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Tail-latency matters

Tens to Thousands
of data accesses
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User Request




Tail-latency matters

Tens to Thousands
of data accesses

One
User Request

~or 100 leaf servers, 99t percentile latency
will reflect in 63% of user requests!



Server
performance
fluctuations
are the norm
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Resource Skewed access Queueing Background
contention hatterns aelays activities




Effectiveness of replica selection in
reducing tail latency?

Request




Replica Selection Challenges



Replica Selection Challenges

e Service-time variations

Request




Replica Selection Challenges

e Herd penavior and load oscillations

Request




Impact of Replica Selection in Practice?
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Cassandra

Dynamic Snitching

Uses nistory of read latencies and I/O load for replica selection



EXperimental Setup

Cassandra cluster on Amazon EC2

15 nodes, m1.xlarge instances
Read-neavy workload with YCSB (120 threaas)
» 500M TKB recorads (larger than memory)

Zipfian key access pattern



Cassandra Load Profile
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Also observed that
99.9t percentile latency ~ 10x median latency



| oad Conditioning in our Approach
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Adaptive replica selection
( 3 mecnhanism that is robust to

service time neterogeinity




» Replica Ranking
e Distriputea Rate Control
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Balance product of gueue-size and service time
{q-p'}



Server-side FeedbackK

Servers piggyback {g. } and {us; '} in every response
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Server-side FeedbackK

Servers piggyback {g. } and {us; '} in every response

e (oncurrency compensation

g. =1+ os..w + ¢.

Outstanding requests  Feedback
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Select server » Potentially long queue sizes
with min g, . ugl 7« Whatif a GC pause happens?

U =4 ms

—— (I sever

U =20 ms

100 requests!
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Penalizing Long Queues
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» Replica Ranking
e Distriputea Rate Control
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Need for rate control

Replica ranking insufficient

 AvOid saturating inaividual servers?

+ Non-internal sources of performance
fluctuations?



Cubic Rate Control

Cubic growth curve for rate control
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Putting everything
together

C3 Client

Replica

group 1000
scheduler .- req/s
........ 2000

Sort replicas \req/s

by score Rate

4
Limiters




Implementation
In Cassandra
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Cassandra

Details in the paper!



Fvaluation

Amazon eC/

Controllea Testbed

Simulations



Fvaluation

Amazon eC/

e 15 node Cassandra cluster

M1 .xlarge

Workloads generated using YCSB (120 threads)

» Read-neavy, update-neavy, read-only

» 500M 1KB records dataset (larger than memory)
Compare against Cassandra’'s Dynamic Snitcnhing (DS)
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99.9th percentile

Read Read Update
Heavy Only Heavy
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99.9th percentile

Read Read Update
Heavy Only Heavy

X — 3x improved

éwo 99.9 percentlle
S04 latencies

=

50

g 26% - 43%

e 0

s | Improvead
Repllca Selectlon Strategy throu gh o Ot

34



99.9th percentile
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How does C3 react to dynamic
workload changes?

» Begin with 80 read-neavy workload generators
» 40 update-neavy generators join the system after 640s

» (Qpserve latency profile with and without C3



_atency profile degrades gracefully with C3
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Takeaway: C3 reacts effectively to dynamic workloads



Summary of other results

Higher system load

> 3X better 99,9t

Skewed record sizes hercentile latency

SSDs instead of HDDs

\ 50% higher throughput

than with DS



Ongoing work

Tests at SoundCloud and Spotity

Stability analysis of C3

Alternative rate adaptation algorithms

Token aware Cassanara clients
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