
C3: Cutting Tail Latency in
Cloud Data Stores via

Adaptive Replica Selection

Lalith Suresh
(TU Berlin)

with Marco Canini (UCL), Stefan Schmid, Anja Feldmann (TU Berlin)

2

One
User Request

Tens to Thousands
of data accesses

Tail-latency matters

3

For 100 leaf servers, 99th percentile latency
will reflect in 63% of user requests!

One
User Request

Tail-latency matters

Tens to Thousands
of data accesses

4

Server
performance
fluctuations
are the norm

Queueing
delays

Skewed access
patterns

CD
F

Resource
contention

Background
activities

Effectiveness of replica selection in
reducing tail latency?

5

?
Client

Server

Server

Server

Request

Replica Selection Challenges

6

Replica Selection Challenges

• Service-time variations

7

Request
Client

Server

Server

Server

4 ms

5 ms

30 ms

Replica Selection Challenges

• Herd behavior and load oscillations

8

Request

Request

Request
Client

Client

Client

Server

Server

Server

9

Impact of Replica Selection in Practice?

Dynamic Snitching

Uses history of read latencies and I/O load for replica selection

10

Experimental Setup

• Cassandra cluster on Amazon EC2
• 15 nodes, m1.xlarge instances
• Read-heavy workload with YCSB (120 threads)
• 500M 1KB records (larger than memory)
• Zipfian key access pattern

11

Cassandra Load Profile

12

Also observed that
99.9th percentile latency ~ 10x median latency

Cassandra Load Profile

13

Load Conditioning in our Approach

C3 Adaptive replica selection
mechanism that is robust to
service time heterogeinity

14

C3 • Replica Ranking
• Distributed Rate Control

15

C3 • Replica Ranking
• Distributed Rate Control

16

17

Client
Server

Client

Client

Server

µ-1 = 2 ms

µ-1 = 6 ms

18

Client
Server

Client

Client

Server

Balance product of queue-size and service time
{ q · µ-1 }

µ-1 = 2 ms

µ-1 = 6 ms

19

Server-side Feedback

Servers piggyback {qs } and {µμ𝒔#𝟏} in every response

Client Server

{ qs , µμ𝒔#𝟏 }

20

Server-side Feedback

• Concurrency compensation

Servers piggyback {qs } and {µμ𝒔#𝟏} in every response

21

Server-side Feedback

• Concurrency compensation

𝑞&' = 1 + 𝑜𝑠'. 𝑤 + 𝑞'

Servers piggyback {qs } and {µμ𝒔#𝟏} in every response

Outstanding requests Feedback

22

Select server
with min 𝑞&' . µμ𝒔#𝟏 ?

23

Select server
with min 𝑞&' . µμ𝒔#𝟏 ?

Server

Server

µ-1 = 4 ms

µ-1 = 20 ms

20 requests

100 requests!

• Potentially long queue sizes
• What if a GC pause happens?

24

Penalizing Long Queues

Server

Server

µ-1 = 4 ms

µ-1 = 20 ms

20 requests

35 requests

Select server with min 𝑞&' . µμ𝒔#𝟏
b

b = 3

C3 • Replica Ranking
• Distributed Rate Control

25

26

Need for rate control

Replica ranking insufficient

• Avoid saturating individual servers?

• Non-internal sources of performance
fluctuations?

27

Cubic Rate Control

• Clients adjust sending
rates according to
cubic function

• If receive rate isn’t
increasing further,
multiplicatively decrease

28

Putting everything
together

Server

Server

1000
req/s

2000
req/s

Rate
Limiters

Replica
group

scheduler

Sort replicas
by score

C3 Client

{ Feedback }

29

Implementation
in Cassandra

Details in the paper!

30

Evaluation

Amazon EC2

Controlled Testbed

Simulations

31

Evaluation

Amazon EC2

• 15 node Cassandra cluster
• M1.xlarge
• Workloads generated using YCSB (120 threads)
• Read-heavy, update-heavy, read-only
• 500M 1KB records dataset (larger than memory)
• Compare against Cassandra’s Dynamic Snitching (DS)

32

Lower
is better

33

2x – 3x improved
99.9 percentile
latencies

Also improves
median and mean
latencies

34

2x – 3x improved
99.9 percentile
latencies

26% - 43%
improved
throughput

35

Takeaway:

C3 does not
tradeoff
throughput for
latency

36

How does C3 react to dynamic
workload changes?

• Begin with 80 read-heavy workload generators

• 40 update-heavy generators join the system after 640s

• Observe latency profile with and without C3

37

Latency profile degrades gracefully with C3

Takeaway: C3 reacts effectively to dynamic workloads

38

Summary of other results

Higher system load

Skewed record sizes

SSDs instead of HDDs

> 3x better 99.9th

percentile latency

50% higher throughput
than with DS

39

Ongoing work

• Tests at SoundCloud and Spotify

• Stability analysis of C3

• Alternative rate adaptation algorithms

• Token aware Cassandra clients

40

?

Client

Server

Server

Server

C3
Replica Ranking

+
Dist. Rate Control

Summary

