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One
User Request

Tens to Thousands
of data accesses

Tail-latency matters
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For 100 leaf servers, 99th percentile latency 
will reflect in 63% of user requests! 
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Server 
performance 
fluctuations 
are the norm

Queueing
delays

Skewed access 
patterns
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Effectiveness of replica selection in 
reducing tail latency?
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Replica Selection Challenges
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Replica Selection Challenges

• Service-time variations
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Replica Selection Challenges

• Herd behavior and load oscillations
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Impact of Replica Selection in Practice?

Dynamic Snitching

Uses history of read latencies and I/O load for replica selection
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Experimental Setup

• Cassandra cluster on Amazon EC2
• 15 nodes, m1.xlarge instances
• Read-heavy workload with YCSB (120 threads)
• 500M 1KB records (larger than memory)
• Zipfian key access pattern
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Cassandra Load Profile
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Also observed that 
99.9th percentile latency ~ 10x median latency

Cassandra Load Profile
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Load Conditioning in our Approach



C3 Adaptive replica selection 
mechanism that is robust to 
service time heterogeinity
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C3 • Replica Ranking
• Distributed Rate Control
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C3 • Replica Ranking
• Distributed Rate Control
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Client
Server

Client

Client

Server

Balance product of queue-size and service time
{ q · µ-1 }

µ-1 = 2 ms

µ-1 = 6 ms
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Server-side Feedback

Servers piggyback {qs } and {µμ𝒔#𝟏} in every response

Client Server

{ qs , µμ𝒔#𝟏 }
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Server-side Feedback

• Concurrency compensation

Servers piggyback {qs } and {µμ𝒔#𝟏} in every response



21

Server-side Feedback

• Concurrency compensation

𝑞&' = 1 +   𝑜𝑠'. 𝑤 + 𝑞'

Servers piggyback {qs } and {µμ𝒔#𝟏} in every response

Outstanding requests Feedback
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Select server 
with min  𝑞&'  . µμ𝒔#𝟏 ?
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Select server 
with min  𝑞&'  . µμ𝒔#𝟏 ?

Server

Server

µ-1 = 4 ms

µ-1 = 20 ms

20 requests

100 requests!

• Potentially long queue sizes
• What if a GC pause happens?
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Penalizing Long Queues

Server

Server
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20 requests
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Select server with min   𝑞&'   . µμ𝒔#𝟏
b

b = 3



C3 • Replica Ranking
• Distributed Rate Control
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Need for rate control

Replica ranking insufficient

• Avoid saturating individual servers?

• Non-internal sources of performance 
fluctuations?
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Cubic Rate Control

• Clients adjust sending 
rates according to
cubic function

• If receive rate isn’t 
increasing further, 
multiplicatively decrease
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Putting everything
together

Server

Server
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req/s
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Rate 
Limiters

Replica 
group

scheduler

Sort replicas
by score

C3 Client

{ Feedback }
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Implementation 
in Cassandra

Details in the paper!
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Evaluation

Amazon EC2

Controlled Testbed

Simulations
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Evaluation

Amazon EC2

• 15 node Cassandra cluster
• M1.xlarge
• Workloads generated using YCSB (120 threads)
• Read-heavy, update-heavy, read-only
• 500M 1KB records dataset (larger than memory)
• Compare against Cassandra’s Dynamic Snitching (DS)
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Lower 
is better
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2x – 3x improved
99.9 percentile
latencies

Also improves 
median and mean 
latencies
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2x – 3x improved
99.9 percentile
latencies

26% - 43% 
improved 
throughput
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Takeaway:

C3 does not 
tradeoff 
throughput for 
latency
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How does C3 react to dynamic 
workload changes?

• Begin with 80 read-heavy workload generators

• 40 update-heavy generators join the system after 640s

• Observe latency profile with and without C3
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Latency profile degrades gracefully with C3

Takeaway: C3 reacts effectively to dynamic workloads



38

Summary of other results

Higher system load

Skewed record sizes

SSDs instead of HDDs

> 3x better 99.9th

percentile latency

50% higher throughput
than with DS
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Ongoing work

• Tests at SoundCloud and Spotify

• Stability analysis of C3

• Alternative rate adaptation algorithms

• Token aware Cassandra clients
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