoid high-weight
edges on the cut!
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The Crux: Joint Optimization of Efficient 
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 1: Pro-actively always move to the lowest
cost configuration seen so far
❏ Bad, e.g., if requests are distributed uniformly at random: better

not to move at all (moving costs cannot be amortized)

Only move when it pays off! But 
e.g., how to differentiate

between uniform and „almost
uniform“ distribution?
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Learning Algorithm: Rotate Locally!

❏ Mantra: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner: 
no frequent back and 

forth)!

Growing radius
strategy: allow to
move further only
once amortized!

log(n)-competitive
w.h.p.



Conclusion

❏ Dynamic repartitioning: a natural new problem!

❏ Competitive ratio super-linear in k: ok in practice
(independent of number of servers!)

❏ Open questions:
❏ Online variant: With less augmentation? Randomized?

❏ Learning variant: General communication pattern, beyond ring?


