
Algorithmic Opportunities and

Challenges of NFV and SDN
A Guided Tour

Stefan Schmid

Aalborg University, Denmark & TU Berlin, Germany

NFV+SDN: It’s a great time to be a researcher!

Innovation
Rhone and Arve Rivers,

Switzerland

Credits: George Varghese.

Credits: Why (and How) Networks Should Run Themselves. Nick Feamster and Jennifer Rexford

Why Flexibilities? Changing Requirements!

❏ Microservices deployed using containers introduce rapid changes
in traffic workloads

❏ Augmented reality requires real-time responsiveness

❏ IoT significantly increases the # connected devices

❏ Datacenter traffic is growing (but has structure and is sparse):

Heatmap of rack-to-rack traffic ProjecToR @ SIGCOMM 2016Jupiter rising @ SIGCOMM 2015

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] executed
incorrectly […] more “stuck” volumes and
added more requests to the re-mirroring
storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Credits: Nate Foster

Big Challenge: Dependability & Complexity

Datacenter, enterprise, carrier networks have become mission-critical infrastructure!
But even techsavvy companies struggle to provide reliable operations.

The Wall Street Bank Anecdote

❏ Outage of a data center of a Wall Street investment bank: lost
revenue measured in USD 106 / min!

❏ Quickly, assembled emergency team:

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Big Challenge: Debugging and Tools

The compute team: quickly
came armed with reams of
logs, showing how and when
the applications failed, and had
already written experiments to
reproduce and isolate the
error, along with candidate
prototype programs to
workaround the failure.

The storage team:
similarly equipped,
showing which file
system logs were
affected, and already
progressing with
workaround programs.

The networking team: All the
networking team had were two
tools invented over twenty years
ago [ping and traceroute] to merely
test end-to-end connectivity.
Neither tool could reveal problems
with the switches, the congestion
experienced by individual packets,
or provide any means to create
experiments to identify, quarantine
and resolve the problem.

Security: New Threat Models

❏ Internet-of-Things, e.g., DDoS Fall 2016

❏ “Baby-phone”, hacked cameras, etc.

❏ Biggest Internet attack ever: >500 Gbps

❏ Untrusted hardware

❏ Attackers repeatedly compromised routers

❏ Compromised routers are traded underground

❏ Network vendors left backdoors open

❏ National security agencies can bug network
equipment (e.g., hardware backdoors, Snowden
leaks)

❏ Hacked wireless/cellular equipment

❏ Insecure femto cells

❏ Rogue access points

Security: New Threat Models

❏ Internet-of-Things, e.g., DDoS Fall 2016

❏ “Baby-phone”, hacked cameras, etc.

❏ Biggest Internet attack ever: >500 Gbps

❏ Untrusted hardware

❏ Attackers repeatedly compromised routers

❏ Compromised routers are traded underground

❏ Network vendors left backdoors open

❏ National security agencies can bug network
equipment (e.g., hardware backdoors, Snowden
leaks)

❏ Hacked wireless/cellular equipment

❏ Insecure femto cells

❏ Rogue access points

How to build a secure network
over insecure hardware?!

❏ Wireless infrastructure not used very efficiently today

❏ E.g., WiFi: huge demand-supply mismatch (e.g., home networks):

Millons of access
points

A device can access
only through a very

small percentage
but:

Big Challenge: Efficient Resource Utilization

Solution: virtualization, multi-tenancy, etc.?

❏ Wireless infrastructure not used very efficiently today

❏ E.g., WiFi: huge demand-supply mismatch (e.g., home networks):

Millons of access
points

A device can access
only through a very

small percentage
but:

Big Challenge: Efficient Resource Utilization

Solution: virtualization, multi-tenancy, etc.?

Further reading:

OpenSDWN: Programmatic Control over Home and Enterprise WiFi
Julius Schulz-Zander, Carlos Mayer, Bogdan Ciobotaru, Stefan Schmid, and
Anja Feldmann.
ACM Sigcomm Symposium on SDN Research (SOSR), Santa Clara, California,
USA, June 2015.
SecuSpot: Toward Cloud-Assisted Secure Multi-Tenant WiFi HotSpot
Infrastructures
Julius Schulz-Zander, Raphael Lisicki, Stefan Schmid, and Anja Feldmann.
ACM CoNEXT Workshop on Cloud-Assisted Networking (CAN), Irvine,
California, USA, December 2016.

https://net.t-labs.tu-berlin.de/~stefan/sosr15.pdf
https://net.t-labs.tu-berlin.de/~stefan/can16.pdf

Big Challenges: Sharing and Predictable Performance

Tenant 1

Embedding

Flexible Resource Sharing and (Performance) Isolation

Tenant 2

Big Challenges: Sharing and Predictable Performance

Tenant 1

Embedding

Flexible Resource Sharing and (Performance) Isolation

Tenant 2

Solution: explicit reservations of all resources?

❏ Slow innovation: Innovation speed depends on hardware life-
cycles, impossible to tailor to specific needs

❏ Traffic Engineering (TE): efficient use of WAN infrastructure
through more direct and fine-grained control of traffic (e.g.,
beyond shortest paths, destination-based routing)

❏ Failover: failover via control plane is slow, especially if control
plane is decentralized (reconvegence time)

❏ Cost: special purpose hardware expensive

And many more…

C.ACM
3/2016

SDN/NFV Opportunities: Programmability, (logical)
centralization and virtualization (multi-tenancy).

Some (often read) claims:

❏Simpler

❏More flexible

❏Automatically verifiable

❏And hence more secure?

SDN/NFV Opportunities: Programmability, (logical)
centralization and virtualization (multi-tenancy).

Some (often read) claims:

❏Simpler

❏More flexible

❏Automatically verifiable

❏And hence more secure?

30 October 2017

New threats?

Complexity of this?

SDN/NFV Opportunities: Programmability, (logical)
centralization and virtualization (multi-tenancy).

Some (often read) claims:

❏Simpler

❏More flexible

❏Automatically verifiable

❏And hence more secure?

Really?

Algorithms? Avoid instabilities!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Possibly virtualized
(on commodity hw)…

Ctrl

Control

Programs

Control

Programs

Let’s talk about opportunities!

Opportunity: centralization!

Trajectory Sampling

❏ Method to infer packet routes

❏ Low overhead, direct and
passive measurement

Principle: Sample subset of
packets consistently (e.g.,
hash over immutable fields)

Example: Adversarial Trajectory Sampling

Collector

sampled!

not
sampled!

Packets sampled either at
all or no location!

Trajectory Sampling

❏ Method to infer packet routes

❏ Low overhead, direct and
passive measurement

Principle: Sample subset of
packets consistently (e.g.,
hash over immutable fields)

Example: Adversarial Trajectory Sampling

Collector

sampled!

not
sampled!

Packets sampled either at
all or no location!

But: Fails when switches are malicious! E.g., switch
knows which headers are currently not sampled:

no risk of detection!

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

Also: drop packets (that are currently not
sampled), inject packets, change VLAN tag, …

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

„Could SDN be used to render trajectory
sampling more robust to such behavior?“

Also: drop packets (that are currently not
sampled), inject packets, change VLAN tag, …

A Malicious Switch Could Do Many Things…

Mirror!

Exfiltration

Idea: Introduce risk of detection!
Good nodes G1, G2, G3, could help

detect if bad node B does not know
their sampling range!

G1

B

G2

G3

Adversarial Trajectory Sampling: A Case of SDN?

SDN Controller

Adversarial Trajectory Sampling

Controller distributes hash
ranges redundantly…

… but securely over (secure)
communication channels.

Idea: design SDN application that
makes sampling unpredictable!

Adversarial Trajectory Sampling: A Case of SDN?

SDN Controller

Adversarial Trajectory Sampling

Controller distributes hash
ranges redundantly…

… but securely over (secure)
communication channels.

How to minimize sampling overhead
and maximize detection probability?

An algorithmic question.

Idea: design SDN application that
makes sampling unpredictable!

Adversarial Trajectory Sampling: A Case of SDN?

SDN Controller

Adversarial Trajectory Sampling

Controller distributes hash
ranges redundantly…

… but securely over (secure)
communication channels.

How to minimize sampling overhead
and maximize detection probability?

An algorithmic question.

Idea: design SDN application that
makes sampling unpredictable!

Further reading:
Software-Defined Adversarial Trajectory Sampling
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/adv-traj-sampling.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: centralization!

Ctrl

❏ Controllers react to switch events
(packet-ins, link failures, etc.) for
MAC learning, support mobility,
VM migration, failover, etc.

❏ Reaction: send flowmods, packet-
outs, performing path-paving…

❏ Triggering such events may be
exploited for (covert)
communication or even port scans,
etc. even in presence of
firewall/IDS/…

Central Controller Can Increase Attack Surface:
E.g., May Be Exploited For Covert Communication

Tr
ig

ge
r

R
ea

ct

Ctrl

Teleportation

Tr
ig

ge
r

R
ea

ct

DENY: h1 ↔ h2

❏ May be used to bypass firewall

❏ Not easy to detect:

❏ Traffic follows normal pattern
of control communication,
indirectly via controller

❏ Teleportation channel is
inside (encrypted) OpenFlow
channel

❏ Need e.g., to correlate packet-
ins, packet-outs, flow-mods, etc. h1

h2

❏ Controller has communication
channels to all network
elements: could be exploited to
spread a virus and compromise
entire datacenter

❏ Case study in OvS

Another Vulnerability:
Bidirected Communication Channels?

SDN Controller

Ctrl

Pave-Path Technique

Tr
ig

ge
r

R
ea

ct

R
ea

ct

R
ea

ct

R
ea

ct

Ctrl

Ctrl

Teleportation: Path Update

P
ac

ke
t-

in
(X

→
h

1
)

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1 S1 announces address X

Xh1

h2

1

Ctrl

Teleportation: Path Update

P
ac

ke
t-

in
(X

→
h

1
)

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

Xh1

h2

1

E.g., 0xBADDAD

Credits: James Kempf

S1 announces address X

Ctrl

Teleportation: Path Update

P
ac

ke
t-

in
(X

→
h

1
)

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

Xh1

h2

1

Learns: X on S1

S1 announces address X

Ctrl

Teleportation: Path Update

P
ac

ke
t-

in
(X

→
h

1
)

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

Xh1

h2

2
Packet-out to h1

Add rule for X
P

ac
ke

t-
o

u
t

Fl
o

w
-a

d
d

2

S1 announces address X

Ctrl

Teleportation: Path Update

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

X

X

h1

h2

2
Packet-out to h1

Add rule for X

3

P
ac

ke
t-

in
(X

→
h

1
)

3 S2 announces X

S1 announces address X

Ctrl

Teleportation: Path Update

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

X

X

h1

h2

2
Packet-out to h1

Add rule for X

Learns: X on S2

3

P
ac

ke
t-

in
(X

→
h

1
)

3 S2 announces X

S1 announces address X

Ctrl

Teleportation: Path Update

P
ac

ke
t-

in
(X

→
h

1
)

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

X

X

h1

h2

2
Packet-out to h1

Add rule for X
P

ac
ke

t-
o

u
t

lo
w

-a
d

d

Learns: X on S2

3 S2 announces X
D

el
et

e!4

4 Flow delete

S1 announces address X

A
d

d

A
d

d

S1 announces address X

Ctrl

Teleportation: Path Update

P
ac

ke
t-

in
(X

→
h

1
)

S1
S2

❏ Controller performs MAC
learning and updates paths to
support mobility, VM migration,
etc.

❏ Example: If host X appears on
new switch, controller installs
new rules on new switch and
removes on old switch

1

X

X

h1

h2

2
Packet-out to h1

Add rule for X
P

ac
ke

t-
o

u
t

lo
w

-a
d

d

Learns: X on S2

3

3 S2 announces X
D

el
et

e!4

4 Flow delete

Admittedly very implicit: need to modulate information
e.g., using timing or order of MAC addresses

Similar implicit teleportation based on mutual-

exclusion. E.g., switches try same Datapath-ID

(DPID) field in the Features-reply message.

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

X

h2

1 Packet-in

DENY: h1 ↔ h2

P
ac

ke
t-

in
(X

→
h

2
)

1

Knows: h2 on S2

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

Packet-out

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

X

h2

1 Packet-in

DENY: h1 ↔ h2

P
ac

ke
t-

in
(X

→
h

2
)

1

Knows: h2 on S2

2

P
acket-o

u
t

2

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

Packet-out

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

X

h2

1 Packet-in

DENY: h1 ↔ h2

3

Knows: h2 on S2

3

Flo
w

-m
o

d

2

Flow-mod3

Flo
w

-m
o

d

Establish path through firewall: no more packet-ins,
blocked. (But could use another MAC address next time.)

❏ E.g., exploiting ONOS Intent
Reactive Forwarding (ifwd)

❏ By default, ifwd installs host-to-
host connectivity when receiving
a packet-in for which no flows
exist (using path-pave technique)

Packet-out

Ctrl

Teleportation: Out-of-Band Forwarding

S1
S2

X

h2

1 Packet-in

DENY: h1 ↔ h2

3

Knows: h2 on S2

3

Flo
w

-m
o

d

2

Flow-mod3

Flo
w

-m
o

d

Establish path through firewall: no more packet-ins,
blocked. (But could use another MAC address next time.)

Further reading:
Outsmarting Network Security with SDN Teleportation
Kashyap Thimmaraju, Liron Schiff, and Stefan Schmid.
2nd IEEE European Symposium on Security and Privacy
(EuroS&P), Paris, France, April 2017.

https://net.t-labs.tu-berlin.de/~stefan/eurosp17.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: centralization!

Despite centralization: SDN
stays a distributed system!

Challenge: Controller may miss events

Credits: Jennifer Rexford

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Challenge: Controller may miss events

h1

h2
h3

1

2
3

❏ Example
❏ h1 sends to h2:

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Challenge: Controller may miss events

h1

h2
h3

1

2
3

❏ Example
❏ h1 sends to h2: flood

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

Challenge: Controller may miss events

h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

Challenge: Controller may miss events

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

❏ h3 sends to h1: forward to p1 h1

h2
h3

1

2
3

dstmac=h1,fwd(1)

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

h1
3

Challenge: Controller may miss events

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

❏ h3 sends to h1: forward to p1, learn (h3,p3)

h2
h3

1

2

dstmac=h1,fwd(1)

dstmac=h3,fwd(3)

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

❏ Example
❏ h1 sends to h2: flood, learn (h1,p1)

❏ h3 sends to h1: forward to p1, learn (h3,p3)

❏ h1 sends to h3: forward to p3

h1
3

Challenge: Controller may miss events

h2
h3

1

2

dstmac=h1,fwd(1)

dstmac=h3,fwd(3)

❏ Basic task: MAC learning

❏ Principle: for packet (src,dst) arriving at port p
❏ If dst unknown: broadcast packets to all ports

❏ Otherwise forward directly to known port

❏ Also: if src unknown, switch learns: src is behind p

How to implement this behavior in SDN?

h1
3

Challenge: Controller may miss events

h2
h3

1

2

Controller

Example: SDN MAC Learning
Done Wrong

❏ Initially table: Send
everything to controller

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

Pattern Action

* send to controller

Example: SDN MAC Learning
Done Wrong

❏ When h1 sends to h2:

h1

h2
h3

1

2
3

Controller

OpenFlow

switch

Pattern Action

* send to controller

❏ Initially table: Send
everything to controller

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ When h1 sends to h2:

❏ Controller learns that h1@p1, updates table, and floods

h1 sends to h2

Pattern Action

* send to controller

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now assume h2 sends to h1:

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now assume h2 sends to h1:

❏ Switch knows destination: message forwarded to h1

❏ BUT: No controller interaction, does not learn about h2:
no new rule for h2

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, when h3 sends to h2:

h3 sends to h2

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, when h3 sends to h2:

❏ Dest unknown: goes to controller which learns about h3

❏ And then floods

h3 sends to h2

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

Pattern Action

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, if h2 sends to h3 or h1:

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

❏ Now, if h2 sends to h3 or h1:

❏ Destinations known: controller does not learn about h2

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

Ouch! Controller cannot learn about h2 anymore:
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Example: SDN MAC Learning
Done Wrong

h1

h2
h3

1

2
3

OpenFlow

switch

Controller

Pattern Action

dstmac=h3 Forward(3)

dstmac=h1 Forward(1)

* send to controller

❏ Principle: only send to ctrl
if destination unknown

Ouch! Controller cannot learn about h2 anymore:
whenever h2 is source, destination is known. All future

requests to h2 will all be flooded: inefficient!

How to efficiently detect such
problems? And which rules to use

to overcome them? An
algorithmic problem!

❏ Rules inserted using switch CLI

❏ Operator misconfigurations

❏ Software/hardware bugs

❏ Updates that have been
acknowledged wrongfully

❏ Malicious behavior, etc.

There Are Many More Reasons Why A Controller
May Have Inconsistent View

Ctrl ?!

mind the gap!

A problem because like in security: at most
as consistent as least consistent part!

❏ Rules inserted using switch CLI

❏ Operator misconfigurations

❏ Software/hardware bugs

❏ Updates that have been
acknowledged wrongfully

❏ Malicious behavior, etc.

There Are Many More Reasons Why A Controller
May Have Inconsistent View

Ctrl ?!

mind the gap!
Logical verification not enough:
need active and passive testing.

How to do this efficiently?

A problem because like in security: at most
as consistent as least consistent part!

❏ Rules inserted using switch CLI

❏ Operator misconfigurations

❏ Software/hardware bugs

❏ Updates that have been
acknowledged wrongfully

❏ Malicious behavior, etc.

There Are Many More Reasons Why A Controller
May Have Inconsistent View

Ctrl ?!

mind the gap!
Logical verification not enough:
need active and passive testing.

How to do this efficiently?

A problem because like in security: at most
as consistent as least consistent part!

Further reading:
Towards Meticulous Data Plane Monitoring (Poster Paper)
Apoorv Shukla, Said Jawad Saidi, Stefan Schmid, Marco
Canini, and Anja Feldmann.
EuroSys PhD Forum, Belgrade, Serbia, April 2017.

https://net.t-labs.tu-berlin.de/~stefan/EurosysPosterPaper.pdf

Bad News: Automated Testing and Verification
Can Be Non-Trivial!

❏ Seamingly simple reachability questions are hard in SDN:

❏ «Is it possible to reach egress port y from ingress port x for certain header
spaces?»

❏ Or what-if-analysis: «What is reachability matrix if there are f link failures?

❏ Tools like NetKat, UPPAAL, …: PSPACE
complete, tools like wNetKAT can even
encounter undecidability!

❏ … and this is only on the logical level and for
stateless data planes!

❏ Still need to actually test dataplane consistency
(e.g., using packet generation)

❏ What if dataplane is stateful?

NP

P

PSPACE

Tractability of Automation/Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
in out

in’ out’

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!

Self-loop: could be
replaced by “dummy

switch”.

in out

in’ out’

Tractability of Automation/Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!

Idea: packet header stores
Turing machine configuration

(tape, head, state).

in out

in’ out’

Tractability of Automation/Verification

in out

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
Switch action: each time packet

arrives, performs one Turing
machine step and updates header.

in’ out’

Tractability of Automation/Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
in out

in’ out’

Only if accept or reject, forwarded
to out. Is it ever reached?

Undecidable!

Tractability of Automation/Verification

Even without failures: reachability test is undecidable in SDN!

Proof: Can emulate a Turing machine.

?!
in out

in’ out’

Only if accept or reject, forwarded
to out. Is it ever reached?

Undecidable!

Tractability of Automation/Verification

Further reading:
WNetKAT: A Weighted SDN Programming and Verification Language
Kim G. Larsen, Stefan Schmid, and Bingtian Xue.
20th International Conference on Principles of Distributed Systems
(OPODIS), Madrid, Spain, December 2016.

https://net.t-labs.tu-berlin.de/~stefan/opodis16.pdf

❏ Tradeoff expressiveness of rule and verification complexity?

❏ Is it worth using less general rules so fast (automated)
verification is possible?

❏ Example: MPLS is not hard to verify!

❏ What about more programmable and stateful dataplanes?

Many Open Research Questions

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: Decoupling

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: Decoupling
Asynchronous!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: Decoupling

Credits: He et al., ACM SOSR 2015:

without network latency

Despite centralization: SDN
stays a distributed system!

untrusted

hosts
trusted

hosts

Controller Platform

Example “Route Updates”:
What can possibly go wrong?

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted

hosts
trusted

hosts

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

In NFV: Not necessarily deployed at edge!

Example “Route Updates”:
What can possibly go wrong?

Problem 1: Bypassed Waypoint

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted

hosts
trusted

hosts

Problem 2: Transient Loop

Controller Platform

Invariant: Traffic from untrusted hosts to trusted hosts via firewall!

untrusted

hosts
trusted

hosts

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Cost of extra rules!

Tagging: A Universal Solution?

tag blue

red
red

blue

blue

new route

❏ Old route: red

❏ New route: blue

❏ 2-Phase Update:

❏ Install blue flow
rules internally

❏ Flip tag at ingress
ports

old route

tag red

Cost of extra rules!

Where to tag?
Header space?
Overhead!

Time till new link
becomes available!

Reitblatt et al. Abstractions for Network
Update, ACM SIGCOMM 2012.

Possible solution without

tagging, and at least

preserve weaker

consistency properties?

Idea: Schedule “Safe” Subsets of Nodes Only,
Then Wait for ACK!

Packet may take a mix of old and new path, as long as,
e.g., Loop-Freedom (LF) and Waypoint Enforcement
(WPE) are fulfilled

Controller Platform

Controller Platform

Round 1

Round 2

…

Idea: Schedule safe update subsets in multiple rounds!

Loop-Free Update Schedule

insecure

Internet

secure

zone

Loop-Free Update Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Loop-Free Update Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Loop-Free Update Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
LF ok! But: WPE violated in Round 1!

Forward edges
(wrt old policy)!
Always safe.

Backward
edge: risky!

Waypoint Respecting Schedule

insecure

Internet

secure

zone

Waypoint Respecting Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

Don’t cross the
waypoint: safe!

Waypoint Respecting Schedule

insecure

Internet

secure

zone

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:
… ok but may violate LF in Round 1!

Don’t cross the
waypoint: safe!

Can we have both LF and WPE?

insecure

Internet

secure

zone

Yes: but it takes 3 rounds!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:

Yes: but it takes 3 rounds!

insecure

Internet

secure

zone

insecure

Internet

secure

zone

R1:

R2:

insecure

Internet

secure

zoneR3:
Is there always a WPE+LF schedule?

What about this one?

LF and WPE may conflict!

❏ Cannot update any forward edge in R1: WP

❏ Cannot update any backward edge in R1: LF

No schedule exists!

Resort to tagging…

What about this one?

What about this one?

1

❏ Forward edge after the waypoint: safe!

❏ No loop, no WPE violation

What about this one?

2

❏ Now this backward is safe too!

❏ No loop because exit through 1

1

What about this one?

1

2

3

❏ Now this is safe: ready back to WP!

❏ No waypoint violation

2

What about this one?

1

2

3

4

4

❏ Ok: loop-free and also not on the path (exit via)1

What about this one?

1

2

3

❏ Ok: loop-free and also not on the path (exit via)

4

4

1

What about this one?

1

2

3

4

4

5

Back to the start: What if….

1

Back to the start: What if…. also this one?!

1

1

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

Back to the start: What if…. also this one?!

1

1

❏ Update any of the 2 backward edges? LF

❏ Update any of the 2 other forward edges? WPE

❏ What about a combination? No…

In General: NP-Hard!

1

1

Bad news: Even decidability hard: cannot quickly test feasibility and if
infeasible resort to say, tagging solution!

To update or not to update in the first round?

NP-hard! And greedy can be bad.

Open question: What is complexity in „typical networks“, like
datacenter or enterprise networks?

What about loop-freedom only?
Always possible in n rounds!

1

From the destination! Invariant: path suffix updated!

What about loop-freedom only?
Always possible in n rounds!

12

From the destination! Invariant: path suffix updated!

What about loop-freedom only?
Always possible in n rounds!

12

3

From the destination! Invariant: path suffix updated!

What about loop-freedom only?
Always possible in n rounds!

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

What about loop-freedom only?
Always possible in n rounds!

1

From the destination! Invariant: path suffix updated!

2

3
4

5

6

What about loop-freedom only?
Always possible in n rounds!

But how to minimize # rounds?

But how to minimize # rounds?

2 rounds easy, 3 rounds NP-hard. Everything else:

We don’t know today!

What about capacity constraints?

1

2

2

1 1

1

1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

What about capacity constraints?

1

2

2

1 1

1

1

Flow 1

Flow 2Can you find an update schedule?

w

s t

u v

e.g., cannot update
red: congestion!
Need to update
blue first!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

Round 1: prepare

No flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

Round 2

flow! No flow!

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 3

Capacity 2: ok!

3

No flow!

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

Capacity 2: ok!

3

4

4. blue@w

What about capacity constraints?

1

2

2

1 1

1

1

Schedule:
1. red@w,blue@u,blue@v

w

s t

u v

1 1

1

2. blue@s

2

3. red@sRound 4

3

4

4. blue@w

Note: this (non-trivial)
example was just a DAG,

without loops!

Many Open Problems!

❏ We know for DAG:
❏ For k=2 flows, polynomial-time algorithm to compute

schedule with minimal number of rounds!
❏ For general k, NP-hard

❏ For general k flows, polynomial-time algorithm to
compute feasible update

❏ Everything else: unkown!
❏ In particular: what if flow graph is not a DAG?

What’s new about this problem?

❏ Much classic literature on, e.g.,

❏ Disruption-free IGP route changes

❏ Ship-in-the-Night techniques

❏ SDN: new model (centralized and direct control of routes)
and new properties

❏ Not only connectivity consistency but also policy consistency
(e.g., waypoints) and performance consistency

Survey of Consistent
Network Updates
Klaus-Tycho Foerster,
Stefan Schmid, and Stefano
Vissicchio. ArXiv Technical
Report, September 2016.

Further reading: 35-
page survey!

https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf

Further Reading:

Can't Touch This: Consistent Network Updates for Multiple Policies

Szymon Dudycz, Arne Ludwig, and Stefan Schmid.

46th IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Toulouse, France, June 2016.

Transiently Secure Network Updates

Arne Ludwig, Szymon Dudycz, Matthias Rost, and Stefan Schmid.

42nd ACM SIGMETRICS, Antibes Juan-les-Pins, France, June 2016.

Scheduling Loop-free Network Updates: It's Good to Relax!

Arne Ludwig, Jan Marcinkowski, and Stefan Schmid.

ACM Symposium on Principles of Distributed Computing (PODC), Donostia-San Sebastian, Spain, July 2015.

Good Network Updates for Bad Packets: Waypoint Enforcement Beyond Destination-Based Routing Policies

Arne Ludwig, Matthias Rost, Damien Foucard, and Stefan Schmid.

13th ACM Workshop on Hot Topics in Networks (HotNets), Los Angeles, California, USA, October 2014.

Congestion-Free Rerouting of Flows on DAGs

Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.

ArXiv Technical Report, November 2016.

Survey of Consistent Network Updates

Klaus-Tycho Foerster, Stefan Schmid, and Stefano Vissicchio.

ArXiv Technical Report, September 2016.

survey

loop-freedom

multiple policies

waypointing

loop-freedom

waypointing

capacity constraints

https://net.t-labs.tu-berlin.de/~stefan/dsn16.pdf
https://net.t-labs.tu-berlin.de/~stefan/sigmetrics16.pdf
http://net.t-labs.tu-berlin.de/~stefan/podc15.pdf
http://net.t-labs.tu-berlin.de/~stefan/hotnets14update.pdf
https://net.t-labs.tu-berlin.de/~stefan/netup-dag-arxiv.pdf
https://net.t-labs.tu-berlin.de/~stefan/survey-network-update-sdn.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Challenge: How to maintain
connectivity?

In-band Management

How to provide connectivity between the planes?

Ctrl❏ In large-scale networks:
distributed…

❏ … and inband control
❏ Control and data plane

traffic interleaved:
arrives at the same port

❏ No need for dedicated
infrastructure

Ctrl

Ideally, self-stabilizing: ensure channels to switches
and between controllers from any initial state!

Self-Stabilizing Connectivity is Non-Trivial

Ctrl B

Ctrl A

Switch

Ctrl Module

Switch Fabric

updates
& stats

rules

in
tern

al lin
k

fo
r in

b
an

d
co

n
tro

l

D
ata p

lan
e

lin
ks

Data plane
links

Mgmt
port

Self-Stabilizing Connectivity is Non-Trivial

Ctrl B

Ctrl A

Switch

Ctrl Module

Switch Fabric

updates
& stats

rules

in
tern

al lin
k

fo
r in

b
an

d
co

n
tro

l

D
ata p

lan
e

lin
ks

Data plane
links

Mgmt
port

Dataplane traffic
In-band

control traffic

Out-of-band
control traffic

Self-Stabilizing Connectivity is Non-Trivial

Ctrl B

Ctrl A

Switch

Ctrl Module

Switch Fabric

updates
& stats

rules

in
tern

al lin
k

fo
r in

b
an

d
co

n
tro

l

D
ata p

lan
e

lin
ks

Data plane
links

Mgmt
port

Dataplane traffic
In-band

control traffic

Out-of-band
control traffic

How to
distinguish ctrl

and data traffic?
E.g., tagging!

?

Self-Stabilizing Connectivity is Non-Trivial

Ctrl B

Ctrl A

Switch

Ctrl Module

Switch Fabric

updates
& stats

rules

in
tern

al lin
k

fo
r in

b
an

d
co

n
tro

l

D
ata p

lan
e

lin
ks

Data plane
links

Mgmt
port

How can Ctrl B
know that Ctrl A

failed?

Self-Stabilizing Connectivity is Non-Trivial

Ctrl B

Ctrl A

Switch

Ctrl Module

Switch Fabric

updates
& stats

rules

in
tern

al lin
k

fo
r in

b
an

d
co

n
tro

l

D
ata p

lan
e

lin
ks

Data plane
links

Mgmt
port

How to get out
of bad

configurations?

If Match=*: Drop!

Self-Stabilizing Connectivity is Non-Trivial

Ctrl B

Ctrl A

Switch

Ctrl Module

Switch Fabric

updates
& stats

rules

in
tern

al lin
k

fo
r in

b
an

d
co

n
tro

l

D
ata p

lan
e

lin
ks

Data plane
links

Mgmt
port

How to get out
of bad

configurations?

If Match=*: Drop!

Further reading:
A Self-Organizing Distributed and In-Band SDN Control Plane (Poster Paper)
Marco Canini, Iosif Salem, Liron Schiff, Elad M. Schiller, and Stefan Schmid.
37th IEEE International Conference on Distributed Computing Systems
(ICDCS), Atlanta, Georgia, USA, June 2017.

https://net.t-labs.tu-berlin.de/~stefan/icdcs17poster.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Opportunity: innovative services
and algorithms

Example Benefit 1: Lying

Credits: Marco Chiesa

❏ Cannot only find innovative routing algorithms etc. …

❏ … but also interact with and manipulate legacy networks in novel
ways («hybrid SDNs»)

❏ E.g., trick it into better traffic engineering, faster failover, etc.

Example Benefit 1: Lying

STP in legacy network:
loop-free

Improved capacity:
STP in legacy network

still loop-free SDN SDN

Example Benefit 1: Lying

STP in legacy network:
loop-free

Improved capacity:
STP in legacy network

still loop-free SDN SDN

Further reading:
SHEAR: A Highly Available and Flexible Network Architecture: Marrying
Distributed and Logically Centralized Control Planes
Michael Markovitch and Stefan Schmid.
23rd IEEE International Conference on Network Protocols (ICNP), San
Francisco, California, USA, November 2015.
Panopticon: Reaping the Benefits of Incremental SDN Deployment in
Enterprise Networks
Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja Feldmann.
USENIX Annual Technical Conference (ATC), Philadelphia, Pennsylvania, USA,
June 2014.

https://net.t-labs.tu-berlin.de/~stefan/icnp15shear.pdf
https://net.t-labs.tu-berlin.de/~stefan/atc14.pdf

For example, service chain: traffic is steered (e.g., using
SDN) through a sequence of (virtualized) middleboxes to
compose a more complex network service

s t
cache

firewall
WAN

optimizer

Example Benefit 2: Flexible Waypoint Routing

Waypoints!

For predictable
performance: bw

reservation!

What is new and interesting here?

Generalizes call admission!

H
B

MF

K

H B

B K

F B

tim
e

F M

Which calls to admit? And how to
route them? Limited resources!

What is new and interesting here?

Online call admission:

H B

B K

F B

F M

tim
e

A C

Admit and route requests through
waypoints:

10 Gbps

A B
1 Gbps

C B
15 Gbps

B A
8 Gbps

tim
e

What is new and interesting here?

Online call admission:

H B

B K

F B

F M

tim
e

A C

Admit and route requests through
waypoints:

10 Gbps

A B
1 Gbps

C B
15 Gbps

B A
8 Gbps

tim
eHarder than embedding

segments like in calls: need
to admit all or no segment!

s t

What do we know today…
… about complex requests?

How to embed s.t. resource
footprint is minimal?

s t

What do we know today…
… about complex requests?

Fairly well-understood if approximations are
allowed. E.g., reduce to flow problem using a
product graph (and randomized rounding)!

How to embed s.t. resource
footprint is minimal?

s t

What do we know today…
… about complex requests?

Approximate function chain
embedding: fairly well-

understood

s t

s tor

What about if requests
allow for alternatives

and different
decompositions?

What do we know today…
… about complex requests?

Approximate function chain
embedding: fairly well-

understood

s t

s tor

What about if requests
allow for alternatives

and different
decompositions?

What do we know today…
… about complex requests?

Approximate function chain
embedding: fairly well-

understood

Known as PR (Processing and Routing)
Graph: allows to model different

choices and implementations!

s t

s tor

What about if requests
allow for alternatives

and different
decompositions?

What do we know today…
… about complex requests?

Approximate function chain
embedding: fairly well-

understood

Known as PR (Processing and Routing)
Graph: allows to model different

choices and implementations!

Further reading:
An Approximation Algorithm for Path Computation and Function
Placement in SDNs
Guy Even, Matthias Rost, and Stefan Schmid.
23rd International Colloquium on Structural Information and
Communication Complexity (SIROCCO), Helsinki, Finland, July 2016.

https://net.t-labs.tu-berlin.de/~stefan/sirocco16chains.pdf

What about this one?!

Credits: https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

IETF Draft:

Customer LB1
Cache LB2 FW NAT Internet

❏ Service chain for mobile operators

❏ Load-balancers are used to route (parts of) the traffic through cache

What about this one?!

Credits: https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

IETF Draft:

Customer LB1
Cache LB2 FW NAT Internet

❏ Service chain for mobile operators

❏ Load-balancers are used to route (parts of) the traffic through cache

Has loops: the standard approach no longer works! There are first
insights on advanced techniques for such graphs, but it’s an open

question how far they can be pushed.

What about this one?!

Credits: https://tools.ietf.org/html/draft-ietf-sfc-use-case-mobility-06

IETF Draft:

Customer LB1
Cache LB2 FW NAT Internet

❏ Service chain for mobile operators

❏ Load-balancers are used to route (parts of) the traffic through cache

Has loops: the standard approach no longer works! There are first
insights on advanced techniques for such graphs, but it’s an open

question how far they can be pushed.

Further reading:
Service Chain and Virtual Network Embeddings:
Approximations using Randomized Rounding
Matthias Rost and Stefan Schmid.
ArXiv Technical Report, April 2016.

https://net.t-labs.tu-berlin.de/~stefan/arxiv-service-chains.pdf

Example: admission control and embedding

A

A

B

D

C
10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

?
Which ones can be

admitted and embedded?

A

A

B

D

C
10 Gbps

10 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

D

C
0 Gbps

0 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

?

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

D

C
0 Gbps

0 Gbps

5 Gbps

Substrate:

C

Requests:

10 Gbps

B C

5 Gbps

A B
10 Gbps

?

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

D

C
0 Gbps

0 Gbps

0 Gbps

Substrate:

C

Requests:

10 Gbps

A B
10 Gbps

?

B C

5 Gbps

Example: admission control and embedding

Which ones can be

admitted and embedded?

A

A

B

D

C
0 Gbps

0 Gbps

0 Gbps

Substrate:

C

Requests:

10 Gbps

A B
10 Gbps

B C

5 Gbps

Example: admission control and embedding

Which ones can be

admitted and embedded?

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

Chains, alternative chains, but even trees. Trick:
reduction to flow problem using product graphs.

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

A

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A Dith request ri:

A

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D Placement
constraint

Super-
source

Copy graph for each edge
of chain

ith request ri:

Super-
sink

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

A

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Processing edge: processing happens on C:
connect C to C in next layer!

ith request ri:

Routing edge: graph edge
on same layer

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

A

ith request ri:

fw gw

x86

Substrate:

D

B

C

Product graph:

B

D
CA

B

D
CA

B

D
CA

B

D
CA

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Any valid (si,ti) path presents a valid realization of the request ri!

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

ith request ri:

fw gw

x86

Substrate:

D

B

Product graph:
D

C

B

D
CA

C
B

A

B

D
CA

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Any valid (si,ti) path presents a valid realization of the request ri!

B

D

B
A A

D
C

A C

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

process!
process!

route!

route!

route!

A

ith request ri:

fw gw

x86

Substrate:

D

C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Any valid (si,ti) path presents a valid realization of the request ri!

B

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

B
C

B
C

process!route!

A

ith request ri:

fw gw

x86

Substrate:

D

C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Any valid (si,ti) path presents a valid realization of the request ri!

B

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

B
C

B
C

This problem can be solved using
mincost unsplittable multi-commodity
flow (approximation) algorithms (e.g.,

randomized rounding).

A

ith request ri:

fw gw

x86

Substrate:

D

C

Product graph:

B

D
CA

D
A

B

D
CA

B

D
CA

D
A

fw gw

x86

si ti

si

Si ti

or

ti

C

B C

A D

Any valid (si,ti) path presents a valid realization of the request ri!

B

Good News 1: If approximation is good enough, can use product
graphs and randomized rounding for “Fairly Simple” Requests!

B
C

B
C

This problem can be solved using
mincost unsplittable multi-commodity
flow (approximation) algorithms (e.g.,

randomized rounding).Further reading:
An Approximation Algorithm for Path Computation and Function
Placement in SDNs
Guy Even, Matthias Rost, and Stefan Schmid.
23rd International Colloquium on Structural Information and
Communication Complexity (SIROCCO), Helsinki, Finland, July 2016

https://net.t-labs.tu-berlin.de/~stefan/sirocco16chains.pdf

What if requests arrive over time?
Can we admit and embed requests efficiently?

A C
10 Gbps

A B

10 Gbps

B C

5 Gbps
time

Good News 2: Yes, given offline embedding
algorithm, can do it online, over time, as well!

Online primal dual-framework Buchbinder&Naor:

A C
10 Gbps

A B

10 Gbps

B C

5 Gbps
time

Even without knowing anything about future

requests, we can approximate an optimal

offline solution that knows the future.

The Buchbinder-Naor ApproachPrimal and Dual

Algorithm

The Buchbinder-Naor ApproachPrimal and Dual

Algorithm

Offline embedding!

The Buchbinder-Naor ApproachPrimal and Dual

Algorithm

Embedding cost vs profit?

The Buchbinder-Naor ApproachPrimal and Dual

Algorithm

Embedding cost vs profit?

Fairly well-understood!
Some caveats!

The Buchbinder-Naor ApproachPrimal and Dual

Algorithm

Embedding cost vs profit?

Fairly well-understood!
Some caveats!

Further reading:
Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5

❏ Problem 1: relaxed solutions may not be very
meaningful
❏ see example for splittable flows before

❏ Problem 2: also for unsplittable flows, if using a
standard Multi-Commodity Flow (MCF) formulation of
VNEP, the integrality gap can be huge
❏ Tree-like VNets are still ok

❏ VNets with cycles: randomized rounding not applicable, since
problem not decomposable

What about using randomized rounding?

The linear solutions can be decomposed into

convex combinations of valid mappings.

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

VNet

Host
em

b
ed

d
in

g?

i

k j

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

Valid LP solution: virtual node
mappings sum to 1 and each virtual
node connects to its neighboring
node with half a unit of flow…

u1

u6 u2

u4

u5 u3

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3
How to devise a Linear

Programming formulations, such

that convex combinations of valid

mappings can be recovered?!

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3
How to devise a Linear

Programming formulations, such

that convex combinations of valid

mappings can be recovered?!

Further reading:
An Approximation Algorithm for Path Computation and Function
Placement in SDNs
Guy Even, Matthias Rost, and Stefan Schmid.
23rd International Colloquium on Structural Information and
Communication Complexity (SIROCCO), Helsinki, Finland, July 2016

https://net.t-labs.tu-berlin.de/~stefan/sirocco16chains.pdf

s t

Novelty:

❏ Traditionally: routes form simple paths (e.g., shortest paths)

❏ Now: routing through middleboxes may require more
general paths, with loops: a walk

How to compute a
shortest route

through a waypoint?

Approximations Are Okay,
But What About Optimal Embeddings?

2 2

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Assume unit capacity and
demand for simplicity!

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Greedy fails: choose shortest path from s to w…

Assume unit capacity and
demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Greedy fails: … now need long path from w to t

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

Greedy fails: … now need long path from w to t

Total length:
2+6=8

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

A better solution: jointly optimize the two segments!

Total length:
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

s

wt

A better solution: jointly optimize the two segments!

Total length:
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial! Assume unit capacity and

demand for simplicity!

Comuting A Shortest Walk Through A
Single Given Waypoint is Non-Trivial!

Similar to computing shortest disjoint paths (if
capacities are 1, segments need to be disjoint): a

well-known combinatorial problem!

NP-hard on directed networks (feasibility in P on
undirected networks, optimality unknown).

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

Fact: computing 2-
disjoint paths is NP-hard
on directed graphs.

We show: If waypoint
routing was be in P, we
could solve it fast.
Contradiction!

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

… and ask for
shortest waypoint
route (s1,w,t2)

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths ProblemThe walk (s1,w,t2) walk defines a (s1,t1)

and a (s2,t2) path pair before/after the
waypoint! Solves original problem:

Contradiction!

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

… and ask for
shortest waypoint
route (s1,w,t2)

What about waypoint routes on
undirected networks?

❏ Replace capacitated links with undirected parallel links:

❏ Even works for multiple waypoints: Feasibility in P for constant
number of flows

❏ So each path segment becomes a (disjoint) path

What about waypoint routes on
undirected networks?

Option 1: If feasibility good enough: reduce it to
disjoint paths problem!

u v3 u v

A C
Segment 1 Segment 2 Segment 3

❏ Replace capacitated links with undirected parallel links:

❏ Even works for multiple waypoints: Feasibility in P for constant
number of flows

❏ So each path segment becomes a (disjoint) path

What about waypoint routes on
undirected networks?

Option 1: If feasibility good enough: reduce it to
disjoint paths problem!

u v3 u v

A C
Segment 1 Segment 2 Segment 3

Good news: For a single waypoint, shortest

paths can be computed even faster!

❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

ts

Good news: Not NP-hard on Undirected
Networks: Suurballe’s Algorithm

❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

ts

•How to compute a
shortest (s,w,t) route
with this algorithm??

Good news: Not NP-hard on Undirected
Networks: Suurballe’s Algorithm

❏ Step 1: replace capacities with parallel edges: paths will
become edge-disjoint

Good news: Not NP-hard on Undirected
Networks: Suurballe’s Algorithm

s tw s tw
22

❏ Step 2: Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•To find shortest (s,w,t)
route…

❏ Step 2: Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… connect S+ to s and t,
and w to T+…

❏ Step 2: Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… ask Suurballe for 2 disjoint
paths from S+ to T+…

❏ Step 2: Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•Solution! Undirected:
direction does not matter.

For which other service chains can we compute
optimal embeddings fast?

Open Question

Further reading:
Charting the Complexity Landscape of Waypoint Routing
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko Jacob, and
Stefan Schmid. ArXiv Technical Report, May 2017.
Walking Through Waypoints
Saeed Akhoondian Amiri, Klaus-Tycho Foerster, and Stefan
Schmid. ArXiv Technical Report, August 2017.

https://net.t-labs.tu-berlin.de/~stefan/ordered-waypoint-routing.pdf
https://net.t-labs.tu-berlin.de/~stefan/waypoint-walk.pdf

You: Great, I can embed service

chains at low resource cost and

providing minimal bandwidth

guarantees!

You: Great, I can embed service

chains at low resource cost and

providing minimal bandwidth

guarantees!

Boss: So can I promise our

customers a predictable

performance?

You: Great, I can embed service

chains at low resource cost and

providing minimal bandwidth

guarantees!

Boss: So can I promise our

customers a predictable

performance?

You: hmmm….

The Many Faces of Performance Interference

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee!

Assume: perfect
performance isolation on

the network!

Consider: 2 SDN-based
virtual networks (vSDNs)

sharing physical resources!

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

To enable multi-tenancy,
take existing network

hypervisor (e.g. Flowvisor,
OpenVirteX): provides

network abstraction and
control plane translation!

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation
could include,

e.g., switch
DPID, port

numbers, …

Translation
could include,

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

Intercepts control
plane messages.

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

It turns out: the network hypervisor can
be source of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

The Many Faces of Performance Interference

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Conclusion: For a predictable
performance, a complete system
model is needed! But this is hard:
depends on specific technologies,

uncertainties in demand, etc.

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Conclusion: For a predictable
performance, a complete system
model is needed! But this is hard:
depends on specific technologies,

uncertainties in demand, etc.

Further reading:
Logically Isolated, Actually Unpredictable? Measuring
Hypervisor Performance in Multi-Tenant SDNs
Arsany Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan
Schmid. ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Simple, open, verifiable

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Really?!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

OpenFlow allows to

preconfigure conditional failover

rules: 1st line of defense!

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

OpenFlow allows to

preconfigure conditional failover

rules: 1st line of defense!

The Crux: How
to define

conditional rules
which have local

failure
knowledge

only?

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Failover via
controller too

slow.

OpenFlow allows to

preconfigure conditional failover

rules: 1st line of defense!

Open problem:
How many link
failures can be
tolerated in k-

connected
network without

going through
controller? The Crux: How

to define
conditional rules
which have local

failure
knowledge

only?

Solution: Use Arborescences (Chiesa et al.)

❏ Assume:

❏ k-connected network G

❏ destination d

❏ G decomposed into k d-rooted arc-disjoint
spanning arborescences

Basic principle:

❏ Route along fixed arborescence (“directed spanning tree”)
towards the destination d

❏ If packet hits a failed edge at vertex v, reroute along a
different arborescence

Known result: always
exist in k-connected

graphs (efficient)

The Crux: which arborescence to
choose next? Influences resiliency!

Simple Example: Hamilton Cycle

Chiesa et al.: if k-connected graph has k arc
disjoint Hamilton Cycles, k-1 resilient routing can

be constructed!

Example: 3-Resilient Routing Function for 2-dim Torus

k=4 connected

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 1

Example: 3-Resilient Routing Function for 2-dim Torus

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 1

spans all nodes: each
node visited exactly once!

Example: 3-Resilient Routing Function for 2-dim Torus

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 2

Example: 3-Resilient Routing Function for 2-dim Torus

Ed
ge

-D
is

jo
in

t
H

am
ilt

o
n

 C
yc

le
 2

Edge disjoint: Together
span all edges!

Example: 3-Resilient Routing Function for 2-dim Torus

4
 A

rc
-D

is
jo

in
t

A
rb

o
re

sc
e

n
ce

s

Make Hamilton cycles
directed: so 4 Arc-

Disjoint Hamilton Cycles.

Example: 3-Resilient Routing Function for 2-dim Torus

4
 A

rc
-D

is
jo

in
t

A
rb

o
re

sc
e

n
ce

s

Example: 3-Resilient Routing Function for 2-dim Torus

d

Failover: In order to reach destination d: go along
1st directed HC, if hit failure, reverse direction, if

again failure switch to 2nd HC, if again failure
reverse direction: no more failures possible!

4
 A

rc
-D

is
jo

in
t

A
rb

o
re

sc
e

n
ce

s

d
Torus 4-connected, has 4 arc disjoint

Hamilton cycles, so can construct
optimal 3-resilient routing!

Example: 3-Resilient Routing Function for 2-dim Torus

Further reading:
Exploring the Limits of Static Failover Routing
Marco Chiesa, Andrei Gurtov, Aleksander Mądry, Slobodan
Mitrović, Ilya Nikolaevkiy, Aurojit Panda, Michael Schapira,
Scott Shenker. Arxiv Technical Report, 2016.

Load-Aware Local Fast Failover:
Non-Trivial Already in the Clique!

1

2

3

4

6

5

The network:

Local Fast Failover with Load

1

2

3

4

6

5

Without failures!

Traffic demand:
{1,2,3}->6

Local Fast Failover with Load

1

2

3

4

6

5

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Preinstalled
failover rules
for red flow

Traffic demand:
{1,2,3}->6

1

2

3

4

6

5

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Preinstalled
failover rules
for blue flow

Traffic demand:
{1,2,3}->6

1

2

3

4

6

5

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Preinstalled
failover rules
for green flow

Traffic demand:
{1,2,3}->6

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Does not know failures

downstream!

Local Fast Failover

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Does not know failures

downstream!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Local failover @1:
Reroute to 2!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

But also from 2:
6 not reachable.

Next: 3.

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Finally, 6 can be reached!

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Similarly for the other
two flows.

Local Fast Failover
Failover table:
flow 1->6: 2,3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,3,4,5,…
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

Max load:
3

Local Fast Failover

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Tables statically defined,
without global failure

knowledge: a local algorithm
without communication!

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

In order to load balance:
prefixes of rows should be

different!

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

What about multihop networks?
See Chiesa et al.

1

2

3

4

6

5

Traffic demand:
{1,2,3}->6

A better solution:
load 2

Local Fast Failover
Failover table:
flow 1->6: 2,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…

Failover table:
flow 1->6: 2,5, …
flow 2->6: 3,4,5,…
flow 3->6: 4,5,…

Good news: Theory of local algorithms without
communication: symmetric block design theory.

Bad news (intriguing!): High load unavoidable even in
well-connected residual networks: a price of locality.

Given L failures, load at least √L, although network still
highly connected (n-L connected). E.g., L=n/2, load

could be 2 still, but due to locality at least √n.

What about multihop networks?
See Chiesa et al.

Further reading:
Load-Optimal Local Fast Rerouting for Dependable Networks
Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan.
47th IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Denver, Colorado, USA, June 2017.

https://net.t-labs.tu-berlin.de/~stefan/dsn17failover.pdf

Open Problems

❏ Optimal resiliency on general networks
❏ An open conjecture!

❏ Beyond resilience:
❏ Stretch («space-filling curves»?)

❏ Load

❏ Combination

❏ Optimized to specific networks again

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Increasingly
virtualized

Ctrl

Control

Programs

Control

Programs

A Mental Model for This Talk

Increasingly
virtualized

Challenge 2: security

V
irtu

alizatio
n

Layer

User

Kernel

VM VM VM

Virtual Switches

N
I
C

Virtual Switch

Virtual switches reside in the server’s virtualization layer
(e.g., Xen’s Dom0). Goal: provide connectivity and isolation.

Increasing Complexity:
Parsed Protocols

Number of parsed high-level protocols constantly increases:

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Increasing workloads and advancements in network virtualization
drive virtual switches to implement middlebox functions such as

load-balancing, DPI, firewalls, etc.

Increasing Complexity:
Introduction of middlebox functionality

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Increasing Complexity:
Unified Packet Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

How to parse all these
protocols without lowering
forwarding performance?!

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Unified packet parsing allows parse more and
more protocols efficiently: in a single pass!

Increasing Complexity:
Unified Packet Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

User

Kernel

VM VM VM

N
I
C

Virtual Switch

Unified packet parsing allows parse more and
more protocols efficiently: in a single pass!

Increasing Complexity:
Unified Packet Parsing

Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

L2,L2.5,
L3,L4

This centralization is fast! But
more complex to get it right.

Complexity: The Enemy of Security!

❏ Data plane security not
well-explored (in general,
not only virtualized): most
security research on
control plane

❏ Two conjectures:

Ctrl

1. Virtual switches increase
the attack surface.

2. Impact of attack larger than
with traditional data planes.

The Attack Surface: Closer…

Attack surface becomes closer:

❏ Packet parser typically
integrated into the code base of
virtual switch

❏ First component of the virtual
switch to process network
packets it receives from the
network interface

❏ May process attacker-controlled
packets!

Ctrl

VM

Ctrl

The Attack Surface: … More Complex …

Ctrl

VM

Ctrl
Ethernet

LLC

VLAN

MPLS

IPv4

ICMPv4

TCP

UDP

ARP

SCTP

IPv6

ICMPv6

IPv6 ND

GRE

LISP

VXLAN

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

PBB

IPv6 EXT HDR

TUNNEL-ID

IPv6 ND

IPv6 EXT HDR

IPv6HOPOPTS

IPv6ROUTING

IPv6Fragment

IPv6DESTOPT

IPv6ESP

IPv6 AH

RARP

IGMP

… Elevated Priviledges and Collocation …

Ctrl

VM

Ctrl

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

L2,L2.5,
L3,L4

❏ Collocated (at least partially)
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage,
identity management, …

User

Kernel

VM VM VM

NIC

Virtual Switch

VM

Ctrl

❏ Collocated (at least partially)
with hypervisor’s Dom0 kernel
space, guest VMs, image
management, block storage,
identity management, …

❏ … the controller itself.

… Elevated Priviledges and Collocation …

User

Kernel

VM VM VM

NIC

Virtual Switch

VM

Ctrl

❏ Collocated (at least partially)
with hypervisor’s (Dom0 kernel
space), guest VMs, image
management, block storage,
identity management, …

❏ … the controller itself.

… Centralization …

User

Kernel

VM VM VM

NIC

Virtual Switch

Available communication channels
to (SDN/Openstack) controller!

Controller needs to be reachable
from all servers.

Larger Impact: Case Study OVS

1. Rent a VM in the cloud (cheap)

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

2. Send malformed MPLS packet to virtual switch (unified parser
parses label stack packet beyond the threshold)

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

3. Stack buffer overflow in (unified) MPLS parsing code:

enables remote code execution

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

4. Send malformed packet to server (virtual switch) where controller
is located (use existing communication channel)

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

Larger Impact: Case Study OVS

5. Spread

User

Kernel

Ctrl

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch
User

Kernel

VM VM VM

Virtual Switch

User

Kernel

VM VM VM

Virtual Switch

A Novel Threat Model

❏ Limited skills required

❏ Use standard fuzzer to find crashes

❏ Construct malformed packet

❏ Build ROP chain

❏ Limited resources

❏ rent a VM in the cloud

❏ No physical access needed

User

Kernel

VM VM VM

Virtual Switch

No need to be a state-level attacker to compromise the
dataplane (and beyond)!

Similar problems in NFV: need even more complex
parsing/processing. And are often built on top of OvS.

Countermeasures

❏ Software countermeasures already exist
❏ but come at overhead

❏ Better designs
❏ Virtualize dataplane components: decouple them from

hypervisor?

❏ Remote attestation for OvS Flow Tables?

❏ Control plane communication firewalls?

❏ …

Further Reading

The vAMP Attack: Taking Control of Cloud Systems via the Unified Packet Parser
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid.
9th ACM Cloud Computing Security Workshop (CCSW), collocated with ACM CCS,
Dallas, Texas, USA, November 2017.
Reigns to the Cloud: Compromising Cloud Systems via the Data Plane
Kashyap Thimmaraju, Bhargava Shastry, Tobias Fiebig, Felicitas Hetzelt, Jean-
Pierre Seifert, Anja Feldmann, and Stefan Schmid.
ArXiv Technical Report, October 2016.

https://net.t-labs.tu-berlin.de/~stefan/ccsw17.pdf
https://net.t-labs.tu-berlin.de/~stefan/vswitch-security-implications.pdf

Challenges

Conclusions

Ctrl

Control

Programs

Control

Programs

E.g., innovative
services

E.g., waypoint
routing, traffic

engineering

Opportunities

ChallengesOpportunities

Conclusions

Ctrl

Control

Programs

Control

Programs

E.g., decouping:
evolve control

plane
independently
of dataplane

E.g., keeping
controller up-

to-date

E.g., consistent
network
update

ChallengesOpportunities

Conclusions

Ctrl

Control

Programs

Control

Programs

E.g., simple
and open
interface E.g., complexity

of verification,
local failover, ….?

E.g., functionality
that should stay

here?

Stepping Back Even A Little Bit More…

❏ SDN + virtualization offer great flexibilities: are enablers

❏ Exploiting and analyzing them is still complex:
❏ Algorithms are non-trivial (e.g., waypoint routing)

❏ Interfaces / abstractions / languages still quite low-level (e.g.,
configuration of conditional failover rules)

❏ Networked systems are still complex and hard to model (e.g.,
hypervisor interference)

❏ Many uncertainties: hardware, demand, interference

Maybe we need a different approach to networking? Self-adjusting,
data-driven, machine-learning, … networks!

A Better Vision of Future Networked Systems?

Credits: Why (and How) Networks Should Run Themselves. Nick Feamster and Jennifer Rexford

Analogy to self-driving cars:
more high-level task-,
measurement-, data- and
learning-driven rather than
model-driven?

Also: self-stabilizing, self-adjusting, self-optimizing….

A Better Vision of Future Networked Systems?

Credits: Why (and How) Networks Should Run Themselves. Nick Feamster and Jennifer Rexford

Analogy to self-driving cars:
more high-level task-,
measurement-, data- and
learning-driven rather than
model-driven?

Also: self-stabilizing, self-adjusting, self-optimizing….

Further Reading:
o'zapft is: Tap Your Network Algorithm's Big Data!
Andreas Blenk, Patrick Kalmbach, Stefan Schmid, and Wolfgang
Kellerer. ACM SIGCOMM 2017 Workshop on Big Data Analytics and
Machine Learning for Data Communication Networks (Big-DAMA),
Los Angeles, California, USA, August 2017.

https://net.t-labs.tu-berlin.de/~stefan/bigdama17.pdf

Ctrl

Control

Programs

Control

Programs

Thank you! Questions?

