

Pushing the Performance Limits of Datacenter Networks

<u>Vamsi Addanki</u>, Oliver Michel, Stefan Schmid

Technische Universität Berlin

European Research Council Established by the European Commission

Brief context of electrical systems

POWERTCP

PowerTCP in a Nutshell

- **Power**-based congestion control
- Quickly reacts to congestion without losing throughput
- Rapidly converges within 1 RTT
- Fair and asymptotically stable
- Reduces FCTs for short flows by up to 90%

How do we measure Power?

The debate over congestion signals

Microsoft says **ECN** is better [dctcp]

Google says delay is simple and effective [Timely, Swift]

Alibaba says **INT** is accurate [HPCC]

ECN, Delay or INT are essential What matters more: what we do with it

The debate over feedback signals A debate over how to use the feedback

Rare glimpse of Google datacenter

Rare glimpse of Google datacenter

Fear of the buffer

DC workloads and short flows

DC workloads and short flows

DC workloads and short flows

Emerging technologies and challenges

Not just queueing but quickly utilizing available bandwidth is important too

eg., Emerging Reconfigurable Datacenter Networks (RDCNs)

Fine-grained congestion control is important for datacenter performance

Timeline of congestion control in datacenters

- Reno, Cubic
- DCTCP, DCQCN
- Timely
- HPCC
- Swift

Timeline of congestion control in datacenters

- Voltage-based (BDP + Queue Length)
 - ECN/Loss (eg., DCTCP)
 - RTT based (eg., Swift)
 - Inflight based (eg., HPCC)
- Current-based (Total transmission rate)
 - RTT-gradient based (Eg., Timely)

Voltage-based

Reaction to queue length or RTT

WEŔ

Current-based

Fundamentally limited to a single dimension

Problems of existing approaches

Fundamentally limited to a single dimension

Summary of Our Analysis

- Voltage-based
 - Can in-principle achieve near-zero queue equilibrium
 - Slow reaction
- Current-based
 - Unstable with no equilibrium
 - Fast Reaction

Enqueue rate = queue-gradient + Dequeue rate $\lambda(t - t^f) = \dot{q}(t) + \mu(t)$ Sending rate = Window per RTT $\lambda(t) = \frac{w(t)}{\theta(t)}$ RTT = queueing delay + base RTT $\theta(t - t^f) = \frac{q(t)}{b} + \tau$

$$b \times w(t - t^{f}) = \underbrace{(q(t) + b \times \tau)}_{\text{Voltage}} \times \underbrace{(\dot{q}(t) + \mu(t))}_{\text{Current}}$$

A function of both queue length and variations

- A function of both queue length and variations
 - Detects increased queue lengths

A function of both queue length and variations

- Detects increased queue lengths
- Detects congestion onset and intensity

A function of both queue length and variations

- Detects increased queue lengths
- Detects congestion onset and intensity
- Detects rapid drop in queue lengths

$$w_i(t + \delta t) = \gamma \cdot \left(w_i(t) \cdot \frac{e}{f(t)} + \beta \right) + (1 - \gamma) \cdot w_i(t)$$

New window size

$$w_{i}(t + \delta t) = \gamma \cdot \left(w_{i}(t) \cdot \frac{e}{f(t)} + \beta \right) + (1 - \gamma) \cdot w_{i}(t)$$

$$w_i(t+\delta t) = \gamma \cdot \left(w_i(t) \cdot \frac{e}{f(t)} + \beta \right) + (1-\gamma) \cdot w_i(t)$$

MIMD based on Power

(Multiplicative increase - multiplicative decrease)

$$w_i(t + \delta t) = \gamma \cdot \left(w_i(t) \cdot \frac{e}{f(t)} + \beta \right) + (1 - \gamma) \cdot w_i(t)$$

 \downarrow
Additive increase

Exponential Weighted Moving Average (EWMA)

PowerTCP feedback

Power is measured via Inband Network Telemetry (INT)

- Queue lengths
- Timestamps
- Tx bytes
- Bandwidth

PowerTCP without switch support

- Power can be measured via delay signal

PowerTCP without switch support

- Power can be measured via delay signal

Evaluation

POWERTCP

POWERTCP

POWER

POWER

69

Evaluation - Workload

Evaluation - Workload

POWERTCF

Evaluation - Reconfigurable Networks

Evaluation - Reconfigurable Networks

73

Evaluation - Reconfigurable Networks

Conclusion

- Existing CC are fundamentally limited to a single dimension
- Power is an interesting and provably good measure for CC
- PowerTCP: a novel control law based on Power
- Improves FCTs for short flows and even for long flows

Thank you

