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Abstract—Effective scheduling of software updates is a sig-
nificant challenge in network operations and management, par-
ticularly when considering specific performance and security
requirements. This paper focuses on the synthesis of such
software updates in the context of emerging virtualized and
softwarized networks, such as 5G network infrastructures, with
the objective of ensuring vulnerability avoidance and congestion
freedom at any time during the updates. We formalize the update
synthesis problem and propose an algorithmic solution, called
Eagle, that exploits formal methods and mixed integer linear
programming, to achieve optimal solutions. We then complement
it with a greedy algorithm to support faster computation. We
exemplify our framework considering an implementation of a 5G
architecture, as the one described in the ETSI 5123 standard, and
which relies on kubernetes. Finally, we evaluate our approach
through a large range of realistic ISP topologies from the
Topology Zoo dataset, and we also perform extensive experiments
on our kubernetes cluster, where we execute the software update
sequences generated by our tool. This allows us to discuss the
scalability of our approach along with its practical applicability.

Index Terms—Update synthesis, Configuration and vulnera-
bility management, Congestion avoidance, Softwarized networks

I. INTRODUCTION

The development of next generation networks is character-
ized by the growing softwarization of their resources, in order
to offer further flexibility and adaptation to changes [1]. This
softwarization paradigm allows us to automatically re-optimize
and update networks at runtime. However, as network adap-
tions become more frequent and to ensure a high availability
and dependability, it is crucial to maintain performance and
safety properties also during updates, in a transient manner.
From a security viewpoint, softwarized networks may also
lead to additional vulnerabilities, that may increase their
exposure to attacks. This introduces new challenges to human
network operators. A network configuration may be vulnerable
if it contains a certain combination of software versions
and parameters. Fixing such vulnerabilities requires update
procedures that are aware of compatibility constraints by, e.g.,
querying vulnerability descriptions, such as those that can be
specified with the OVAL standard language [2]. The resulting
update schedule must ensure that also during the updates, no
vulnerability (violation of compatibility) is encountered, and
that the system remains performant avoiding congestion.
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Fig. 1: 5G topology: the core is deployed in a spine-leaf
topology where core functions are instantiated in a kubernetes
cluster. Nodes in the cluster run either kubernetes version 1.25
or 1.26 and must be updated to version 1.27.

As our main contribution, we jointly consider and solve
the vulnerability-aware and congestion-aware software update
synthesis problem by using a formal method approach which
allows us to synthesize provably correct update schedules;
while minimizing the number of update batches (thus short-
ening the overall update duration) and optimizing the size of
each batch (to preserve network robustness). Our approach
is generic and extensible, and we choose to illustrate our
contribution with the concrete case of 5G networks [3].

A. 5G motivating example

Before presenting the problem and its model, let us
overview our motivating example, a 5G case study. As there
is a full functional decomposition in 5G networks with well
defined interfaces between functions, it is possible to imple-
ment a 5G network with micro-services. As a consequence, it
is now common practice to implement 5G networks using con-
tainers and deploy them in clusters within private clouds [4].
These compute infrastructures typically employ variations of
a spine-leaf topology, as shown in Figure 1, which provides
a high level of symmetry to support both high bandwidth and



robustness. We can idealise a 5G network as a set of Radio
Access Networks (RANs) where each User Equipment (UE) is
connected and that includes all the radio-related components,
and a core network to which the RANs are connected. The
core manages the infrastructure and forwards traffic to/from
the RANs via the backhaul (black node on the left in Figure
1). We shall focus on the user plane in the core network. It is
implemented with the User Plane Function (UPF) that transfers
user traffic between the UEs and the Internet according to
network policies [5]. For resiliency and performance reasons,
the UPF is replicated on all worker nodes of the cluster. The
UPF is a container, and the containers are coordinated in the
cluster with kubernetes (k8s), which dynamically schedules the
load on the worker nodes to accommodate to node failures.
In addition, worker nodes must get the latest version of
kubernetes. However, nodes get offline during an update, we
thus need to find update sequences that guarantee that the
cluster can support the load despite the reduction of available
resources. Fewer resources however decrease robustness to
failures. This is why the sequence should be as short as
possible and at the same time grouping nodes to create equal-
size batches of updates. Kubernetes adds another constraint:
all nodes of a cluster must be within one minor version [6].
For instance, version 1.26 is compatible with version 1.25 and
version 1.27, but version 1.25 is not compatible with version
1.27. To highlight this constraint, we have a mix of versions
that all have to be updated to version 1.27 in a safe way
(avoiding vulnerability) in our example.

B. Our contribution

We initiate the study of how to update a softwarized com-
munication network in a provably correct manner, transiently
accounting for software vulnerabilities (e.g., related to soft-
ware compatibility) and congestion given the actual load in the
network. After formalizing the problem, we propose Eagle, an
algorithmic solution which relies on formal methods and linear
programming, supporting an easy, automated and fast synthesis
of correct updates. We complement it with a greedy algorithm
to improve its performance. We are not aware of any existing
update synthesis approach in the networking literature which
combines both logical (vulnerability constraints) and quanti-
tative (congestion) properties. We demonstrate, as a running
example, our approach in the context of 5G architecture [7].
We further provide an analysis and empirical evaluation,
assessing our solution through series of experiments, both
using synthetic as well as real-world instances. We find that
Eagle performs well and scales to realistic network sizes.

II. FORMALIZATION OF NETWORK UPDATE SYNTHESIS

We provide here the formalization of the vulnerability- and
congestion-free network update problem.

Definition 1 (Network). A network is a directed multi-graph
N = (V,E, srcg,dstg,C, WP) consisting of a finite set of
nodes V, a finite set of links (edges) E, a source function
srcg © B — 'V assigning a source node to each edge, a
target function dstp : E — V assigning a target node to

each edge, an edge capacity function C : E — N assigning a
capacity to each edge and a set of waypoints WP C V.

In a network there is a certain number of flow demands to
satisfy; these demands represent the amount of traffic to route
from one ingress node to another egress node in the network,
while making sure that the traffic goes at least through one of
the waypoint nodes. In the rest of this section we consider a
fixed network N = (V| E, srcg, dstg, C, WP).

Definition 2 (Demand). A demand set is a tuple F =
(D, size, srcp, dstp) where D is a finite set of demand names,
size : D — N is a demand size function assigning a certain
amount of traffic to each demand, srcp : D — V is a demand
source mapping function assigning a source node to each
demand, and dstp : D — V is a demand target mapping
function assigning a target node to each demand.

We say that network N has sufficient capacity to transfer
the demands from D, if there is a multi-commodity flow for
each demand that visits at least one of the waypoints WP
while respecting the capacity constraints on the links.

In our problem, we assume that each node v € V has its
own software configuration given by a list of installed software
components with different software versions.

Definition 3 (Software Configuration). Let S be a finite set
of software systems and for each s € S let Dom(s) be the
set of possible versions of software s. We assume a natural
comparison < (older than) on the set Dom(s). For each s €
S, the set Dom(s) contains the symbol L (incomparable with
the other software versions) meaning that the software s is not
installed. A network configuration is a function

d:V x 8= UsesDom(s)

s.t. (v, s) € Dom(s) forall v € V and s € S, i.e. 6(v,s)
returns the version of the software s installed on the node v.

We say that a network configuration § is vulnerable if
it contains a certain combination of software configurations
described, e.g., by OVAL vulnerability descriptions [2] and
its extension to distributed vulnerabilities [8]. The OVAL
specification is a Boolean combination of atomic predicates
over the statements about the state (e.g. version number,
parameters) of the software components installed on a node.

In general, a vulnerability formula 1 is an arbitrary Boolean
combination of local node properties of the form:

Jz.p

where ¢ is a Boolean combination of atomic predicates like
x.s > state where s € S, <1 € {<,=,>} and state €
Dom(s). We say that the vulnerability ¢ manifests in a
configuration ¢ of a network IV if for every node property Jz.¢
in v there is a node v such that if we substitute z.s b state
with &(v, s) > state in all atomic predicates inside of the node
properties, the whole formula evaluates to true.

A typical example of a vulnerability formula from [9], [8]
involving two nodes is:



Jdz. (x.kamailio < 5.6.4 A z.pike = L) A
Jz. (x.bind > 9.19.13 A z.external_recursion = enabled)

that manifests in a software configuration where there is a
node that has installed an older version (less than or equal
to 5.6.4) of SIP server kamailio without the security module
pike and at the same time there is a (possibly different) node
running DNS bind server with a newer software version of at
least 9.19.13 with external recursion enabled.

Another interesting example in the context of our 5G core
topology is a violation of compatibility caused by concurrently
running software versions of kubernetes that are more than
one version from each other [6], which for example for the
available software version of 1.24, 1.25, 1.26, and 1.27 is
expressed by the vulnerability formula:

(3z.(z kubernetes < 1.24) A Jz.(z.kubernetes > 1.26)) V
(3z.(z kubernetes < 1.25) A Jz.(z.kubernetes > 1.27)) .

Software dependencies where a sofware s; depends on
another software s, can be expressed by the vulnerability
Jz.(—(x.sy = L) A (z.s2 = 1)) which manifests itsself
whenever there is a node where software s is installed but so
is missing. Similarly, we can define vulnerability predicates
for some particular sofware version dependencies.

Several vulnerability constraints can be grouped into a
single vulnerability using a conjunction. We shall now define
the vulnerability- and congestion-free update problem.

Definition 4 (Update Synthesis Problem). Let N be a network,
Y a given network vulnerability formula, and 6y and Op
the initial and final software configurations, respectively. The
update synthesis problem is to find a sequence of update
batches (disjoint set of nodes) Xi,...,Xx C V where
Xy U...UXg = V such that for every i, 0 < 1 < K,
the intermediate software configuration §; (after finishing the
updates in the first i batches) defined by

di(v,s) = {5F(U’S) if v e Ui X

0o(v,8)  otherwise

does not manifest the network vulnerability 1) and the network
N after removing the nodes X; and their connected edges has
a sufficient capacity to transfer all the traffic demands.

The intuition is that, given the update schedule X1, ..., X,
we shall, in the increasing order, take all the routers from
the batch X; offline, update their software from the initial
to the final version and then bring them online. After this, we
continue the process with X 1. Once all batches are updated,
the network is in the final configuration §r. At any moment
during the update, we may not encounter any vulnerability and
the network without the routers X; that are temporarily offline
must have enough capacity to satisfy all traffic demands.

In practice, our first minimization objective is the number of
batches that are required to complete the update as this will
minimize the overall update time of the network; then our
second minimization objective is to minimize the maximum
batch size to preserve as much as possible network robustness.

III. EAGLE: LINEAR PROGRAMMING ALGORITHMS

Our approach, Eagle, relies on formal methods and trans-
lates the update synthesis problem into a mixed integer linear
program. We first introduce the necessary notation and then
present the translation.

A. Preliminaries

A mixed integer linear program over the set of variables
Ti,...,T, is a finite set of linear constraints of the form
a1x1+...+apx, < bwhereay,...,a, and b are integer (or
rational) numbers. The optimization problem is to find a solu-
tion (assignment of variables to either integers or rational num-
bers) that satisfies all constraints and minimizes/maximizes a
given linear function c;x1 + ...+ c,x, Where ci,...,c, are
integer (or rational) constants. There exist numerous efficient
tools for solving the NP-complete optimization problem for
mixed integer linear programs [10].

We shall now proceed to formulate our update syn-
thesis problem as a mixed integer linear program. Let
N = (V,E,srcg,dstg,C, WP) be a network, F =
(D, size, srcp, dstp) be a set of demands, S be a set of
available software with corresponding versions Dom(s) for
all s € S, let v be a vulnerability formula, and let §y and g
be respectively the initial and final network configurations.

B. Exact approach for computing optimal solutions

An exact solution of our congestion-aware software update
problem can be obtained by solving the mixed integer linear
program from Figure 2 that relies on B = {by,...,b,}, a
set of potential labels for update batches with n being the
maximal number of such batches. In this program we use the
following variables:

e u: B+ {0,1} where u(b) = 1 whenever the batch b is

used in the update sequence,

e s maximal batch size,

e x:Bx Vi {0,1} where z(b,v) = 1 for all batches

b € B where the vertex v € V is already updated,

e y: Bx Vi {0,1} where y(b;,v) = 1 if and only if

x(bj—1,v) =1, and

o pl.p3 . B x E + [0,1] where p{(b,e) is the portion

of the traffic from srcp(d) to the waypoints and pd(b, €)
from the waypoints to dstp(d) for the demand d that is
routed through the edge e in the batch b. Note that the
p-variables are the only non-integer ones, which means
that we allow to split flows along several paths.

Our goal is to minimize the objective function (1) that
minimizes as the first priority the length of the update se-
quence (because of its | V| coefficient) and as the second
priority the maximal number of nodes per batch as stated in
Constraint (19). Constraints (2), (3) and (4) impose that all
variables can have a value of either 0 or 1, except for the p vari-
ables that take values from the interval [0, 1]. Constraints (5)
and (6) postulate that the p; flow starts in the source node of
each demand and does not deliver anything to the demand’s
destination node as the waypoint(s) must be visited first and
the full demand must be delivered to the waypoint node(s) as



minimize: | V|- Z u(db) + s
beB
u(b) € {0,1}
z(b,v),y(b,v) € {0,1}
pi(b,e), p5(b,e) € [0,1]

Z pg(bv e)=1

e€E,srcg(e)=srcp(d)

Z pg(bv e)=0

e€E,dstg(e)=srcp(d)

Z pg(bv e)=1

e€E,dstg(e)e WP

Z pg(bv 6) =0

e€E,srcp(e)e WP

Z pg(bv e)=1

e€FE,dstg(e)=dstp(d)

Z pg(bv e)=0

e€E,srcp(e)=dstp(d)

Yo b= Y s
ecE,dstg(e)=w ecE,srcg(e)=w
Yoo = Y plbe

e€E, dstg(e)=v ecE,srcp(e)=v

y(bi,v) = x(bi_1,v)
Z(Pf(b, e) + p(b,e)) - size(d) <

deD
Cle) - (1 = (z(b,v) — y(b,v)))
x(b;,v) > x(bi—1,v)

‘V‘ u(b) > Z x(bvv) - y(bﬂ))

veV

Zx(b,v) —y(b,v) =1

beB
u(b1) S U(bi_l)

s> Z x(b,v) — y(b,v)

subject to (1)
forbe B (2
forbe Bive V,ee E 3)
forbe Bve V,ee E 4)
forbe B,de D (%)
forbe B,de D (6)
forbe B,de D (7N
forbe B,de D 3
forbe B,de D 9
forbe B,de D (10)
forde D,b e B,w € WP (11)
fori € {1,2},be B,de D,ve V, (12)
v ¢ WP U{srep(d), dstp(d)}

forie{2,...,n},b;,bj_1 € BveV (13)
for b€ B,e € E,v € {srcg(e), dstg(e)} (14)
fori€{2,...,n},bi,bi,1 €EBveV (15)
for b € {ba,..., b} (16)
forve V (17
forie {2,...n} (18)
forbe B (19)

veV

Fig. 2: Linear program for exact solutions

specified by Constraint (7) while no flow from the waypoints
returns back to p; by Constraint (8). Similarly, Constraints (9)
and (10) require that the ps flow delivers the full demand size
to its destination while the source nodes of the demand do
not contribute to this flow. This is because ps receives all
its traffic exclusively from the waypoint node(s) as specified
by Constraint (11). Constraint (12) imposes the classical flow
preservation property (sum of incoming flow is equal to the
sum of the outgoing flow) for both p; and ps and for all
nodes, except the source, destination and the waypoints of the
demand. Constraint (13) states that y variables are set to 1
one batch latter then their = equivalent; hence the expression

x(b,v) — y(b,v) is 1 only for the batch b where the node v
is updated. Constraint (14) requires that the flow forwarded
through an edge cannot exceed its capacity and that no traffic
can pass through an edge connected to a node that is currently
being updated. Constraint (15) states that once a node is
updated in a batch it remains updated in the next batches.
Constraint (16) guarantees that whenever a node is updated in
a batch then this batch is counted in the length of the update
sequence and Constraint (17) states that a node can be updated
only once. Finally, Constraint (18) ensures that a batch is used
in the update sequence if and only if its direct predecessor is
also used (hence avoiding gaps in update batches).



Aa(b0) = 1) == 700)
red(x(b,v) = . .
where ¢ € {0,1} is a fresh variable

{c 1—x(b,v)

where ¢ € {0,1} is a fresh variable

red(z(b,v) = 0)

c=1-¢
red(—p) = { where ¢ € {0,1} is a fresh variable

and the variable ¢’ is declared in red(yp)

M- €23 i<y G
c< Zlgigm &
where ¢ € {0,1} is a fresh variable

red(\/ i) =
1<i<m
and variables ¢; are declared in red(;)

c2> Z1§¢gm ¢ —(m—1)
c<g¢
red(/\ ;) = -

1<icm where ¢ € {0,1} is a fresh variable

and variables ¢; are declared in red(yp;)

Fig. 3: Constraints for vulnerability (for each b € B)

Remark 1. If the set of waypoints is empty, we modify the
constraints by removing the ps variables and for each demand
set the waypoint equal to the destination of the demand.

In addition to constraints from Figure 2 that guarantee
congestion-freedom, we also add constraints from Figure 3
that enforce that no vulnerability constraints in the formula
are broken. Recall that the vulnerability predicate @) manifests
in a given network configuration ¢ if and only if for every
node property Jz.¢ there exists a node v € V that make ¢ is
satisfied. Notice that due to the construction so far, any given
batch b € B determines a software configuration ¢ where for
every v € V holds that §(v) = do(v) iff z(b,v) = 0, and
§(v) = op(v) iff 2(b,v) = 1.

We can now replace in i any occurence of Jx.p with
V,ev (@) and inside of ¢ we replace any atomic test asking
if there is a node v with a software version of the software
component s satisfying the corresponding software version in
a batch b € B of the form x.s < state by one of the following
expressions:

o z(byv) =0 V z(bv) =1

0r (v, 8) > state

e x(b,v) =0 if dp(v, s) x state and dp(v, s) B4 state

e z(b,v) =1 if §p(v, s) 4 state and dp (v, s) > state

o false otherwise.

if do(v, s) > state and

This converts the distributed vulnerability formula ¢ into
a Boolean formula over the atomic predicates of the form
x(b,v) = 0 or z(b,v) = 1. Finally, we convert this Boolean
formula into a set of linear constraints by applying the reduce
operator red as detailed in Figure 3.

Here we inductively construct constraints for each subfor-
mula by introducing a fresh integer variable ¢ € {0, 1} where

0 means that the subformula is false and 1 stands for true. The
first two introduce a fresh subformula for the atomic predicates
with the expected meaning. To encode the negation —p, we
apply the third reduction rule and create a new variable c that
we set equal to 1—c’ where ¢’ is the variable for the subformula
. This effectively implements the negation operator. The
fourth rule for disjunction adds two constraints. The first one
requires that if at least one of the ¢; variables is 1 (implying
that the subformula ¢; is true) then ¢ must be set to 1 as well.
The second constraint for disjunction enforces that c is 0 if all
subformulae are false, i.e. >, _,~,, ¢ = 0. The last rule for
conjunction also adds two constraints. The first one says that if
all subformulate are true, meaning that ), .. ¢; = m, then
c must be 1 as well. The second constraint says that if at least
one subformula is false then ¢ must be 0 too. Finally, assuming
that c is the variable declared for the whole formula v, we add
the constraint ¢ = 0 that requires that the vulnerability 1) is
false (i.e. it does not manifest in any of the batches b € B).

The combination of the constraints from Figures 2 and 3 en-
forces that a solution to the linear program (i.e. an assignment
of nodes to update batches) does not cause any congestion nor
vulnerability. Moreover, the linear program returns a solution
that minimizes the number of batches as the primary criterion
and the maximum batch size as a secondary one.

C. Greedy approach for computing close-to-optimal solutions

Computing the optimal update sequence using our mixed
integer linear program above can be computationally expensive
because for each batch b € B we create a new copy of all
variables. Hence Eagle also uses a faster greedy approach
which computes one batch at a time only but does not
in general guarantee to find an update sequence with the
minimum number of batches. Our greedy synthesis approach
is derived by modifying the linear program above by:

« setting the batch sequence length to one (B = {b1}),

o maximizing the objective function ) ., x(b1,v),

« limiting the maximal batch size in a dedicated constraint;

« removing Constraints (13) and (15) to (19), and

« replacing y(b;,v) by y(by,v) in Constraint (14).

By doing so we obtain a linear program that maximizes the
number of nodes that can be at the moment safely updated
in the network. We implement those updates and repeat the
procedure, again greedily maximizing the number of nodes
that can be updated concurrently, until all nodes get updated.
It is not guaranteed that this algorithm returns the shortest
update sequence but our practical experiments show that in
many cases this is indeed the case, at the exchange for a
significantly faster synthesis of update batches.

IV. EXPERIMENTAL EVALUATION

We implemented our optimal and greedy algorithms for
computing batches of update sequences in Python 3 with more
than 1500 lines of code. We use GLPK version 5.0 We evaluate
our approach on two different benchmarks, as well as on a
physical test-bed network described in Figure 1. First, we
consider the 5G spine-leaf reference topology [5] as depicted
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Fig. 4: Computation time

in Figure 1—we scale this topology to include from 4 to 10
worker nodes and 2 to 10 leaf and spine nodes. For the flow
demand between the backbone and the backhaul, we consider
three different scenarios with demands that correspond to 25%,
50%, and 75% of the total network capacity. We refer to them
as low, medium, and high load scenarios. Second, we consider
a benchmark from the Topology Zoo [11] with gravity model
demands and WP = (). For each network in either of the
benchmarks, we randomly select 60% of nodes that have to
be updated and we consider two vulnerability scenarios: (i)
the kubernetes scenario (for the 5G benchmark as well as the
ISP topologies) where 10% of selected nodes run kubernetes
1.25, all other nodes run kubernetes 1.26 and all nodes move
to kubernetes 1.27; (ii) the kamailio scenario (for the ISP
topologies) where 10% of selected nodes run kamailio without
pike installed and have to install it and all other nodes run
a DNS server, version 9.19.12 and have to move to version
9.19.13. These two vulnerabilities are formalized in Section II.

All experiments are run on a cluster with 16 nodes, all of
them having 2 CPUs Intel Xeon Gold 5218R with 20 cores
and 96GB of RAM running SMP Debian 5.10.179-2. The
timeout for each experiment is set to 10 minutes. Updating a
network is two-fold process. First, the update sequence must
be computed and then the actual network must be updated. In
Section IV-A we evaluate the time needed to compute optimal
sequence of updates and compare it with the greedy approach,
also with respect to the number of computed batches. In these
experiments we do not evaluate the maximal batch size since
it is only a secondary objective that is only optimized once the
shortest update is obtained. In Sections IV-B we then measure
the actual update time on a physical network delivering 5G
connectivity running kubernetes and compare the traditional
(sequential) update approach with the one computed by us.

instances

(b) Medium load

instances

(c) High load

and batch length for 5G spine-leaf networks under different loads.

A. Simulation benchmarks

Figure 4 shows the CPU time required to solve the mixed
integer linear programs for the 5G spine-leaf benchmark, as
well as the number of computed batches. The instances on the
x-axis are sorted by the increasing CPU time (resp. number of
batches) shown on the y-axis. We can observe that in any load
scenario, our greedy algorithm computes the shortest number
of batches (the same number as the exact optimal algorithm)
and is fast enough to be considered at runtime as it returns
the batches in less than one second. On the other hand, the
complexity of computing the optimal solution using the exact
algorithm grows with the number of batches (the y-axis is
logarithmic) that need to be considered and for the high load
scenario it can take up to 100 seconds in the worst scenarios.
As we may expect, the higher the load we have in the network,
the more batches are required to execute the updates without
causing congestion. In fact, for the high load scenario, only 63
instances were updatable (using up to 7 batches) and for the
remaining scenarios there is no safe update sequence. In the
practical application, this means that we cannot update from
kubernetes version 1.25 directly to 1.27 but we have to split
the updates by first moving to version 1.26 and then to 1.27.

Figure 5 summarizes the results for the ISP networks from
the Topology Zoo, where for each topology we consider 30
largest elephant flows with three different size of demands
and we include both the kamailio and kubernetes vulnerability
predicates. We only depict the problem instances where the
optimal approach finished within 10 minutes. We can clearly
see that the CPU time to compute the update batches using the
greedy approach is fast (under 30 seconds in the worst-case
instances) while the optimal algorithm requires considerably
more time to synthetize the optimal update batches. In this
benchmark, which is not as symmetric as the 5G spine-leaf
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topologies, it is not the case anymore that the greedy approach
always computes the optimal solution and in 19.6% of cases
it returns an update sequence with one additional batch than
necessary. Only in a single case the greedy approach returns a
solution that requires two additional batches compared to the
optimal one. We can hence conclude that our greedy approach
returns in a matter of seconds close-to-optimal number of
update batches and making it practically applicable.

B. Measurements in our kubernetes cluster

We shall now focus on practical implementation of software
updates in our kubernetes cluster in order to measure how
much update time can be gained in a real system. We consider
the 5G spine-leaf cluster in Figure 1 with 4 to 7 worker
nodes. The cluster runs a 5G User Plane Function (UPF),
which role is to forward traffic between user equipment and
the Internet. We implement the function with a kubernetes
deployment where the pod anti-affinity scheduling policy is
used and where the number of replicas is set to the number
of worker nodes. This guarantees that one and only one UPF
instance runs on every single healthy worker node, at any time.
The UPF is accessed from the outside (i.e., from the backhaul
or backbone) thanks to the kubernetes LoadBalancer service
that transparently spreads the load between active instances of
the UPF, ensuring so continuity of service. We determine the
optimal worker node update sequences with Eagle such that
there is enough UPF function capacity to carry UE/Internet
traffic, even during updates, and that kubernetes version skew
is respected during the updates. To demonstrate the possible
gains of our method, we compare the update sequence time
with the default sequence, which consists in updating the
workers one by one. We implement this procedure with Ansi-
ble by using the SLICES post-5G blueprint and respect the
standard kubernetes cluster upgrade recommendations [12].
Using the sequence generated by Eagle to actually update
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Fig. 6: Update duration on the cluster. Worker nodes are up-
dated to kubernetes v1.27, one node initially runs version 1.25
and the remaining ones run 1.26. Optimal update sequences
with 2 to 4 batches are compared to the sequential one.

the cluster is straightforward. The output of the algorithm
is a sequence of batches, each batch defines all the nodes
to be updated in this batch. This information is translated
in an Ansible inventory on which the playbook performing
the update is called. The Ansible playbook doing the update
is decomposed in three phases. First, it isolates the nodes to
update from the cluster (with kubectl drain), then it updates
the software version of the nodes. Finally, it uncordons (with
kubectl uncordon) the nodes so that they reintegrate the cluster.
Given the definition of the deployment of the UPF, kubernetes
automatically schedules back the UPF on the updated nodes.
This is sequentially repeated for each batch.

The cluster is implemented with virtual machines running
on a Linux Rocky 9.1rt server offered by the SLICES research
infrastructure with an Intel Xeon Gold 6254 CPU and 64GB
of RAM. Each worker node is a Linux Ubuntu 20.04 KVM
virtual machine with 2 vCPU and 4GB of RAM.

Figure 6 gives the update duration in seconds for different
number of workers (from 4 to 7) and different number of
update batches. The x-axis shows the number of workers
and on the y-axis shows the measured update duration. Each
measurement is repeated three times. As in Section IV-A,
we consider three cases: (¢) low load which updates in only
two batches (as computed by our algorithm); (i¢) medium
load which requires three batches (again computed by our
algorithm); and (47¢) high load, resulting in a need of four
batches to fully update the cluster (as computed by our
algorithm). The load on the network does not influence the
update duration but it constraints the number of batches in the
sequence. As updates within a batch are done in parallel on
the nodes in the batch, it is the number of batches itself that
drives the update duration, not the number of nodes. This is
confirmed by Fig. 6 where update duration for a given number
of batches is similar regardless of the number of nodes. We
can observe a rather linear increase of update duration in the
sequential approach as one node is updated after the other. For



four worker nodes the sequential approach and updates with
four batches exhibit similar duration as the sequences are the
same. As one node in the cluster is one version lower than
the other, this node always needs two updates. Hence the first
batch takes the time of two version updates while the other
batches take the time of only one.

We can conclude that the update duration is not bound
to the number of workers but to the number of update
batches, justifying the need to minimize the number of batches.
Interestingly, updating nodes in the cluster in safe way with
our algorithm is fast, taking only a few seconds to compute the
optimal update sequence. In practice, we can so keep clusters
up-to-date and secure without service interruption.

V. RELATED WORK

Open Vulnerability and Assessment Language (OVAL), part
of the SCAP protocol [13], standardizes the description of
vulnerabilities as a logical combination of conditions to be
observed on the configuration of a system [2]. Some ap-
proaches have also investigated the specification of distributed
vulnerabilities that may be spread over several nodes in a
network, such as the DOVAL language defined on top of
OVAL [14]. The remediation activities and their automation
to bring the system back to a secure state is crucial in order
to efficiently minimize the attack surface of the system over
time. In this regard, methods for evaluating the risks associated
with changes, such as proposed in [15], provide a support
for vulnerability management, particularly for taking decisions
about effective change implementations. Solutions such as [16]
demonstrate the benefits of verification techniques in order
to prevent new vulnerabilities when corrective operations are
executed. While some of these remediation approaches address
distributed vulnerabilities, they do not consider the update
process in itself, and even less its impact on congestion.

Approaches to consistently update network configurations
have recently been studied in the networking community, pri-
marily motivated by the advent of software-defined networks
but also more generally [17]. Existing work on consistent
network update problems can roughly be classified into two
categories: problems in which a certain logical property (e.g.,
loop freedom) must be ensured during reconfiguration and
problems in which a certain quantitative property (e.g., con-
gestion freedom) must be ensured. Our work contributes with a
first scalable approach which accounts for both dimensions at
the same time. Regarding the logical properties, the seminal
work by Reitblatt et al. [18] considers a problem in which
a strong logical property needs to be preserved, per-packet
consistency, which is well-aligned with the strong consistency
properties usually provided in traditional networks [19]. Ma-
hajan and Wattenhofer [20] started exploring the benefits of
relaxing the per-packet consistency property, while transiently
providing only essential logical properties like loop-freedom.
The authors also present a first algorithm that quickly updates
routes in a transiently loop-free manner, and their study was
recently refined in [21], [22], [23], where the authors also
establish hardness results, as well as in [24], [25], [26], [27],

which respectively, focus on the problem of minimizing the
number of scheduling rounds [26], initiate the study of multi-
ple policies [24], and introduce additional transient routing
constraints related to waypointing [25], [27]. However, we
none of these papers considers bandwidth capacity constraints.

Research efforts on network update problems taking into
account quantitative properties have also been conducted in
the past, especially considering congestion issues which affect
performance. Honggiang et al. [28] presented a congestion-
free rerouting solution which has already been extended in
several papers, using static [29], [30], [31], [32], dynamic [33],
or time-based [34], [35] approaches. Vissicchio et al. presented
FLIP [36], which combines per-packet consistent updates with
order-based rule replacements, to reduce memory overhead.
Amiri et al. [37] presented a polynomial-time algorithm for
acyclic flow graphs, to compute feasible (possibly very long)
update schedules. In follow-up work, Amiri et al. [38] pre-
sented a polynomial-time algorithm that computes the fastest
update schedule for two flows, and also showed that the prob-
lem is already NP-hard for six flows. Even though there are
several solutions to the network update problem using formal
methods and automated approaches, also for the synthesis [39],
[40], [41], [42], [43], [44], none of these approaches sup-
port simultaneously both logical and quantitative approaches,
which is the main contribution of our work.

VI. CONCLUSION

We initiated a study on optimal update software synthesis
in a computer network in a consistent and vulnerability-aware
manner, taking into account also possible congestion during
the update process. We presented an automated approach
for synthesizing update schedules automatically and with
the smallest possible number of update batches—an aspect
important for decreasing the overall duration of the complete
network update. We provided two algorithms relying on this
approach, the first one computing the shortest possible update
sequence, the second one greedily computing each update
batch as the largest possible set of remaining nodes to update.
We compared these two approaches, and demonstrated their
practical applicability in the context of 5G networks, as well as
on a large benchmark of ISP Internet topologies. An extensive
empirical evaluation shows that our approach is tractable and
scales to realistic network sizes.

As a future work it would be interesting to establish
a standardized database of distributed network vulnerabilies
that could be automatically translated to our framework and
extend the routing properties from basic waypointing to more
sophisticated ones like 5G service chaining.
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