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Abstract—Given the increasingly stringent requirements on
the performance and efficiency of communication networks,
over the last years, great efforts have been made to render
networks more flexible and programmable. In particular,
modern networks support a flexible rerouting of flows, e.g.,
depending on the dynamically changing traffic or network
conditions. However, the underlying algorithmic problems
are still not well-understood today.
In this paper, we revisit the k-NETWORK FLOW UPDATE
problem that asks for a schedule to reroute k unsplittable
flows from their current paths to the given new paths, in
a congestion-free manner in a capacitated network. We
show that the problem is already NP-hard for three flows
on directed acyclic graphs. Our main contribution is an
efficient algorithm for sparse networks; specifically the
algorithm is fixed parameter tractable in the number of
flows and the treewidth of a graph that is the union of all
flows. Our results also settle the open complexity question
in the literature.

I. INTRODUCTION

With the popularity of datacentric applications and ma-
chine learning, the traffic in communication networks
is growing explosively, especially to, from and inside
datacenters. Accordingly, over the last years, great ef-
forts have been made to improve the performance and
resource efficiency of communication networks [20]. In
particular, networks are becoming more and more pro-
grammable and flexible, supporting the dynamic adap-
tion of resources and flows. For example, in order to
make optimal use of their infrastructure, internet ser-
vice providers can leverage such flexibilities to operate
their networks more adaptively, e.g., performing dynamic
traffic engineering or reacting to changes in security
policies [24].
How to update networks and reroute flows in a fast
and consistent manner however introduces its own chal-
lenges, and the underlying algorithmic and optimization
problems are still not well understood. Indeed, the prob-
lem has already been studied in hundreds of publications,
see the survey by Foerster et al. [10]. Most existing
results revolve around heuristics.
This paper revisits the k-NETWORK FLOW UPDATE
problem, a fundamental reconfiguration problem arising
in the context of such dynamic communication networks.
In a nutshell, we are given a set of k unsplittable flows in
a capacitated network connecting n routers, called nodes.
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Fig. 1. Example of a flow network with two update flow pairs in red
Pr and blue Pb. The old flows are indicted with a solid line, the new
flows with dashed ones. The demand of each flow is 1. Edges (s, v3)
and (v2, t) have capacity 2, the remaining edges have capacity 1.

The task is to find a feasible schedule for rerouting these
flows from their current paths to their given new paths,
by changing the forwarding rules at the nodes.
Figure 1 gives an example of the network flow update
problem with two unsplittable flows where a rerouting of
the flows is possible. For further details see Section II.
Amiri et al. [2] showed that the problem is NP-hard for
six flows even if the union of the old and new paths are
acyclic. For two flow pairs they present a polynomial-
time algorithm.
Our Contributions: Motivated by the performance ben-

efits of more adaptable communication networks, we
study fast and congestion-free rerouting algorithms for
network flows. We first close the gap in the literature
and present a tight characterization of the complexity of
the k-NETWORK FLOW UPDATE problem by showing
that it is NP-hard already for k = 3 (see Theorem 2).
In our reduction not only the flows are acyclic, but also
the graph is very simple since removing one edge makes
the whole graph acyclic.
We then present an efficient algorithm for sparse net-
works, specifically, a fixed-parameter tractable algorithm
parameterized by the treewidth of the graph and the
number of flows.
Related Work: How to reroute flows in a congestion-

free manner is a fundamental question, which is re-
ceiving much attention recently [10]. In general, the
problem studied in this paper belongs to the family of
combinatorial reconfiguration problems which asks for a
transformation of one configuration into another, subject
to some (reconfiguration) rules. Such reconfiguration
problems have already been studied in many contexts,
including puzzles and games (such as Rubik’s cube) [32],



satisfiability [14], independent sets [15], vertex color-
ing [6], or matroid bases [18], to just name a few.
The problem of how to consistently update routes has
attracted much interest recently [5], [19], [23], [27],
[30], in particular in the context of software-defined
networks, and it is motivated by unpredictable router
update times [19], [22]. For an overview, we refer to a
recent survey by Foerster et al. [10]. In a seminal work
by Reitblatt et al. [30], a strong per-packet consistency
notion has been studied, which is well-aligned with
the strong consistency properties usually provided in
traditional networks [7]. Mahajan and Wattenhofer [27]
started exploring the benefits of relaxing the per-packet
consistency property, while transiently providing only
essential properties like loop-freedom. The authors also
present a first algorithm that quickly updates routes
in a transiently loop-free manner. Their study was re-
cently refined, where the authors also establish hard-
ness results [3], [11], [12]. Furthermore, they focus on
the problem of minimizing the number of scheduling
rounds [25], initiate the study of multiple policies [9],
and introduce additional transient routing constraints
related to waypointing [24], [26]. However, none of these
papers considers bandwidth capacity constraints.
Congestion is known to negatively affect application
performance and user experience. The seminal work by
Hongqiang et al. [23] on congestion-free rerouting was
extended in several papers, using static [4], [16], [31],
[35], dynamic [34], or time-based [28], [29] approaches.
Vissicchio et al. presented FLIP [33], which combines
per-packet consistent updates with order-based rule re-
placements, in order to reduce memory overhead. More-
over, Hua et al. [17] initiated the study of adversarial
settings with packet tampering and packet dropping.
However, bandwidth capacity constraints have so far
mainly been considered in strong, per-packet consistent
settings, and for splittable flows. This is both costly
(splittable flows introduce overheads) as well as re-
strictive (per-packet consistent updates require traffic
marking and render many problem instances infeasible).
Amiri et al. [1] presented a polynomial-time algorithm
for acyclic flow graphs, to compute feasible (possibly
very long) update schedules. In follow-up work [2], they
presented a polynomial-time algorithm that computes the
fastest update schedule for two flows, and also showed
that the problem is already NP-hard for six flows.
Paper Outline: We introduce our model formally in

Section II. In Section III, we prove that k-NETWORK
FLOW UPDATE is NP-hard already for k = 3. In Sec-
tion IV, we present a fixed-parameter tractable algorithm
for the problem with bounded treewidth and bounded
number of flow pairs.
Due to space constraints, proofs for results or additional
material marked with (∗) are deferred to the full version

of the paper.

II. MODEL

The problem considered in this paper can be described in
terms of edge-capacitated directed graphs. Without loss
of generality, we consider directed graphs with only one
source vertex and one terminal vertex.

Definition 1 (Flow Network). A flow network (G, c, s, t)
consists of a directed graph G, a capacity function
c : E(G) → R+

0 assigning a non-negative capacity c(e)
to every edge e ∈ E(G), and two vertices s, t ∈ V (G),
where s is the source and t the terminal.
An (s, t)-flow F of demand d(F ) ∈ N is a di-
rected path from s to t in a flow network such that
d(F ) ≤ c(e) for each e ∈ E(F ). Given a set of
(s, t)-flows F = {F1, . . . , Fk} we call F valid, if∑

i∈[k] : e∈E(Fi)
d(Fi) ≤ c(e) holds for each e ∈ E(G).

Definition 2 (Update Flow Network). An update flow
pair P = (F o, Fu) consists of two (s, t)-flows, the old
flow F o and the update (or new) flow Fu, both having
equal demand, i.e., d(F o) = d(Fu). Accordingly, we de-
note a family of update flow pairs by P = {P1, . . . Pk}.
Given a flow network (G, c, s, t) and a family P
of update flow pairs with Pi = (F o

i , F
u
i ), we say

(G, c, s, t,P) is an update flow network if
1) V (G) =

⋃
i∈[k] V (F o

i ∪ Fu
i ),

2) E(G) =
⋃

i∈[k] E(F o
i ∪ Fu

i ), and
3) {F o

1 , . . . , F
o
k } and {Fu

1 , . . . , F
u
k } are valid.

Figure 1 gives an example of an update flow network
with two update flow pairs shown in red and blue.
A flow in an update flow network can be rerouted by
updating the outgoing edges (the forwarding rules) of
the vertices along its path, i.e., by blocking the outgoing
edge of the old flow and by allowing traffic along the
outgoing edge of the new flow.

Definition 3 (Update). Given an update flow network
(G, c, s, t,P), an update is a pair (v, P ) ∈ V (G) × P .
An update (v, P ) with P = (F o, Fu) is resolved by
deactivating the current outgoing edge (from Fu) of the
flow P starting at v (note that there is only one) and
activating the outgoing edge of Fu starting at v. The
deactivated edge of F o is no longer used by the flow
pair P , but now the newly activated edge of Fu is.
For a flow pair P = (F o, Fu) ∈ P and set of updates
U ⊆ V (G) × P , graph P (U) denotes the update flow
network consisting of vertices V (F o∪Fu) and the edges
of P that are active after resolving all updates in U .

We are now able to determine, for a given set of updates,
which edges we can and which we cannot use for
routing. In the end, we want to describe a process of
reconfiguration steps, starting from the initial state, in



which no update has been resolved, and finishing in a
state where the only active edges are exactly those of
the new flows of every update flow pair.

Definition 4 (Transient Flow). The flow pair P is called
transient for some set of updates U ⊆ V (G)×P , if P (U)
contains a unique valid (s, t)-flow TP,U . If there is a
family P = {P1, . . . Pk} of update flow pairs, we call P
a transient family for a set of updates U ⊆ V (G) × P ,
if and only if every P ∈ P is transient for U .

A transient flow looks like a path of active edges for
flow F , which starts at the source vertex and ends at
the terminal vertex. Note that there may be some active
edges connected to this path, but they cannot be used to
route the flow since TP,U is unique after resolving U .
In order to ensure transient consistency, the updates of
these outgoing edges need to be scheduled over time.

Definition 5 (Update Sequence). An update sequence
(σi)i∈[|V (G)×P|] is an ordering of V (G)×P . We denote
the set of updates that are resolved after step i by Ui =⋃i

j=1 σj , for all i ∈ [|V (G)× P|].

Definition 6 (Feasible Update Sequence). An update
sequence σ is feasible, if for each i ∈ [|V (G)× P|],
the family P is transient for Ui.

A feasible update sequence for the example given in
Figure 1 is the following: (v2, Pb), (v2, Pb), (v3, Pr),
(s, Pb), (s, Pr).
k-NETWORK FLOW UPDATE
Input: Update flow network (G, c, s, t,P), k = |P|.
Question: Is there a feasible update sequence?

III. NP-HARDNESS

To prove that the k-NETWORK FLOW UPDATE is NP-
hard even for three flow pairs, we first define blocks
and dependency graphs. The dependency graph concisely
captures the constraints imposed by the flows. Then, we
prove that for any graph D satisfying some conditions,
we can create a flow network such that its dependency
graph is D. Finally, we reduce the NP-hard problem IN-
DEPENDENT SET [13] to k-NETWORK FLOW UPDATE.
Blocks: Let (F o, Fu) be an update flow pair where
F o∪Fu is acyclic. We denote by ⪯ a topological order-
ing v1, v2, . . . , v|F o∪Fu| of the vertices in V (F o ∪ Fu),
where s = v1 and t = v|F o∪Fu|. Furthermore, let
z1, . . . , z|F o∩Fu| be the vertices in V (F o∩Fu), ordered
w.r.t. ⪯.
The jth block of the update flow pair F , denoted bj ,
is the subgraph of F o ∪ Fu induced by the set
{v ∈ V (F o ∪ Fu) | zj ⪯ v ≺ zj+1}, where j ∈ [|F o ∩
Fu| − 1]. The flow pair (F o, Fu) restricted to block bj
is denoted by (F o

bj
, Fu

bj
).

In order to reroute the old flow to the new flow
in a block bj all vertices in bj need to be updated

w.r.t. (F o, Fu). Hence, we say block bj of (F o, Fu) is
updated if all vertices in bj are updated w.r.t. (F o, Fu).
In Figure 1 the blue flow Pb consists only of one block,
whereas the red flow Pr consists of two blocks.
Dependency graph: Different flow pairs can share

edges. Each edge has a maximum capacity which in-
troduces dependencies on how the blocks need to be
updated. We capture this with the dependency graph.
The dependency graph D of an update flow network
is a directed hypergraph. Since we consider only three
acyclic flow pairs in this section, this gives rise to three
types of (hyper-)edges, i.e., E(D) = Eα ∪Eβ ∪Eγ . We
construct D as follows:

1) Create for each block b of each flow pair in G one
vertex b. We use b for a block and a vertex in V (D)
but it will be clear to which we are referring to.

2) Let b1, b2, b3 ∈ V (D). We add an
a) α-edge b1 → b2 if there is an edge e ∈ E(Fu

b1
)∩

E(F o
b2
) with c(e) < d(Fu

b1
) + d(F o

b2
).

b) β-edge b1 → {b2, b3} if there exists an edge
e ∈ E(Fu

b1
) ∩ E(F o

b2
) ∩ E(F o

b3
) with

i) c(e) < d(Fu
b1
) + d(F o

b2
) + d(F o

b3
),

ii) d(Fu
b1
) + d(F o

b2
) ≤ c(e), and

iii) d(Fu
b1
) + d(F o

b3
) ≤ c(e).

c) γ-edge {b1, b2} → b3 if there exists an edge
e ∈ E(Fu

b1
) ∩ E(Fu

b2
) ∩ E(F o

b3
) with

i) c(e) < d(Fu
b1
) + d(Fu

b2
) + d(F o

b3
),

ii) d(Fu
b1
) + d(F o

b3
) ≤ c(e), and

iii) d(Fu
b2
) + d(F o

b3
) ≤ c(e).

Since for each flow pair the union of the two flows
is acyclic, we observe that the two (resp. three) blocks
involved in an α- (resp. β- or γ-)edge are distinct and
belong to different flow pairs.
The edges in the dependency graph give information
about the order in which the blocks in G can be updated.
We observe that block b1 can only be updated if: (i) for
all α-edges b1 → b2, block b2 is updated; (ii) for all β-
edges b1 → {b2, b3}, block b2 or b3 is updated; and (iii)
for all γ-edges {b1, b2} → b3, block b2 is not updated
or b3 is updated.
Not every graph only with these types of edges is
the dependency graph of some update flow network.
However, we show that for specific graphs D, we can
always construct an update flow network (G, c, s, t,P)
such that its dependency graph is isomorphic to D. The
next lemma proves this for graphs where the vertices can
be partitioned into layers where the edges only point to
the next two layers, e.g., see Figure 4.

Lemma 1. Let D be a graph only with α-, β-, and
γ-edges satisfying the following properties: It holds
V (D) = L0∪̇ . . . ∪̇Lℓ with ℓ mod 3 = 0 and for each

1) α-edge b1 → b2 it holds that if b1 ∈ Li for i ∈ [ℓ]
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Fig. 2. Creating the flows for two vertices bi, bi+1 ∈ V (D). The old
flow is drawn with solid edges and the new path with dashed edges.

then b2 ∈ Li−1 ∪Li−2 or if b1 ∈ L0 then b2 ∈ Lℓ;

2) β-edge b1 → {b2, b3} it holds that if b1 ∈ Li for
i ∈ [ℓ] \ {1} then b2 ∈ Li−1, b3 ∈ Li−2 or b2 ∈
Li−2, b3 ∈ Li−1; and

3) γ-edge {b1, b2} → b3 it holds that if b3 ∈ Li for
i ∈ [ℓ − 2] then b1 ∈ Li+1, b2 ∈ Li+2 or b1 ∈
Li+2, b2 ∈ Li+1.

Then, there exists an update flow network (G, c, s, t,P)
with |P| = 3, the union of the old and new flow for
each flow pair is acyclic, and |V (G)| ∈ O(|V (D)|)
such that D is isomorphic to the dependency graph
of (G, c, s, t,P).

Proof. The proof consists of three steps: (i) Color V (D)
with three colors and assign them to three flows, (ii) cre-
ate for each b ∈ V (D) a block in the flow network, and
(iii) connect the blocks and model the dependencies.
Coloring V (D): First, we need a 3-coloring of the

vertices of D. The color of each vertex indicates to which
of the three flow pairs it belongs. Hence, we need a
coloring where the two (resp. three) vertices of every α-
(resp. β- or γ-) edge are colored differently. We color the
vertices of layer i ∈ ℓ∪{0} with color c1 (resp. c2 or c3)
if i mod 3 = 0 (resp. i mod 3 = 1 or i mod 3 = 2).
By Statement (1) vertices incident to an α-edge have
different colors with this coloring. By Statement (2)
and (3) each β- and γ-edge is incident to three distinct
and consecutive layers. Hence, our coloring assigns to
each of three vertices incident to a β- and γ-edge distinct
colors. This means we obtain proper coloring.
Creating the flows: The three colors of our coloring

correspond to the three flow pairs in our network. We
show how to create the flows for each color.
First, we choose an arbitrary ordering b1, b2, . . . of the
vertices in V (D) of one color. Then, we create for
each bi ∈ V (D) an old and a new path each of length
2
(
δ−D(bi) + δ+D(bi) + 1

)
, where δ−D(bi) (resp. δ+D(bi)) is

the in-degree (resp. out-degree) of bi in D. The old
path consists of the vertices vsi , o

x
i,1, o

x
i,2, . . . , v

t
i and the

new path of vsi , u
x
i,1, u

x
i,2, . . . , v

t
i . These two flows have

exactly two common vertices, the start-vertex vsi and the
end-vertex vti . The index x of vertices oxi,1, o

x
i,2, ux

i,1, u
x
i,2

corresponds to a neighbor x ∈ N−
D (bi) ∪N+

D (bi).
Next, we merge the created blocks according to the or-
dering b1, b2, . . . to obtain a continuous flow as follows:

For two consecutive blocks bi and bi+1, we merge vti
with vsi+1 (see Figure 2).
Connecting the flows: We have to connect the three

flows to create the desired dependencies. We take an
arbitrary ordering of the edges in E(D), consider one
edge after the other and do the following (see Figure 3):

1) For an α-edge b1 → b2, we merge vertices u1b2b1 ,
o1b1b2 as well as u2b2b1 , o2b1b2 and set the capacity of
the edge (u1b2b1 , u2

b2
b1
) to 1.

2) For a β-edge b1 → {b2, b3}, we merge vertices
u1b2b1 , o1b1b2 , o1b2b3 as well as u2b2b1 , o2b1b2 , o2b2b3 and
set the capacity of the edge (u1b2b1 , u2

b2
b1
) to 2.

3) For a γ-edge {b1, b2} → b3, we merge vertices
u1b2b1 , u1b1b2 , o1b2b3 as well as u2b2b1 , u2b1b2 , o2b2b3 and
set the capacity of the edge (u1b2b1 , u2

b2
b1
) to 2.

Finally, we have to connect the three flows to a common
source s and terminal t.
We created an update flow network with |P| = 3 and
|V (G)| ∈ O(|V (D)|). It is straightforward that this
models the necessary dependencies. The union of each
flow pair is acyclic because each edge in D uses at most
three blocks that belong to different flows and when
rerouting a flow it does not intersect any other rerouting
of this flow pair.

Theorem 2. The k-NETWORK FLOW UPDATE problem
is NP-hard even if the following holds: (i) k = 3, (ii)
each flow pair is acyclic with demand 1, and (iii) the
capacities of the flow network are in {1, 2}.

Proof sketch. We provide a polynomial-time reduction
from INDEPENDENT SET [13]. Given an instance (Ĝ, h)
of INDEPENDENT SET we will create a dependency
graph D that satisfies the conditions of Lemma 1. Hence,
we can also create from D an update flow network. In
this dependency graph D we will only be able to update
blocks corresponding to independent vertices of Ĝ in the
beginning. The main idea is that we can only resolve
all the blocks in D if we can update at least h blocks
representing an independent set in Ĝ first.
We proceed as follows: (i) Create a dependency graph D
out of Ĝ, (ii) build a gadget to count the number of
blocks corresponding to independent vertices of Ĝ, and
(iii) the proof of correctness of the reduction.
Create Dependency Graph D: Let (Ĝ, h) be an IN-

DEPENDENT SET instance. We define n̂ :− |V (Ĝ)|.
First, create block u. For each vertex v̂i ∈ V (Ĝ), create
blocks vi and v′i. For each edge {v̂i, v̂j} ∈ E(Ĝ), create
block wi,j . Let {u} be layer 0, denoted by L0, all
blocks wi,j are in layer 1, denoted by L1, all blocks v′i
are in L2, and all blocks vi are in L3 (see Figure 4).
Between these blocks, we add the following edges: For
every i ∈ [n̂], we add the α-edge vi → v′i. For every
edge {v̂i, v̂j} ∈ E(Ĝ) (suppose i < j) we add the γ-
edge {v′i, vj} → wi,j and the α-edge wi,j → u.
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Fig. 3. Connecting the flows. Left: α-edge b1 → b2. Middle: β-edge b1 → {b2, b3}. Right: γ-edge {b1, b2} → b3.
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Fig. 4. The first four layers of the dependency graph D in Theorem 2,
where {v̂1, v̂2}, {v̂2, v̂i}, {v̂i, v̂j}, {v̂n−1, v̂n} ∈ E(Ĝ). Red arcs
correspond to α-edges and blue arcs to γ-edges.

Claim 2.1 (∗). If u is not updated, then all vertices in L3

that can be updated represent independent vertices in Ĝ.

Before we construct the layers to count the number
of updated blocks corresponding to independent ver-
tices in Ĝ, we describe the OR-gadget. Given blocks
X = {x1, x2, . . . , xℓ} in one layer of D, let OR(X) be
a gadget that (i) contains at most 2ℓ+1 vertices, (ii) spans
at most 2⌈log ℓ⌉ layers, and (iii) has one vertex v in the
last layer where v can be updated if and only if at least
one vertex from X was updated.
We describe the construction inductively: For ℓ = 1,
we have X = {x1} and the construction consists of
one additional block x′

1 in a new layer and an α-edge
x′
1 → x1. This fulfills the first two conditions and x′

1

can only be updated if x1 is updated.
For ℓ ≥ 2, we create for every t ∈ [⌊ℓ/2⌋] a block x′

2t

with the α-edge x′
2t → x2t and a block st with the β-

edge st → {x2t−1, x
′
2t}. If ℓ is odd, then we also add

the α-edge s⌈ℓ/2⌉ → xℓ. With S = {s1, s2, . . . , s⌈ℓ/2⌉},
we then construct OR(S).
We can prove by induction that this construction of
OR(X) satisfies all desired properties (∗).

Construction of Counting Layers (∗): We construct
further layers that count the number of updated vertices
in L3. There are always some auxiliary layers and then a
special counting layer called Li which consists of blocks
split into groups. Every group contains 2i blocks and
there are n̂/2i groups in Li. For counting layer Li, a
block in the j-th group at position p is denoted by xj,p,
where p ∈ [2i] and j ∈ [ n̂2i − 1] ∪ {0}.
In the light of Claim 2.1, every Li counts the size of the
independent set vertices for some subset of blocks. The
final counting layer Llog n̂ counts the number of updated
blocks in L3, thus the independent set in Ĝ.

Claim 2.2 (∗). Vertex xj,p ∈ Li can only be updated if at
least p vertices in {v2i·j , v2i·j+1, . . . , v2i·(j+1)−1} ⊆ L3

are updated.

Finally, we connect block u ∈ L0 with v0,h ∈ Llog n̂ by
the α-edge u → v0,h. This construction of D satisfies
the conditions of Lemma 1, has O(n̂2) vertices, and the
number of layers is divisible by 3. Every edge spans at
most three consecutive layers and is oriented upwards.
Correctness: Let C be a size-h independent set of Ĝ.

Following blocks can be updated sequentially: in lay-
ers L2 and L3 that correspond to C, then all count-
ing layers greedily, and finally the rest. Conversely,
if no independent set of Ĝ has size at least h, then
block v0,h ∈ Llog n̂ cannot be updated by Claim 2.2.

IV. FIXED-PARAMETER TRACTABLE ALGORITHM

In this section, we present a fixed-parameter tractable
algorithm for k-NETWORK FLOW UPDATE solves the
problem in polynomial time parameterized by the num-
ber of flows and the treewidth.
Given flow networks, we first show how to construct an
ED-graph for any number of flows. Then, we prove that
the treewidth of the ED-graph is not too large compared
to the treewidth of G. Finally, we show a fixed-parameter



tractable algorithm that decides the feasibility of the
problem.
Tree Decomposition and Treewidth: We recall the no-

tion of treewidth, see [8, Sec. 12.4, p. 355] for an
overview. Given a graph D = (V,E)a tree decompo-
sition T = (VT , ET ) of D is a tree, where we refer
to nodes of the tree as bags. Every bag B represent a
set of vertices of D and T satisfies the following: 1)⋃

B∈VT
B = V ; 2) with EB = {(u, v) ∈ E | u, v ∈ B},

we have
⋃

B∈VT
EB = E; and 3) for all X,Y, Z ∈ VT ,

if Y is on the unique path from X to Z, then X∩Z ⊆ Y .
The width of a tree decomposition is the maximal size
of a bag minus one, i.e., maxB∈VT

|B| − 1. For a graph
D, treewidth of D is the minimum width over all tree
decompositions of D and we denote it tw(D).
ED-graph: Given (G, c, s, t,P), we construct the ex-

tended dependency graph (ED-graph) D = (VD, ED).
First, we decompose the flows to blocks as in Section III.
Blocks of flows are vertices in D. Two vertices v and u
from VD are connected by an edge if the respective
blocks share an edge in G. Here, in ED-graph, we do
not need special types of edges, one α-edge in d-graph
creates one edge in ED-graph, one β or γ-edge in d-
graph creates three edges in ED-graph, one edge between
every two vertices participating in the β or γ-edge.

Lemma 3. Given (G, c, s, t,P) with k flow pairs and
its ED-graph D, then tw(D) ≤ k · tw(G).

Proof. We modify G to G′, such that: (i) tw(G′) ≤
k · tw(G); and (ii) graph D is a minor of G′. Since
the minor operations do not increase the treewidth, this
means tw(D) ≤ tw(G′). Graph G′ is the Cartesian
product of G and Kk, then tw(G′) ≤ k ·tw(G). Observe
that D is minor of G′ where every copy of vertex from G
represents j-th flow.

For a rooted tree decomposition, we construct a depen-
dency oracle that given a bag and ordering returns true
if and only if the given ordering satisfies all capacity
conditions. Note that every condition on capacity needs
to be stored only once and in the highest (closest to the
root) bag that contains all variables in that condition. As
usual, the algorithm caches the results of the same calls
and except for true or false it can return the ordering.
We can find a constant approximation of the treewidth
of a graph G with n vertices in time
O(2tw(G)n) [21].

Theorem 4. Given the update flow network
(G, c, s, t,P) where G has n vertices and tw(G) = tw
and update pairs (P1, . . . , Pk) where for every flow
the union of old and new flow is acyclic, Algorithm 1
decides the feasibility in time 2O(tw·k log(tw·k))n.

Proof. Note that every edge (there are only n·k of them)
introduces only one condition. From Lemma 3, we have

Algorithm 1 FPT Algorithm
Input: Dependency graph D, rooted tree decomposition

T of D, dependency oracle f
1: procedure SOLVE(T ,f , B, o)
2: for all permutations o1 of B extending o do
3: if f(B, o1) then
4: r ← true
5: for all children B′ of B do
6: r = r and SOLVE(T, f,B′, o1)

7: if r then return true
8: return false

that the treewidth of the extended dependency graph of G
is at most t · k and the number of conditions is kn.
Now, we show the correctness and time complexity of
Algorithm 1. The time complexity 2O(tw log tw)(n+m)
where n is the number of vertices of ED-graph and m
the number of conditions, implies the theorem.
Correctness: We argue the correctness from the bottom

up. Suppose that the call SOLVE(T, f,B, o) on leaf
bag B returns true. All conditions associated with the
leaf B are fulfilled (from Line 3).
Moreover, if there are vertices X ⊆ B that need to
satisfy some condition c not associated with B, then
let B′ be a highest predecessor of B such that X ⊆ B′.
From the construction of dependency oracle, condition c
is associated with B′. Since the calls only extend the
ordering, we know that if SOLVE(T, f,B, o) is called,
then in the call of SOLVE(T, f,B′, o′), on line 2 the
algorithm already has the same ordering of vertices in X
as in o. Therefore the condition is verified.
If the bag B is not a leaf in the call of
SOLVE(T, f,B, o), from induction, we know that all the
subtrees under B can be extended such that all conditions
are fulfilled. Again, any condition on vertices X ⊆ B is
verified either in B directly or in some predecessor.
Time complexity: For given T and f , there areO(tw!·n)

possible calls SOLVE(T, F, ·, ·) and every condition is
associate with one bag. Since tw! ∈ 2O(tw log tw), we
have the time complexity 2O(tw log tw)(n+m).
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