Kim G. Larsen, Stefan Schmid, Bingtian Xue

Aalborg University, DENMARK

g R

o 2

4 KL;’ OPODIS 2016 in Madrid, Spain
° +

= Computer networks (datacenter networks, enterprise
networks, wide-area networks) have become a critical
infrastructure of the information society

= Concern: are today‘s networks dependable and
flexible enough?

(8

ALBORG UNIVERSITY

Even techsavvy companies struggle to provide
reliable operations

o We discovered a misconfiguration on this
glt u pair of switches that caused what's called a
SOCIALCODING “bridge loop” in the network.

A network change was [...]
executed incorrectly [...]
more “stuck” volumes and amazon

added more requests to the web services
re-mirroring storm

60 D d d Service outage was due to a series of internal
a yCOM/ network events that corrupted router data tables

Experienced a network connectivity issue [...] Hnited ;3.
interrupted the airline’s flight departures, j
airport processing and reservations systems All‘llneS)

Source: Talk by Nate Foster at DSDN Workshop {{‘

AALBORG UNIVERSITY

Another Anecdote: Wall-Street Bank

Outage of a data center of a Wall Street investment bank
Lost revenue measured in USD 10 / min!

Quickly, an emergency team was assembled with experts in
compute, storage and networking:

= The compute team: came armed with reams of logs, showing how and when
the applications failed, and had already written experiments to reproduce and
isolate the error, along with candidate prototype programs to workaround the
failure.

= The storage team: similarly equipped, showing which file system logs were
affected, and already progressing with workaround programs.

= And the networking team? Only had ping and traceroute

Source: «The world’s fastest and most programmable networks» ({‘
White Paper Barefoot Networks AALBORG UNIVERSITY

Another Anecdote: Wall-Street Bank

“All the networking team had were two tools invented over
twenty years ago to merely test end-to-end connectivity.
Neither tool could reveal problems with the switches, the
congestion experienced by individual packets, or provide
any means to create experiments to identify, quarantine
and resolve the problem. Whether or not the problem was
in the network, the network team would be blamed since
they were unable to demonstrate otherwise.”

Software-Defined Networks (SDNs) promise to introduce networking
innovations, by decoupling the control plane from the data plane, and
by making networks programmable and verifiable automatically.

Source: «The world’s fastest and most programmable networks» ({‘

White Paper Barefoot Networks AALBORG UNIVERSITY

Data plane:
Packet streaming

Forward

Filter

Buffer

Mark

Rate-limit
Measure packets

(8

ALBORG UNIVERSITY

Control plane: Distributed
Distributed algorithms

Track topology changes
Compute routes
Install forwarding rules

—_—
—_—
b S —

(8

ALBORG UNIVERSITY

Logically-centralized controller

API to the data plane
~ (e.g., OpenFlow)

~

(8

ALBORG UNIVERSITY

Logically-centralized controller

-~

a

API| to the data plane

Match | Action | Stats OpenFlow Rule
E ‘ Packet + byte counters
1.Forward packet to port(s)
: 2. Update header fields
. 1.Drop packet
Switch| MAC | MAC | Eth [VLAN| IP IP IP | TCP | TCP
Port | src | dst |type | ID | Src | Dst | Prot | sport | dport

~ (e.g., OpenFlow)

(8

_AALBORG UNIVERSITY

SDN/OpenFlow: Match-Action Devices

Logically-centralized controller

Matching Layer-2, Layer-3, Layer-4 header
fields (e.g., IP destination, TCP port, etc.)

0 the data plane

Match | Action | Stats OpenFlow Rule

Packet + byte counters

1.Forward packet to port(s)
2. Update header fields
1.Drop packet

Switch| MAC | MAC | Eth [VLAN| IP IP IP | TCP | TCP
Port | src | dst | type | ID Src | Dst | Prot | sport | dport

OPODIS 2016

/%/ (e.g., OpenFlow)

(8

AALBORG UNIVERSITY

Logically-centralized controller

A

E.g., update header field (new MAC

destination), forward, drop... o the data plane

V M ™~ \(e.g., OpenFlow)
Match | Action | Stats OpenFlow Rule RN

Packet + byte counters

1.Forward packet to port(s)
2. Update header fields
1.Drop packet

Switch| MAC | MAC | Eth [VLAN| IP IP IP | TCP | TCP
Port | src | dst |type | ID | Src | Dst | Prot | sport | dport

_AALBORG UNIVERSITY

SDN/OpenFlow: Match-Action Devices

—centralized controller

Not important right now. But trend:
more stateful switches (e.g., load-
balancer, “stateful” firewall...) plane

S

Match | Action | Stats OpenFlow Rule
Packet + byte counters

1.Forward packet to port(s)

2. Update header fields

1.Drop packet
Switch| MAC | MAC | Eth [VLAN| IP IP IP | TCP | TCP
Port | src | dst | type | ID Src | Dst | Prot | sport | dport
OPODIS 2016

(e.g., OpenFlow)

(8

AALBORG UNIVERSITY

Benefits of SDN

Benefit 1: Decoupling! Control plane can evolve
independently of data plane: innovation at speed of
software development. And simpler network
management through logically centralized view:
many network management and operational tasks
are inherently non-local.

plane
DW)

2) i |

Benefit 2: Simple match-action devices:
//__,? supports formal verification! Switches/ routers
are “simple” and “passive” match-action

| devices. (Unlike in, e.g., active networks.) Can
— do, e.g., header space analysis.

OPODIS 2016 ({‘

AALBORG UNIVERSITY

= SDNs are popular:
deployments in
enterprises,
datacenters, WAN,
IXPs

= E.g., Google: “A
Purpose-Built Global
Network: Google‘s
Move to SDN”

case study

A Purpose-built

Global Network:

Google’s Move to SDN

Everything about Google is at scole, of course—a market cap
of legendary proportions, an unrivaled talent pool. enough
intellectual property to keep ormies of attorneys in Guccis
for life, and, oh yeah, a private WAN [wide area network]
bigger than you con passibly imagine that also happens to be
growing substantiolly faster than the Internet as a whole.

Unfortunately, bigger isn't always better, at [east not
where networks are concerned, since along with massive size
come massive costs, bigger management challenges, and the
knowledge that traditionol solutions probably aren’t going to
cut it. And then there’s this: speclalized network geor doesn't
come cheap.

Adding it all up, Google found itself on a cost curve it
considered unsustainable. Perhaps even worse, It saw itself
at the mercy of a small number of network equipment
vendaors that have proved to be slow in terms of delivering the
capabilities requested by the company. Which is why Google

[P [4 RN YRS (PR U [PAS I ([[N (PSP S [. P

(8

AALBORG UNIVERSITY

= SDN is about programming the networks

= But OpenFlow is very low-level: inconvenient for programmers

= Hence, over the last years, many network specific
programming languages have been developed

= Researchers have started developing more high-level
languages

= NetKAT: state-of-the-art framework for programming and
reasoning about networks

(8

ALBORG UNIVERSITY

NetKAT: Kleene Algebra with Tests (KAT) with atoms
like:

* f < w assignment

K

ALBORG UNIVERSITY

Syntax

Fields
Packets
Histories
Predicates

Policies p.q :=a

Semantics
= fl-|f [p] € H—P(H)
= {fi=vi, fo = v} [1] b2 {h}
n= pk() | pk::h [o] A2 {}
=1 Identity { :
B oy a [{pk:h} ifpk.f=mn
I ? . ?gﬁp [f ==l (pk::h) = {{} otherwise
fay
| a+b Disjunction [-a] h=A{h}\ ([a] R)
| a-b Conjunction If < n] (pk::h) = {pk[f :=n]:h}
T f;’f;gatmn [p+4q] h 2 [p] hU[q] A
ilter A
f < n Maodification [p-al h=([r] ﬂq]]) h
* & i
p+q Union [Pl h=Uen F* A |
| p-q Sequential composition where F° h= {h}and F*"'h = ([p] e F') h
P Kieene star [dup] (pk::h) = {pk::(pk::h)}
dup Duplication

(8

ALBORG UNIVERSITY

Syntax Semantics

Fields = E [r] € H— P(H)
Packets = = vy, - [1] = {h}
Historles L= pk:() | pk::h [0] % Iy 0
Predicates a,b::=1 Identity { :
’ B oy a [{pk:h} ifpk.f=mn
I ? 0 ?;r:p If =nl (ph=h) = {{} otherwise
fay
| a+b Disjunction [-a] A= {h}\ ([a] R)
| a-b Conjunction If < n] (pk::h) = {pk[f :=n]:h}
Dolic | —a f;f;ga””" [p+a] h=[p] RU[4] R
olicies p,q :=a ilter _ a
f < n Maodification lp-al 7 R ([r] o ﬂq]]) h
p+aq Union [p*] h = Ui F* |
| p-q Sequential composition where F* h = {h}and F*"'h £ ([p] @ F*) h
P’ Kieene star [dup] (pk::h) = {pk::(pk::h)}
dup Duplication

(8

ALBORG UNIVERSITY

Ip] € H— P(H)

Packets 1] 72 {h)
Histories = [0] A A 0
= dentiry {phh) | _
_ .y 2 JA{pkzh} ifpk.f =n
I ?: ?;:p [f =n] (pk::h) = {} otherwise
Fa¥
| a+b Disjunction [-a] h={h}\([a] h)
| a-b Conjunction If < n] (pk::h) = {pk[f :=n]:h}
Polici S ﬁigamﬂ [p+q] h=[p] hU[q] A
olicies p.q :=a ilter _ a
f < n Maodification [p-al h=([r] ﬂq]]) h
* fa) i
p+q Union [p*] A= Uien F" R |
p-q Sequential composition where = an = ([p]| @
q [comp here F* h £ {h}and F*"*' h £ F')h
5* KIE‘E”.E star [dup] (pk::h) = {pk::(pk::h)}
up Duplication

(8

ALBORG UNIVERSITY

Syntax Semantics

Fields fu= fi|--|fe [r] € H— P(H)
Packets pk:= {fi=v, -, fi = v} [1] b2 {h}
Histories h = pk:() | pk::h [] k2 {}

dentity

If =nl (pk:h) 2 {gk:h} it ph.f =

est
Jisjunction
_“onjunction
Negation

P+q Union
| p-q Sequential composition where F) R
| p* Kleene star [dup]

| dup Duplication

(8

ALBORG UNIVERSITY

Syntax

Policies p.q :=a
f+n
p+q
| P*'q
P

dup

Semantics
[r] € H— P(H)
[1] 2= {h}

If =n] (pk::h) £

{pk::h} ifpk.f=mn
{} otherwise

Conjunction

Negation

Filter

Modification

Union

Sequential composition

Kleene star [dup] (pk::h) = {pk::(pk::h)}

s F') h

Duplication

(8

ALBORG UNIVERSITY

B

(8

ALBORG UNIVERSITY

=

t = sw=s8.(sw e F{+ 5w« v)
+sw = F;(sw Fgl) + SW ng))

‘+sw =V, (SW Fil) + SW Féz))
+sw = Fél);sw — 1

+Sw = Ff); SW «— 1

(8

ALBORG UNIVERSITY

NetKAT allows to answer many important questions:

“Can X connect to Y?”

= s traffic from A to B routed through Z7”
= “Is there a loop involving S§?”

= “Are non-SSH packets forwarded?”

= Etc.

(8

ALBORG UNIVERSITY

NetKAT allows to answer many important questions:

“Can X connect to Y?”

= s traffic from A to B routed through Z7”
= “Is there a loop involving S§?”

= “Are non-SSH packets forwarded?”

= Etc.

However, NetKAT is limited to binary contexts. What is missing
today is a framework to reason about the inherent weighted

aspects of networking: WNetKAT.

(8

ALBORG UNIVERSITY

Real networks are weighted: links have costs (latency, energy,
peering costs, etc.) and are capacitated (e.g., bandwidth).

But also nodes may have capacity constraints or entail costs.
Moreover, nodes may transform the traffic volume (e.g., add or
remove encapsulation headers or compress packets).

(8

ALBORG UNIVERSITY

Real networks are weighted: links have costs (latency, energy,
peering costs, etc.) and are capacitated (e.g., bandwidth).

But also nodes may have capacity constraints or entail costs.
Moreover, nodes may transform the traffic volume (e.g., add or
remove encapsulation headers or compress packets).

o
(5,2) (1,4)
(2,1)

The Case for Weighted NetKAT!

(8

AALBORG UNIVERSITY

WNetKAT: Challenges

The weighted extension of NetKAT is non-trivial:

= capacity constraints introduce dependencies between
flows (e.g., packets compete for bandwidth)

= we need arithmetic operations such as addition (e.qg.,
in case of latency to compute the end-to-end delay)
or minimum (e.g., in case of bandwidth)

Therefore, we extend the syntax of NetKAT toward
weighted packet- and switch-variables, as well as
queues, and provide a semantics accordingly.

OPODIS 2016 ({‘

AALBORG UNIVERSITY

Paper Contributions

= We show for which weighted aspects and use cases which
language extensions are required.

= We show the relation between WNetKAT expressions and
weighted finite automata: an important operational model for

weighted programs.
= This also leads to the undeciability of WNetKAT equivalence problem.

= We explore the complexity of verification more generally and for
subsets of the language

= We prove the decidability of whether an expression equals O
(emptiness testing): for many practical scenarios a sufficient and

relevant problem (e.qg., reachability)

OPODIS 2016 ({‘

AALBORG UNIVERSITY

We add two types of variables to NetKAT:
= quantitative packet variables!

= (quantitative, non-quantitative) switch variables

Accordingly, we generalize assignment and test, to also
include arithmetic operations (namely addition):

= Quantitative Assignment
= Quantitative Test

(8

ALBORG UNIVERSITY

We add two types of variables to Net
= quantitative packet variables!

= (quantitative, non-quantitative) switch variables

Accordingly, we generalize assignment and test, to also
include arithmetic operations (namely addition):

= Quantitative Assignment
= Quantitative Test

(8

ALBORG UNIVERSITY

[x « wl(p, pk::h)

{ (o, pklw/x] :: h) ifxev,

oW [w/x], pk:: h} if x € V; and pk(sw) = v
o, pk:: h} if xe V, and pk(x) = w
[x =wlp., pk::h) = orif x € Vg, pk(sw) = vand p(v, x) = w
1] otherwise
,) (p. pklr’ /x] =2 h} ifxey,
[y = Gyevy” + 0o, pk:h) { (o[/x], pk == h) if x € V, and pk(sw) = v
where 1’ = X, cyny, pk(yp) + Zycviny,p(v.ys) + 1

o, pk:: h} if x € V), and pk(x) =/

[y=Cyevy +)lp. pk::h) = or x € Vg, pk(sw) = vand p(v, x) =
0 otherwise

where 1’ = X, cyiny, pk(yp) + Zy eviny,p(v,ys) + 1

xeV,yeV,

(8

ALBORG UNIVERSITY

Otnerwisce

o, pklr'/x] :: h} ifxevy,
oW [r'/x], pk 2 h} if x € Vg and pk(sw) =v
where 1’ = X, cyny, pk(yp) + Zycviny,p(v.ys) + 1

[y « Eyevy” + 1o, pk:: h)

o, pk:: h} if x € V), and pk(x) =/
[y=Cyervy +nlp. pk:h)y = or x € Vg, pk(sw) =vand p(v, x) = r
0 otherwise

where 1’ =X ey, pk(yp) + Zyevav,p(v,ys) +r

xeV,yeV,

(8

ALBORG UNIVERSITY

[x « wl(p, pk::h)

{ (0. pklw/x] :: h) ifxev,

oW [w/x], pk:: h} if x € V; and pk(sw) = v
o, pk:: h} if xe V, and pk(x) = w
[x = wl(p, pk:: h) = or if x € Vg, pk(sw) = v and p(v, x) = w
) otherwise
, - o, pklr'/x] :: h} ifxevV,
[y = Gyevy” + 0o, pk:h) { (o[/<1, pk = h) if x € V, and pk(sw) = v

where 1’ = X, cyny, pk(yp) + Zycviny,p(v.ys) + 1

o, pk:: h} if x € V), and pk(x) =/

[y = Cyevy +n)llp, pk::h) = or x € Vg, pk(sw) = vand p(v,x) =1’
0 otherwise

where i’ = %y cviny, pk(yp) + Zyevinv,p(v,ys) + 1

variables.

(8

AALBORG UNIVERSITY

= We only support addition

= But we can also support other arithmetic operations
= min or max can be easily defined (see paper):

x «min{y,z} Ly < z;x « y&y > z;x « Z.
y y y&y

(8

ALBORG UNIVERSITY

= sw=s;(sw e« Fi;co <« co+ l;ca < min{ca, 8}
& sw «— v;co « co + 5;ca < min{ca,?2})
& sw=Fy;
(SW « Fél);co «— co + 3;ca <« min{ca, 1}
& sw ng);co «— co + 2;ca < min{ca, 10})
& sw=v;(sw « Fgl); co < co + 3;ca <« min{ca, 3}
& sw ng);co «— co + 2;ca <« min{ca, 1})
& sw = Fél); SW «— t;co < co + 6;ca < min{ca, 1}
& sw = ng); SW «— t,co <« co + 1, ca <« mini{ca, 4}

(8

ALBORG UNIVERSITY

= sw=s;(sw e« Fi;co < co+ l;ca < min{ca, 8}
& sw «— v;co « co + 5;ca < min{ca,?2})
& sw=Fy;
(SW « Fél);co «— co + 3;ca <« min{ca, 1}
& sw ng);co «— co + 2;ca < min{ca, 10})
& sw=v;(sw « Fgl); co < co + 3;ca <« min{ca, 3}
& sw ng);co «— co + 2;ca <« min{ca, 1})
& sw = Fél); SW «— t;co < co + 6;ca < min{ca, 1}
& sw = ng); SW «— t,co <« co + 1, ca <« mini{ca, 4}

(8

ALBORG UNIVERSITY

= sw=s;(sw e« Fi;co <« co+ l;ca < min{ca, 8}
& sw «— v;co « co + 5;ca < min{ca,?2})
& sw=Fy;
(SW « Fél);co «— co + 3;ca <« min{ca, 1}
& sw ng);co «— co + 2;ca < min{ca, 10})
& sw=v;(sw « Fgl); co < co + 3;ca <« min{ca, 3}
& sw ng);co «— co + 2;ca <« min{ca, 1})
& sw = Fél); SW «— t;co < co + 6;ca < min{ca, 1}
& sw = ng); SW «— t,co <« co + 1, ca <« mini{ca, 4}

(8

ALBORG UNIVERSITY

Function F, increases the flow rate by an additive constant

(e

0

(5,2) (1,4)
(2,1)

PFr, = (sw = Fg) & sw = F;z));ca —ca+vy

—ALBORG UNIVERSITY

= “Can node B be reached from A at cost at most c¢?”

Topology: Google
B4 Wide-Area
Inter-datacenter
connect:

(8

ALBORG UNIVERSITY

= “Can node A communicate with B at rate at least r?”

= Unsplittable

= Splittable

(8

ALBORG UNIVERSITY

= “Can node A reach B at cost/latency at most | and/or
at rate/bandwidth at least r, via F1-F27”

= Check whether the following is equal to "drop"
Src « S;dst « t;co « 0;ca « r;sw « s;
pt(pt)™;
sw = Fq;pg; t(pt)*; sw = Fy;pp,; t(pt)*;

sw=t;co<l;ca=>r.

(8

ALBORG UNIVERSITY

= “Does the current flow allocation satisfy max-min
fairness requirements?”

(8

ALBORG UNIVERSITY

= Theorem: (undecidability)

Deciding equivalence of two WNetKAT expressions is
equal to deciding the equivalence of the two
corresponding weighted WNetKAT automata.

= Theorem:

Deciding whether a WNetKAT expression is equal to
“drop’ is equal to deciding the emptiness of the
corresponding weighted automaton.

(8

ALBORG UNIVERSITY

Thank you
for your attention!

(8

ALBORG UNIVERSITY

