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Analogy to networked systems

Bottleneck Queue

Sender Receiver
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PowerTCP in a Nutshell

Power-based congestion control

Quickly reacts to congestion without losing throughput
Rapidly converges within 1 RTT

Fair and asymptotically stable

Reduces FCTs for short flows by up to 90%
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How do we measure Power?




The debate over congestion signals

Microsoft says ECN is better [dctcp]
Google says delay is simple and effective [Timely, Swift]

Alibaba says INT is accurate [HPCC]

ECN, Delay or INT are essential
What matters more; what we do with it
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The-debate-overfeedbaek-signals

A debate over how to use the feedback
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Rare glimpse of Google datacenter

14



Rare glimpse of Google datacenter

15



Fear of the buffer

-~ o o
o 3 3

KB per Gbps

N
o

LN

0
Br. 56538 Trident+ Tridentll Tomahawk Tofino

P@WEQ’{‘Q‘P

16



DC workloads and short flows

— Flow Size
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(a) Web search workload
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DC workloads and short flows
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DC workloads and short flows

— Flow Size
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I have a constant fear that delay is always high

I have a phobia that throughput is always low
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Emerging technologies and challenges

Not just queueing but

eg., Emerging Reconfigurable Datacenter Networks (RDCNS)
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Fine-grained

congestion control

is important for

datacenter performance
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Timeline of congestion control in datacenters

- Reno, Cubic

- DCTCP, DCQCN
- Timely

- HPCC

- Swift
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Timeline of congestion control in datacenters

- Voltage-based (BDP + Queue Length)
- ECN/Loss (eg., DCTCP)
- RTT based (eg., Swift)
- Inflight based (eg., HPCC)
- Current-based (Total transmission rate)
- RTT-gradient based (Eg., Timely)
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Voltage-based

Reaction to queue length or RTT
Tﬁ? 24
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Loss/ECN
eg., DCTCP

- Voltage-based

Reaction to queue length or RTT
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Loss/ECN Delay
eg., DCTCP eg., Swift

- - Voltage-based

Reaction to queue length or RTT
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Loss/ECN Delay Inflight
eg., DCTCP  eg., Swift eg., HPCC

‘ ‘ ‘ Voltage-based

Reaction to queue length or RTT
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Current-based

Loss/ECN Delay Inflight
eg., DCTCP  eg., Swift eg., HPCC

‘ ‘ ‘ Voltage-based

Reaction to queue length or RTT
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Current-based

Reaction to variations

POWERTCP

RTT gradient
eg., Timely

Loss/ECN Delay Inflight
eg., DCTCP  eg., Swift eg., HPCC

- - @ Voltage-based

Reaction to queue length or RTT




Problems of existing approaches

Fundamentally limited to a single dimension
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Problems of existing approaches

5 Packets
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Problems of existing approaches

10 Packets
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Problems of existing approaches

15 Packets
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Problems of existing approaches
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Problems of existing approaches

Increasing at 8 x BW

memmmml 25 Packets
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Problems of existing approaches

Increasing at 8x BW
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Problems of existing approaches
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Problems of existing approaches

Fundamentally limited to a single dimension
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Summary of Our Analysis

- Voltage-based
- Can in-principle achieve near-zero queue equilibrium
- Slow reaction
- Current-based
- Unstable with no equilibrium
- Fast Reaction
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39



Current-based

Timely

Better inflight control

DCTCP Swift HPCC

- - @ Voltage-based

Reaction to queue length or RTT
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Current-based

Timely

Better reaction time

Better inflight control
DCTCP Swift HPCC
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Reaction to queue length or RTT
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Current-based

Timely

Better reaction time

Better inflight control
DCTCP Swift HPCC
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Reaction to queue length or RTT
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The notion of power

Power = Voltage x Current

—~
Power Voltage Current
BDP+queue bytes Total rate
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The notion of power

Enqueue rate = queue-gradient + Dequeue rate
At —t7) = q(t) + p(t)
Sending rate = Window per RTT
A(t) = 5
RTT = queueing delay + base RTT
ot —tf) = 48 4 7
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The notion of power
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The notion of power

A function of both queue length and variations
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The notion of power

A function of both queue length and variations

- Detects increased queue lengths
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The notion of power

A function of both queue length and variations

- Detects increased queue lengths
- Detects congestion onset and intensity
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The notion of power

A function of both queue length and variations

- Detects increased queue lengths
- Detects congestion onset and intensity
- Detects rapid drop in queue lengths
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Current-based

Timely

Better reaction time

Better inflight control

DCTCP Swift HPCC

- - @ Voltage-based

Reaction to queue length or RTT
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Current-based

Timely

Better reaction time

Better inflight control

DCTCP Swift HPCC
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Reaction to queue length or RTT
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PowerTCP control law
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PowerTCP control law
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Old window size
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PowerTCP control law

wilt +88) =7+ (wilt) { 755+ B) + (1 =) - wi(®)
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MIMD based on Power

(Multiplicative increase - multiplicative decrease)
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PowerTCP control law

wilt +88) =7+ (wil) - 765 4 8) + 1 =) - wi(®)

l

Additive increase

POWERTCP

55



PowerTCP control law

w;(t 4 0t) =

Exponential Weighted Moving Average (EWMA)
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PowerTCP feedback

Power is measured via Inband Network Telemetry (INT)

- Queue lengths
- Timestamps
- Txbytes

- Bandwidth
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PowerTCP without switch support

- Power can be measured via delay signal
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PowerTCP without switch support

- Power can be measured via delay signal

I' =v®x_60 x(0+1)
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Evaluation
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Evaluation - Incast

POWERTCP

Time (ms)

61



Evaluation - Incast
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Evaluation - Incast
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Evaluation - Incast
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Evaluation - Fairness & Stability
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Evaluation - Fairness & Stability
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Evaluation - Fairness & Stability
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Evaluation - Workload

PowerTCP
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Evaluation - Workload
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Evaluation - Reconfigurable Networks
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Evaluation - Reconfigurable Networks
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Evaluation - Reconfigurable Networks
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Conclusion

Existing CC are fundamentally limited to a single dimension
Power is an interesting and provably good measure for CC
PowerTCP: a novel control law based on Power

Improves FCTs for short flows and even for long flows
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Thank you
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