
wNetKAT:
A Weighted SDN Programming and

Verification Language

Kim G. Larsen, Stefan Schmid， Bingtian Xue

Aalborg University, DENMARK

OPODIS 2016 in Madrid, Spain

 Computer networks (datacenter networks, enterprise
networks, wide-area networks) have become a critical
infrastructure of the information society

 Concern: are today‘s networks dependable and
flexible enough?

Computer Networks

OPODIS 2016

Even techsavvy companies struggle to provide
reliable operations

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […]
executed incorrectly […]
more “stuck” volumes and
added more requests to the
re-mirroring storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Source: Talk by Nate Foster at DSDN Workshop

 Outage of a data center of a Wall Street investment bank

 Lost revenue measured in USD 106 / min!

 Quickly, an emergency team was assembled with experts in
compute, storage and networking:
 The compute team: came armed with reams of logs, showing how and when

the applications failed, and had already written experiments to reproduce and
isolate the error, along with candidate prototype programs to workaround the
failure.

 The storage team: similarly equipped, showing which file system logs were
affected, and already progressing with workaround programs.

 And the networking team? Only had ping and traceroute

Another Anecdote: Wall-Street Bank

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

Another Anecdote: Wall-Street Bank

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

“All the networking team had were two tools invented over
twenty years ago to merely test end-to-end connectivity.
Neither tool could reveal problems with the switches, the
congestion experienced by individual packets, or provide
any means to create experiments to identify, quarantine
and resolve the problem. Whether or not the problem was
in the network, the network team would be blamed since
they were unable to demonstrate otherwise.”

Software-Defined Networks (SDNs) promise to introduce networking

innovations, by decoupling the control plane from the data plane, and

by making networks programmable and verifiable automatically.

Traditional Networks: Data and Control Plane

OPODIS 2016

Data plane:
Packet streaming

Forward
Filter
Buffer
Mark
Rate-limit
Measure packets

Traditional Networks: Data and Control Plane

OPODIS 2016

Control plane: Distributed
Distributed algorithms

Track topology changes
Compute routes
Install forwarding rules

API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

Software Defined Networks (SDN)

API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

SDN/OpenFlow: Match-Action Devices

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Match Action Stats

Packet + byte counters

OpenFlow Rule

1.Forward packet to port(s)

2. Update header fields

1.Drop packet

……

API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

SDN/OpenFlow: Match-Action Devices

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Match Action Stats

Packet + byte counters

1.Forward packet to port(s)

2. Update header fields

1.Drop packet

……

OpenFlow Rule

Matching Layer-2, Layer-3, Layer-4 header
fields (e.g., IP destination, TCP port, etc.)

API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

SDN/OpenFlow: Match-Action Devices

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Match Action Stats

Packet + byte counters

OpenFlow Rule

1.Forward packet to port(s)

2. Update header fields

1.Drop packet

……

E.g., update header field (new MAC
destination), forward, drop…

API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

SDN/OpenFlow: Match-Action Devices

Switch

Port

MAC

src

MAC

dst

Eth

type

VLAN

ID

IP

Src

IP

Dst

IP

Prot

TCP

sport

TCP

dport

Match Action Stats

Packet + byte counters

OpenFlow Rule

Not important right now. But trend:
more stateful switches (e.g., load-
balancer, “stateful” firewall…)

1.Forward packet to port(s)

2. Update header fields

1.Drop packet

……

API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

Benefit 1: Decoupling! Control plane can evolve
independently of data plane: innovation at speed of
software development. And simpler network
management through logically centralized view:
many network management and operational tasks
are inherently non-local.

Benefits of SDN

Benefit 2: Simple match-action devices:
supports formal verification! Switches/ routers
are “simple” and “passive” match-action
devices. (Unlike in, e.g., active networks.) Can
do, e.g., header space analysis.

 SDNs are popular:
deployments in
enterprises,
datacenters, WAN,
IXPs

 E.g., Google: “A
Purpose-Built Global
Network: Google‘s
Move to SDN”

Solution: Software-Defined Networks (SDN)!

OPODIS 2016

 SDN is about programming the networks

 But OpenFlow is very low-level: inconvenient for programmers

 Hence, over the last years, many network specific
programming languages have been developed

 Researchers have started developing more high-level
languages

 NetKAT: state-of-the-art framework for programming and
reasoning about networks

OPODIS 2016

Programming SDN

NetKAT: Kleene Algebra with Tests (KAT) with atoms
like:

 𝑓 ← 𝑤 assignment

 𝑓 = 𝑤 test

NetKAT

OPODIS 2016

Assigning values
to header fields

Testing values in
header fields

NetKAT: No need to understand all details now

OPODIS 2016

NetKAT: No need to understand all details now

OPODIS 2016

Important concept 1:
Packets with a set of fields

NetKAT: No need to understand all details now

OPODIS 2016

Important concept 2: history. We maintain packet history that
records the state of each packet as it travels from switch to switch.

OPODIS 2016

Policies includes,
e.g., modification
of header field.

NetKAT: No need to understand all details now

We always work on
the current packet, at
front of history.
(History: just to keep
track of trajectory.)

OPODIS 2016

Predicates includes, e.g.,
test of header field.

NetKAT: No need to understand all details now

Producing an empty history
= dropping the packet.
Producing a singleton =
forwarding to a single port

OPODIS 2016

Can model the
topology as the
union of smaller
policies that encode
the behavior of each
link.

NetKAT: Example

NetKAT: Example

OPODIS 2016

Can model the
topology as the
union of smaller
policies that encode
the behavior of each
link.

union

possible
modifications

NetKAT: Use Cases

OPODIS 2016

NetKAT allows to answer many important questions:

 “Can X connect to Y?”

 “Is traffic from A to B routed through Z?”

 “Is there a loop involving S?”

 “Are non-SSH packets forwarded?”

 Etc.

NetKAT: Use Cases

OPODIS 2016

NetKAT allows to answer many important questions:

 “Can X connect to Y?”

 “Is traffic from A to B routed through Z?”

 “Is there a loop involving S?”

 “Are non-SSH packets forwarded?”

 Etc.

However, NetKAT is limited to binary contexts. What is missing
today is a framework to reason about the inherent weighted

aspects of networking: wNetKAT.

wNetKAT: Example

OPODIS 2016

Real networks are weighted: links have costs (latency, energy,
peering costs, etc.) and are capacitated (e.g., bandwidth).

But also nodes may have capacity constraints or entail costs.
Moreover, nodes may transform the traffic volume (e.g., add or
remove encapsulation headers or compress packets).

wNetKAT: Example

OPODIS 2016

The Case for Weighted NetKAT!

Real networks are weighted: links have costs (latency, energy,
peering costs, etc.) and are capacitated (e.g., bandwidth).

But also nodes may have capacity constraints or entail costs.
Moreover, nodes may transform the traffic volume (e.g., add or
remove encapsulation headers or compress packets).

wNetKAT: Challenges

OPODIS 2016

The weighted extension of NetKAT is non-trivial:

 capacity constraints introduce dependencies between
flows (e.g., packets compete for bandwidth)

 we need arithmetic operations such as addition (e.g.,
in case of latency to compute the end-to-end delay)
or minimum (e.g., in case of bandwidth)

Therefore, we extend the syntax of NetKAT toward
weighted packet- and switch-variables, as well as
queues, and provide a semantics accordingly.

Paper Contributions

OPODIS 2016

 We show for which weighted aspects and use cases which
language extensions are required.

 We show the relation between WNetKAT expressions and
weighted finite automata: an important operational model for
weighted programs.

 This also leads to the undeciability of WNetKAT equivalence problem.

 We explore the complexity of verification more generally and for
subsets of the language

 We prove the decidability of whether an expression equals 0
(emptiness testing): for many practical scenarios a sufficient and
relevant problem (e.g., reachability)

wNetKAT: Additions to NetKAT

OPODIS 2016

We add two types of variables to NetKAT:

 quantitative packet variables!

 (quantitative, non-quantitative) switch variables

Accordingly, we generalize assignment and test, to also
include arithmetic operations (namely addition):

 Quantitative Assignment

 Quantitative Test

wNetKAT: Additions to NetKAT

OPODIS 2016

We add two types of variables to NetKAT:

 quantitative packet variables!

 (quantitative, non-quantitative) switch variables

Accordingly, we generalize assignment and test, to also
include arithmetic operations (namely addition):

 Quantitative Assignment

 Quantitative Test

Also allows us to
model more stateful
switches (as they are
currently underway)

wNetKAT: Another no-go slide!

OPODIS 2016

wNetKAT: Another no-go slide!

OPODIS 2016

Quantitative update: update the corresponding
header field if x is a packet-variable, or update the
corresponding switch information of the current
switch if x is a switch-variable..

wNetKAT: Another no-go slide!

OPODIS 2016

Test the quantitative variables using the
current packet- and switch-variables.

wNetKAT

OPODIS 2016

 We only support addition

 But we can also support other arithmetic operations

 min or max can be easily defined (see paper):

𝑥 ← min{𝑦, 𝑧} ≝ 𝑦 ≤ 𝑧; 𝑥 ← 𝑦&𝑦 > 𝑧; 𝑥 ← 𝑧.

Example: Characterizing Weighted Topologies

OPODIS 2016

cost
capacity

Can model the
topology as the
union of smaller
policies that
encode the
behavior of each
link.

Example: Characterizing Weighted Topologies

OPODIS 2016

cost
capacity

Can model the
topology as the
union of smaller
policies that
encode the
behavior of each
link.

cost capacity

Example: Characterizing Weighted Topologies

OPODIS 2016

Can model the
topology as the
union of smaller
policies that
encode the
behavior of each
link.

At s, can either go to F1 or v. Update
cost and min banwidth accordingly.

Example: Rate Changing Functions

OPODIS 2016

Function F2 increases the flow rate by an additive constant

Rate changes =
capacity changes.

Applications: Cost Reachability

OPODIS 2016

 “Can node B be reached from A at cost at most c?”

Topology: Google
B4 Wide-Area
Inter-datacenter
connect:

Applications: Capacitated Reachability

OPODIS 2016

 “Can node A communicate with B at rate at least r?”

 Unsplittable

 Splittable

Applications: Service Chain

OPODIS 2016

 “Can node A reach B at cost/latency at most l and/or
at rate/bandwidth at least r, via F1-F2?”

 Check whether the following is equal to "𝑑𝑟𝑜𝑝“

𝑠𝑟𝑐 ← 𝑠; 𝑑𝑠𝑡 ← 𝑡; 𝑐𝑜 ← 0; 𝑐𝑎 ← 𝑟; 𝑠𝑤 ← 𝑠;
𝑝𝑡 𝑝𝑡 ∗;

𝒔𝒘 = 𝑭𝟏; 𝑝𝐹1; 𝑡 𝑝𝑡 ∗; 𝒔𝒘 = 𝑭𝟐; 𝑝𝐹2; 𝑡 𝑝𝑡 ∗;
𝑠𝑤 = 𝑡; 𝑐𝑜 ≤ 𝑙; 𝑐𝑎 ≥ 𝑟.

 “Does the current flow allocation satisfy max-min
fairness requirements?”

Applications: Fairness

OPODIS 2016

2

3

1

 Theorem: (undecidability)

Deciding equivalence of two WNetKAT expressions is
equal to deciding the equivalence of the two
corresponding weighted WNetKAT automata.

 Theorem:

Deciding whether a WNetKAT expression is equal to
“drop” is equal to deciding the emptiness of the
corresponding weighted automaton.

(Un)Decidability

OPODIS 2016

Thank you

for your attention!

Questions?

OPODIS 2016

