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 Computer networks (datacenter networks, enterprise
networks, wide-area networks) have become a critical
infrastructure of the information society

 Concern: are today‘s networks dependable and 
flexible enough?

Computer Networks
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Even techsavvy companies struggle to provide 
reliable operations

We discovered a misconfiguration on this
pair of switches that caused what's called a
“bridge loop” in the network.

A network change was […] 
executed incorrectly […] 
more “stuck” volumes and 
added more requests to the 
re-mirroring storm

Service outage was due to a series of internal
network events that corrupted router data tables

Experienced a network connectivity issue […]
interrupted the airline's flight departures,
airport processing and reservations systems

Source: Talk by Nate Foster at DSDN Workshop



 Outage of a data center of a Wall Street investment bank

 Lost revenue measured in USD 106 / min!

 Quickly, an emergency team was assembled with experts in 
compute, storage and networking:
 The compute team: came armed with reams of logs, showing how and when 

the applications failed, and had already written experiments to reproduce and 
isolate the error, along with candidate prototype programs to workaround the 
failure.

 The storage team: similarly equipped, showing which file system logs were 
affected, and already progressing with workaround programs. 

 And the networking team? Only had ping and traceroute

Another Anecdote: Wall-Street Bank

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks



Another Anecdote: Wall-Street Bank

Source: «The world’s fastest and most programmable networks»
White Paper Barefoot Networks

“All the networking team had were two tools invented over 
twenty years ago to merely test end-to-end connectivity. 
Neither tool could reveal problems with the switches, the 
congestion experienced by individual packets, or provide 
any means to create experiments to identify, quarantine 
and resolve the problem. Whether or not the problem was 
in the network, the network team would be blamed since 
they were unable to demonstrate otherwise.”

Software-Defined Networks (SDNs) promise to introduce networking

innovations, by decoupling the control plane from the data plane, and

by making networks programmable and verifiable automatically.



Traditional Networks: Data and Control Plane
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Data plane:
Packet streaming

Forward
Filter
Buffer
Mark 
Rate-limit
Measure packets



Traditional Networks: Data and Control Plane
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Control plane: Distributed
Distributed algorithms

Track topology changes
Compute routes
Install forwarding rules



API to the data plane
(e.g., OpenFlow)

Logically-centralized controller
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Software Defined Networks (SDN)



API to the data plane
(e.g., OpenFlow)

Logically-centralized controller
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SDN/OpenFlow: Match-Action Devices 
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1.Forward packet to port(s)

2. Update header fields

1.Drop packet

……



API to the data plane
(e.g., OpenFlow)

Logically-centralized controller

OPODIS 2016

SDN/OpenFlow: Match-Action Devices 
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OpenFlow Rule

Matching Layer-2, Layer-3, Layer-4 header 
fields (e.g., IP destination, TCP port, etc.) 
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SDN/OpenFlow: Match-Action Devices 
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1.Forward packet to port(s)

2. Update header fields
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E.g., update header field (new MAC 
destination), forward, drop…
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SDN/OpenFlow: Match-Action Devices 
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Not important right now. But trend: 
more stateful switches (e.g., load-
balancer, “stateful” firewall…)
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API to the data plane
(e.g., OpenFlow)

Logically-centralized controller
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Benefit 1: Decoupling! Control plane can evolve 
independently of data plane: innovation at speed of 
software  development. And simpler network 
management through logically centralized view: 
many network management and operational tasks 
are inherently non-local.   

Benefits of SDN

Benefit 2: Simple match-action devices: 
supports formal verification! Switches/ routers 
are “simple” and “passive” match-action 
devices. (Unlike in, e.g., active networks.) Can 
do, e.g., header space analysis.



 SDNs are popular: 
deployments in 
enterprises, 
datacenters, WAN, 
IXPs 

 E.g., Google: “A 
Purpose-Built Global 
Network: Google‘s
Move to SDN”

Solution: Software-Defined Networks (SDN)!
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 SDN is about programming the networks

 But OpenFlow is very low-level: inconvenient for programmers

 Hence, over the last years, many network specific
programming languages have been developed

 Researchers have started developing more high-level 
languages

 NetKAT: state-of-the-art framework for programming and 
reasoning about networks

OPODIS 2016

Programming SDN



NetKAT: Kleene Algebra with Tests (KAT) with atoms 
like:

 𝑓 ← 𝑤 assignment

 𝑓 = 𝑤 test

NetKAT
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Assigning values 
to header fields

Testing values in 
header fields



NetKAT: No need to understand all details now 
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NetKAT: No need to understand all details now 
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Important concept 1: 
Packets with a set of fields



NetKAT: No need to understand all details now 
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Important concept 2: history. We maintain packet history that 
records the state of each packet as it travels from switch to switch. 
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Policies includes, 
e.g., modification 
of header field.

NetKAT: No need to understand all details now 

We always work on 
the current packet, at 
front of history. 
(History: just to keep 
track of trajectory.)
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Predicates includes, e.g., 
test of header field.

NetKAT: No need to understand all details now 

Producing an empty history 
= dropping the packet. 
Producing a singleton = 
forwarding to a single port
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Can model the 
topology as the 
union of smaller 
policies that encode 
the behavior of each
link.

NetKAT: Example



NetKAT: Example
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Can model the 
topology as the 
union of smaller 
policies that encode 
the behavior of each
link.

union

possible
modifications



NetKAT: Use Cases
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NetKAT allows to answer many important questions:

 “Can X connect to Y?”

 “Is traffic from A to B routed through Z?”

 “Is there a loop involving S?”

 “Are non-SSH packets forwarded?”

 Etc.



NetKAT: Use Cases
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NetKAT allows to answer many important questions:

 “Can X connect to Y?”

 “Is traffic from A to B routed through Z?”

 “Is there a loop involving S?”

 “Are non-SSH packets forwarded?”

 Etc.

However, NetKAT is limited to binary contexts. What is missing
today is a framework to reason about the inherent weighted

aspects of networking: wNetKAT.



wNetKAT: Example
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Real networks are weighted: links have costs (latency, energy, 
peering costs, etc.) and are capacitated (e.g., bandwidth).

But also nodes may have capacity constraints or entail costs. 
Moreover, nodes may transform the traffic volume (e.g., add or
remove encapsulation headers or compress packets).



wNetKAT: Example
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The Case for Weighted NetKAT!

Real networks are weighted: links have costs (latency, energy, 
peering costs, etc.) and are capacitated (e.g., bandwidth).

But also nodes may have capacity constraints or entail costs. 
Moreover, nodes may transform the traffic volume (e.g., add or
remove encapsulation headers or compress packets).



wNetKAT: Challenges

OPODIS 2016

The weighted extension of NetKAT is non-trivial:

 capacity constraints introduce dependencies between 
flows (e.g., packets compete for bandwidth)

 we need arithmetic operations such as addition (e.g., 
in case of latency to compute the end-to-end delay) 
or minimum (e.g., in case of bandwidth) 

Therefore, we extend the syntax of NetKAT toward 
weighted packet- and switch-variables, as well as 
queues, and provide a semantics accordingly. 



Paper Contributions
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 We show for which weighted aspects and use cases which 
language extensions are required.

 We show the relation between WNetKAT expressions and 
weighted finite automata: an important operational model for 
weighted programs. 

 This also leads to the undeciability of WNetKAT equivalence problem. 

 We explore the complexity of verification more generally and for 
subsets of the language

 We prove the decidability of whether an expression equals 0 
(emptiness testing): for many practical scenarios a sufficient and 
relevant problem (e.g., reachability)



wNetKAT: Additions to NetKAT
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We add two types of variables to NetKAT:

 quantitative packet variables! 

 (quantitative, non-quantitative) switch variables

Accordingly, we generalize assignment and test, to also 
include arithmetic operations (namely addition):

 Quantitative Assignment

 Quantitative Test
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We add two types of variables to NetKAT:

 quantitative packet variables! 

 (quantitative, non-quantitative) switch variables

Accordingly, we generalize assignment and test, to also 
include arithmetic operations (namely addition):

 Quantitative Assignment

 Quantitative Test

Also allows us to
model more stateful
switches (as they are
currently underway)



wNetKAT: Another no-go slide! 
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wNetKAT: Another no-go slide! 
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Quantitative update: update the corresponding 
header field if x is a packet-variable, or update the 
corresponding switch information of the current 
switch if x is a switch-variable..



wNetKAT: Another no-go slide! 

OPODIS 2016

Test the quantitative variables using the 
current packet- and switch-variables.



wNetKAT
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 We only support addition

 But we can also support other arithmetic operations

 min or max can be easily defined (see paper):

𝑥 ← min{𝑦, 𝑧} ≝ 𝑦 ≤ 𝑧; 𝑥 ← 𝑦&𝑦 > 𝑧; 𝑥 ← 𝑧.



Example: Characterizing Weighted Topologies
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cost
capacity

Can model the 
topology as the 
union of smaller 
policies that 
encode the 
behavior of each
link.
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cost
capacity

Can model the 
topology as the 
union of smaller 
policies that 
encode the 
behavior of each
link.

cost capacity



Example: Characterizing Weighted Topologies
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Can model the 
topology as the 
union of smaller 
policies that 
encode the 
behavior of each
link.

At s, can either go to F1 or v. Update 
cost and min banwidth accordingly.



Example: Rate Changing Functions
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Function F2 increases the flow rate by an additive constant

Rate changes = 
capacity changes.



Applications: Cost Reachability 
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 “Can node B be reached from A at cost at most c?”

Topology: Google 
B4 Wide-Area 
Inter-datacenter 
connect:



Applications: Capacitated Reachability 
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 “Can node A communicate with B at rate at least r?”

 Unsplittable

 Splittable



Applications: Service Chain 
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 “Can node A reach B at cost/latency at most l and/or
at rate/bandwidth at least r, via F1-F2?”

 Check whether the following is equal to "𝑑𝑟𝑜𝑝“

𝑠𝑟𝑐 ← 𝑠; 𝑑𝑠𝑡 ← 𝑡; 𝑐𝑜 ← 0; 𝑐𝑎 ← 𝑟; 𝑠𝑤 ← 𝑠;
𝑝𝑡 𝑝𝑡 ∗;

𝒔𝒘 = 𝑭𝟏; 𝑝𝐹1; 𝑡 𝑝𝑡 ∗; 𝒔𝒘 = 𝑭𝟐; 𝑝𝐹2; 𝑡 𝑝𝑡 ∗;
𝑠𝑤 = 𝑡; 𝑐𝑜 ≤ 𝑙; 𝑐𝑎 ≥ 𝑟.



 “Does the current flow allocation satisfy max-min 
fairness requirements?”

Applications: Fairness 
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3
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 Theorem: (undecidability)

Deciding equivalence of two WNetKAT expressions is 
equal to deciding the equivalence of the two 
corresponding weighted WNetKAT automata.

 Theorem: 

Deciding whether a WNetKAT expression is equal to 
“drop” is equal to deciding the emptiness of the 
corresponding weighted automaton.

(Un)Decidability
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Thank you 

for your attention!

Questions?
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