
Maximally Resilient Replacement Paths for a1

Family of Product Graphs2

Mahmoud Parham3

University of Vienna, Faculty of Computer Science, Vienna, Austria4

mahmoud.parham@univie.ac.at5

Klaus-Tycho Foerster6

University of Vienna, Faculty of Computer Science, Vienna, Austria7

klaus-tycho.foerster@univie.ac.at8

Petar Kosic9

University of Vienna, Faculty of Computer Science, Vienna, Austria10

petar.kosic@univie.ac.at11

Stefan Schmid12

University of Vienna, Faculty of Computer Science, Vienna, Austria13

stefan_schmid@univie.ac.at14

Abstract15

Modern communication networks support fast path restoration mechanisms which allow to reroute16

traffic in case of (possibly multiple) link failures, in a completely decentralized manner and without17

requiring global route reconvergence. However, devising resilient path restoration algorithms is18

challenging as these algorithms need to be inherently local. Furthermore, the resulting failover paths19

often have to fulfill additional requirements related to the policy and function implemented by the20

network, such as the traversal of certain waypoints (e.g., a firewall).21

This paper presents local algorithms which ensure a maximally resilient path restoration for a22

large family of product graphs, including the widely used tori and generalized hypercube topologies.23

Our algorithms provably ensure that even under multiple link failures, traffic is rerouted to the other24

endpoint of every failed link whenever possible (i.e. detouring failed links), enforcing waypoints and25

hence accounting for the network policy. The algorithms are particularly well-suited for emerging26

segment routing networks based on label stacks.27

2012 ACM Subject Classification Networks → Routing protocols; Computer systems organization28

→ Dependable and fault-tolerant systems and networks; Mathematics of computing → Graph29

algorithms30

Keywords and phrases Product Graphs, Resilience, Link Failure, Routing31

Digital Object Identifier 10.4230/LIPIcs...132

33

1 Introduction34

Communication networks have become a critical infrastructure of our society. With the35

increasing size of these networks, however, link failures are more common [2, 8], which36

emphasizes the need for networks that provide a reliable connectivity even in failure scenarios,37

by quickly rerouting traffic. As a global re-computation (and distribution) of routes after38

failures is slow [18], most modern communication networks come with fast local path39

restoration mechanisms: conditional failover rules are pre-computed, and take effect in case40

of link failures incident to a given router.41

Devising algorithms for such path restoration mechanisms is challenging, as the failover42

rules need to be (statically) pre-defined and can only depend on the local failures; at the43

same time, the mechanism should tolerate multiple or ideally, a maximal number of failures44

© Mahmoud Parham, Klaus-Tycho Foerster, Petar Kosic, and Stefan Schmid;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6211-077X
mailto:mahmoud.parham@univie.ac.at
https://orcid.org/0000-0003-4635-4480
mailto:klaus-tycho.foerster@univie.ac.at
mailto:petar.kosic@univie.ac.at
https://orcid.org/0000-0002-7798-1711
mailto:stefan_schmid@univie.ac.at
https://doi.org/10.4230/LIPIcs...1
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Maximally Resilient Replacement Paths for a Family of Product Graphs

0

12

3 4

2
1,3

1,4 1

3

4

0

2,
0

2,4
0,3

Figure 1 A 2-resilient backup path scheme for K5 that is not
maximally resilient. Numbers on each link are internal nodes
of the link’s backup path. To each link {i, j}, the backup path
i, j + 1, i + 1, j is assigned. Assume three links {0, 3}, {2, 4},
{1, 3} are faulty. Consider a packet initiated at node 0 destined
to node 3. Since node 3 is not reachable directly, the packet is
forwarded to node 4 to be delivered via the backup path 0, 4, 1, 3.
The packet arrives at node 1 where it hits the failed link {1, 3}.
It is then (recursively) rerouted via the path 1, 4, 2, 3 on which
it hits the failed link {4, 2} at node 4. In order to reach node
2, it travels on the path 4, 3, 0, 2 on which it hits the failed link
{0, 3} for the second time. Therefore the packet loops through
0, 4, 1, 4, 3, 0 perpetually. The scheme is not maximally resilient
since the graph is 4-connected and a path always exists after any
3 link failures.

(as long as the underlying network is still connected), no matter where these failures may45

occur. Furthermore, besides merely re-establishing connectivity, reliable networks often must46

also account for additional network properties when rerouting traffic: unintended failover47

routes may disrupt network services or even violate network policies. In particular, it is often48

important that a flow, along its route from s to t, visits certain policy and network function49

critical “waypoints”, e.g., a firewall or an intrusion detection system, even if failures occur.50

Today, little is known about how to provably ensure a high resiliency under multiple failures51

and waypoint traversal.52

This paper is motivated by this gap. In particular, we investigate local path restoration53

algorithms which do not only provide a maximal resilience to link failures, but also never54

“skip” nodes: rather, traffic is rerouted around failed links individually, hence enforcing55

waypoints [1].56

1.1 Contributions57

We initiate the study of local (i.e., immediate) path restoration algorithms on product graphs,58

an important class of network topologies. More specifically, our algorithms are 1) resilient to59

a maximum number of failures (i.e., are maximally robust), 2) respect the (waypoint) path60

traversal of the original route (by detouring failed links), and 3) are compatible with current61

technologies, and in particular with emerging segment routing networks [23]: our algorithms62

do not require packets to carry failure information, routing tables are static, and forwarding63

just depends on the packet’s top-of-the-stack destination label and the incident link failures.64

Our main result is an efficient scheme that can provide maximally resilient backup paths65

for arbitrary Cartesian product of given base graphs, as long as well-structured schemes are66

provided for the base graphs. Using complete graphs, paths, and cycles as base graphs, we67

can generate maximally resilient schemes for additional important network topologies such68

as grids, tori, and generalized hypercubes.69

1.2 Organization70

The remainder of this paper is organized as follows. We first introduce necessary model71

preliminaries in Section 2, followed by our main result in Section 3, where we provide a72

general scheme to compute maximally resilient path restoration schemes for product graphs.73

We then show how our scheme can be leveraged for specific graph classes in Section 4, for74

the selected examples of complete graphs, generalized hypercubes, grids, and torus graphs.75

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:3

We review related work in Section 5 and conclude our study in Section 6 with some open76

questions.77

2 Preliminaries78

We consider undirected graphs G = (V, E) where V is the set of nodes and E is the set of79

links connecting nodes.80

I Definition 1. A backup path (a.k.a. replacement path) for a link ` ∈ E is a simple path81

that connects the endpoint of the link `. Let P be the set of all backup paths in a graph. An82

injective function BPG : E → P that maps each link to one of its backup paths is a backup83

path scheme.84

We may drop the subscript when the graph G is clear form the context. When a packet85

arrives at a node and the next link on its path is some failed link `1, the node (i.e., router)86

immediately reroutes the packet along the backup path of `1, given by BP(`1). The packet87

may encounter a second failed link `2 ∈ BP (`1). Now assume `1 ∈ BP(`2). The packet88

loops between the two links indefinitely as one link lies on the BP of the other. To this89

end, we need to characterize backup paths that do not induce such infinite forwarding loops90

under any sufficiently large subset of simultaneous link failures. Before that, we formalize91

the actual route that a packet takes under a given failure scenario L.92

I Definition 2. Given any subset of links L ⊂ E, a detour route around a link ` ∈ L,93

denoted by RG(`, L), is obtained by recursively replacing each link in BPG(`) ∩ L with its94

respective detour route. Precisely,95

RG(`, L) = (BPG(`) \ L) ∪
⋃

`′∈BPG(`)∩L

RG(`′, L). (1)96

Moreover, 1) BPG is resilient under the failure scenario L if and only if ∀` ∈ L, the detour97

RG(`, L) exists, i.e., the recursion terminates, and98

2) BPG is f -resilient if and only if it is resilient under every L ⊂ E s.t. |L| = f .99

In words, when a packet’s next hop is across the failed link ` ∈ L, it gets rerouted along the100

route RG(`, L) which ends at the other endpoint of ` hence evading all failed links. A BP101

scheme is f -resilient if for every subset of up to f failed links, replacing each failed link with102

its backup path produces a route that excludes failed links. The replacement process from a103

packet’s perspective occurs recursively as in (1). A packet ends up in a loop permanently104

when it encounters a failed link for which the detour (1) does not exist. Then, the scheme is105

f -resilient if a packet that encounters a failed link reaches the other endpoint of the link by106

traversing the BP of that link and the BP of any consequent failed link that it encounters107

along the way.108

Definition 2 implies that we cannot have a resiliency higher than graph connectivity, since109

L may simply consist of all links incident to one node which makes a detour impossible.110

I Definition 3. An f-resilient backup path scheme BPG is maximally resilient if and only111

if it is not f ′-resilient for any f ′ > f .112

Note that maximal resiliency is weaker than “perfect resiliency”, where the goal is to113

reach the destination as long as it is reachable, and a node can decide only the next hop.114

In our model, a scheme may not be able to provide connectivity even when the destination115

is reachable under some failure scenario. However, there are graph structures that do not116

1:4 Maximally Resilient Replacement Paths for a Family of Product Graphs

allow perfect resiliency, whereas maximal resiliency is feasible. Next, we introduce the notion117

of “dependency” on which we establish some key definitions used widely in the analysis of118

resiliency in our proofs.119

I Definition 4. We say there is a dependency relation `→ `′ if and only if the link ` includes120

the link `′ on its backup path, i.e., `′ ∈ BPG(`). We represent all dependency relations as a121

directed dependency graph D(BPG) with vertices {v` | ` ∈ G} and arcs {(v`1 , v`2) | `1 → `2}).122

Hence, BPG induces the dependency graph D(BPG).123

We denote a dependency arc (v`1 , v`2) by (`1, `2) for simplicity. Any backup path scheme124

BPG induces cycles in D(BPG), as otherwise there is a link without any BP assigned to it.125

We refer to one such cycle as cycle of dependencies or CoD for short. A CoD is trivially a path126

of dependencies (PoD) where the first and the last elements are the same link. Observe that127

a CoD captures a failure scenario that leads to a permanent loop. Rewording Definition 2,128

BPG is f -resilient if and only if every CoD is longer than f , i.e., it consists of at least f + 1129

dependency arcs. Hence, CoDs with the shortest length determine the resiliency and we refer130

to them as min-CoDs.131

Next, we introduce some additional notations and definitions based on Definition 4. Let132

CoD(v) denote a CoD over links incident at v ∈ V . Observe that such CoD always exists.133

Note that non-incident links may induce (min-)CoDs as well. We focus on special regular134

graphs and resiliency thresholds that are maximal for the connectivity (or the degree) of the135

those graphs. Then, a min-CoD cannot be shorter that the degree of the respective regular136

graph, which implies CoD(v) is unique for every node v.137

In Section 3, we present a backup path scheme for certain k-dimensional product graphs,138

by generalizing the solution presented in [16] on binary hypercubes (BHC). A k-dimensional139

BHC is in fact the Cartesian product of any set of BHCs where dimensions add up to140

k. A product graph G is the Cartesian product of base graphs in {g1, . . . , gk}. That is,141

G =
∏

d∈[k] gd where
∏

denotes the Cartesian product. Let nd := |V [gd]|, d ∈ [k] denote142

the order of gd. Nodes in a product graph are represented as k-tuples (ak, . . . , a1) where143

∀d ∈ [k] : 0 ≤ ad < nd. Likewise, we assume labels (ak, . . . , ad−1, ∗, ad+1, . . . , a1) for links144

where their endpoint nodes differ in their dth digit (i.e., dth component) which is represented145

by the ‘*’.146

3 Resiliency Under Cartesian Product147

We now introduce a generic algorithm to compute a maximally resilient scheme for special148

product graphs. More specifically, the algorithm takes the scheme of each base graph and149

combines them in a way that yields a scheme for the Cartesian product of those base graphs.150

However, it requires each individual scheme to possess some structural properties. We begin151

with the characterization of these properties.152

We can break a CoD into a PoD by removing one of its arcs, which is realizable by153

removing the head link of an arc from the BP of the tail link of the arc.154

I Definition 5. An r-resilient backup path scheme BPG is well-structured if and only if for155

every node v there exists a special link incident at v, denoted by L∗BPG
(v), that satisfies the156

following conditions.157

1. Let :=
⋃

v L∗BPG
(v). There is one CoD C∗BPG

that consists only of links in L∗BPG
.158

2. The following procedure breaks all CoDs.159

a. For every link ` 6∈ L∗BPG
s.t. BPG(`) ∩ L∗BPG

6= ∅, do as follows.160

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:5

i. Let x1 and x2 be the two nodes on BP (`), closest to either endpoints of `,161

s.t. L∗BPG
(x1), L∗BPG

(x2) ∈ BP (`)162

ii. Remove every link of BP (`) between x1 and x2, i.e. the subpath BP (`)[x1, x2].163

b. Pick one link `∗ ∈ L∗BPG
arbitrarily and remove it from the backup path of the (unique)164

link ` ∈ L∗BPG
where (`, `∗) ∈ C∗BPG

.165

3. In every CoD at least r arcs are left, not eliminated by the procedure.166

Intuitively, these conditions mandate a choice of L∗BPG
that for every CoD, the packet167

that realizes the CoD traverses a link in L∗BPG
. These links will be used to break all CoDs168

open into PoDs, before extending BPG into a scheme for product graphs for which G is a169

“base graph”. For this reason, we refer to links in L∗BPG
often as feedback links, a concise way170

to indicate they correspond to feedback vertices of the dependency graph that intersect all171

cycles in that graph that are shorter than r + 1 arcs.172

Concretely, Definition 5 constrains the set L∗BPG
in a way that for every CoD one of the173

following two cases must apply. Case 1. The CoD may contain an arc with head in L∗BPG
174

and removing the head link from the BP of the tail link is sufficient for breaking the CoD175

(e.g., the case with all CoD(v)’s). Case 2. The CoD may not contain any link in L∗BPG
as176

the tail or head of an arc, but it contains an arc (`1, `2) that the packet departing from177

either endpoints of `1 (traversing BPG(`1)) has to traverse a link in L∗BPG
before reaching178

`2 6∈ L∗BPG
. The procedure 5.2 removes not only the links of L∗BPG

from the BP (at line179

5.2(a)ii), but also the link `2, since it is not anymore reachable from `2. Note that Case 1180

applies to the unique CoD C∗BPG
which is handled separately at 5.2b.181

Next, we establish a lemma that constructs a walk on all nodes of G, using a given a BP182

scheme and the corresponding set of feedback links.183

I Lemma 6. Assume a well-structured scheme BPG and a set of links L∗BPG
satisfying184

Definition 5 are given. There exists a closed walk WBPG
on all nodes of G that 1) visits185

each node v ∈ G immediately before traversing the link L∗BPG
(v), and 2) links in L∗BPG

are186

traversed in the same circular order as they are in C∗BPG
.187

Proof. The following procedure marks every node in G with FINISHED as soon as a visit to188

v is followed by walking the link L∗gd(v).189

1. WBPG
= ∅.190

2. Let w0 := v. Initialize the last traversed feedback link `∗ = L∗gd(w0). Let {w0, w1} := `∗,191

then initialize the walk W = [w0, w1].192

3. Repeat:193

a. Assume W = [w0, w1, . . . , wt] is the current walk, L∗gd(wt) = {wt, u} and let `′wt
:=194

{wt, u′} ∈ BPG(`∗), u′ 6= wt−1.195

b. If wt−1 = u ∧ wt 6= wt−2 then wt+1 = u.196

c. Else, wt+1 = u′.197

d. If wt+1 = u then `∗ = `wt and mark wt with FINISHED.198

e. If wt = w0 ∧ {w0, w1} ∈ BPG(`∗) then Break.199

4. WBPG
= W .200

The walk WBPG
begins with the link L∗BPG

(w0). Then it proceeds to the next link on201

the backup path of the last traversed link `∗ ∈ L∗BPG
at Line 3c (initially `∗ = `w0), or it202

traverses the recently walked link {wt−1, wt} in the opposite direction at Line 3b (i.e., from203

wt to wt−1). By assumption, any ` ∈ L∗BPG
is on the backup path of some `′ ∈ L∗BPG

and204

1:6 Maximally Resilient Replacement Paths for a Family of Product Graphs

(`′, `) ∈ C∗BPG
. Therefore, the loop at Line 3 reaches an iteration where the last traversed205

`∗ ∈ L∗BPG
includes L∗BPG

(w0) on its backup path, which breaks the loop at Line 3e. The206

last visited node must be w0 implying W is a closed walk. Whenever W reaches a node wt207

and L∗BPG
(wt) is on the backup path of the last traversed `∗ ∈ L∗BPG

, then it next traverses208

L∗BPG
(wt) for the first time at Line 3c in one direction, or for the second time at Line 3b209

in the reverse direction. In either case, L∗BPG
(wt) is walked immediately after a (FINISHED)210

visit to wt. At the end, both endpoints of every link in L∗BPG
are marked FINISHED and211

since
⋃

`∈L∗BPG

` = V [G], all nodes are marked FINISHED. J212

We will use the walk in the construction of the scheme for a multi-dimensional graph where213

G is the base graph in one of the dimensions. The walk is used to guide backup paths of214

links in other dimensions when they need to traverse the dimension of G.215

3.1 The Construction216

For every base graph gd, we assign node labels 0, . . . , nd − 1 such that nodes are ordered as217

they are FINISHED in Lemma 6. I.e., the first node FINISHED gets 0, the second one gets 1218

and so on. Assume, for each gd ∈ G, a well-structured, rd-resilient backup path scheme BPgd219

together with a feedback vertex set L∗BP
gd
⊆ E[gd] is given. Let us fix a circular order over220

base graphs, e.g., g1, . . . , gd. A node v := (a1, . . . , ak) ∈ G corresponds to the adth node in221

the dth base graph gd, d ∈ [k].222

Let incd(1, . . . , ak) denote the (successor) function that takes a node in G, increments the223

dth digit, applies any carry flag rightward rotating left, and discards any carry back to the224

dth digit. Observe that for a fixed d ∈ [k], the function incd+1 defines a total order over all225

instances of gd. Hence, we denote the ith instance by gd
i . We write gd

i (instead of gd) only226

when we refer to a specific gd-instance. similarly, ` ∈ G is a gd-link if it is an instance of a227

link in gd.228

Let vd
i (x) denote the mapping V [gd] 7→ V [gd

i] ⊆ V [G], where vd
i (x) is the ith instance229

of the node x ∈ gd. Then, vd
i+1(x) = incd+1(vd

i (x)). Similarly, for a path (i.e., subset) of230

nodes P , we have vd
i (P) = ∪v∈P vd

i (v). We use vd
i whenever the node x is not relevant to the231

context. Next, we compute a path P ∗(vd
i) = {vd

i , . . . , vd
i+1}, that connects vd

i and vd
i+1 in G232

through the sequence of base graphs gd+1, gd+2, The intermediate nodes are determined233

by digits that are incremented during the operation incd+1(vd
i). Algorithm 1 depicts this234

procedure.235

Algorithm 1 Construction of P ∗(vd
i), vd

i = (a0, . . . , ak−1)

1: function P ∗(vd
i)

2: P = {vd
i }, v = vd

i , d′ = d + 1, carry = 1 . initialize
3: while carry > 0 ∧ d′ 6= d do . emulating incd+1(v)
4: if ad′ < nd′ − 1 then
5: v[d′] = v[d′] + 1, carry = 0 . increment the d′th digit
6: else
7: v[d′] = 0, carry = 1
8: d′ = (d′ + 1) (mod k) . move to the next digit, rotating left
9: P = P ∪ {v} . append v to P

return P

We initialize the scheme for every gd-instance with a copy of BPgd , i.e., ∀i : BPgd
i

= BPgd .236

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:7

Then, we integrate BPgd
i
into BPG by extending backup paths of links that contain or traverse237

a feedback link, i.e., links that are tail of some feedback arc. Consider any feedback arc238

(`, `′) ∈ ABP
gd

i

(C). Since `′ ∈ BPgd
i
(`), we can break C by extending BPgd

i
(`) into a backup239

path that does not traverse `′ (i.e., detours `′). We detour `′ = {x1, x2} via a pair of walks240

through gd+1
i , gd+1

i , . . . that reaches the next instance of gd
i , i.e., the instance given by incd+1.241

That is, the paths P ∗(vd
i (x1)) and P ∗(vd

i (x2)). By reconnecting vd
i+1(x1) and vd

i+1(x2)242

through gd
i+1, we finish the construction of the extended backup path. In Algorithm 2, we243

use notations and constructions defined so far to describe the integration of all BPgd
i
’s into244

one scheme BPG .245

Algorithm 2 Construction of BPG

1: Initialize BPG = ∅
2: for every d ∈ [k] and all instances gd

i do
3: BPgd

i
= ForBaseGraph(d, i)

4: BPG =
⋃

d∈[k],i BPgd
i

5: function ForBaseGraph(d, i)
6: Initialize BPgd

i
= BPgd , relabel all nodes from x ∈ gd to vd

i [x] ∈ gd
i .

7: Let Ld
i := L∗BP

gd
i

8: for every ` ∈ gd
i , 6∈ Ld

i s.t. BPgd
i
(`) ∩ Ld

i 6= ∅ do . Definition 5.2a
9: Let x1 and x2 be nodes as specified in Definition 5.2(a)i. . detour points

10: S := BPgd
i
(`)[x1, x2] . the part of BP to be removed

11: S∗ := incd+1(S) . copy of S in the next gd-instance, gd
i+1

12: Compute P ∗(x1) and P ∗(x2) . Algorithm 1
13: P ′` := (P` \ {S}) ∪ {S∗} ∪ P ∗(x1) ∪ P ∗(x2)
14: BPgd

i
(`) = P ′`

return BPgd
i
(`)

I Definition 7. Let `1 := {u, v} ∈ gd′

i , `2 := {u′, v′} ∈ gd′

j , j 6= i. We say that the dependency246

arc (`1, `2) traverses the base graph gd, d 6= d′ if and only if `1 and `2 differ in their dth digits.247

Moreover, if the dth digit from `1 to `2 increases by 1 then we say the arc traverses gd in248

uphill direction. Otherwise the dth digits resets to zero and the arc traverses gd in downhill249

direction.250

Restating Definition 7, two packets departing from the two endpoints of `1 traveling on the251

backup path of `1 together traverse a pair of links in two gd-instances (symmetrically), before252

reaching `2 ∈ BPgd
i
(`1). The pair of gd-links are distinct instances of the same link in gd

253

and they are traversed in the same direction due to the symmetric construction of the pair254

of paths at Line 2.12. That is, either towards their higher endpoint (i.e. larger dth digit),255

which we refer to as the uphill direction, or the opposite (downhill) direction.256

I Definition 8. We say an arc (`1, `2), `1 ∈ gd′

i `2 ∈ gd
j crosses gd if the two links belong to257

different base graphs, i.e. d′ 6= d, or both are in the same gd-instance, i.e. d = d′ and i = j.258

Similarly, we say a PoD (CoD) traverses or crosses gd if it includes an arc that, respectively,259

traverses or crosses gd. Therefore, if a PoD does not cross gd-link then it means it does not260

contain any gd-link as the head of an arc. We emphasis that by construction, an arc either261

crosses or traverses a base graph gd.262

1:8 Maximally Resilient Replacement Paths for a Family of Product Graphs

I Definition 9. An arc (`1, `2) ∈ C is the contribution of gd in one these cases: it crosses263

gd, it traverses gd in the uphill direction, or `2 is a gd-link and the arc traverses all other264

dimensions in the downhill direction.265

By Definition 9 every arc is the contribution of a unique base graph.266

3.2 Analysis of Resiliency267

We begin with a series of lemmas that show each base graph contributes its resiliency to the268

resiliency of BPG .269

I Lemma 10. Let P be a PoD induced by BPG that traverses gd in the uphill direction at270

least once and it does not cross gd. Then, there exists a PoD P̃ induced by BPgd that consists271

of the links in L∗BP
gd

that are traversed by P s.t. |P | ≥ |P̃ |.272

We defer the proof to the appendix due to space constraint.273

Proof. We have |C| ≥ |C̃| by applying Lemma 10. Then the claim follows because of the274

assumption that BPgd is rd-resilient, which directly implies |C̃| ≥ rd + 1. J275

I Lemma 11. Let P := {(`first , `1), . . . , (`s, `last)} be a PoD induced by BPG. Assume276

`first ∈ gd
i and `last ∈ gd

j are the only gd-links on P for some i and j. Let `′first, `′last ∈ gd be277

the corresponding links in gd. Then there exists a PoD P̃ induced by BPgd that begins with278

`′first and ends at `′last s.t. |P | ≥ |P̃ |.279

We defer the proof to the appendix due to space constraint.280

I Theorem 12. The backup path scheme BPG is (∆− 1)-resilient where ∆ =
∑

d∈[k](rd + 1).281

Proof of Theorem 12. Consider any CoD C induced by BPG . We shrink G down to a single282

instance of gd denoted by g̃d. To this end, we map all nodes in G with equal dth digit, to283

one node s ∈ g̃d. As a result, endpoints of links `′ ∈ gd′

∗ , d′ 6= d merge into one node which284

transforms `′ into a loop link. Let C′ denote the set of arcs in C after this transformation.285

Since C is a CoD, the contribution from gd to C cannot be more than rd + 1 arcs. We argue286

that it is exactly rd + 1.287

If C includes links only in gd-instances (i.e., no link in C has endpoints with equal dth288

digits), then C′ is already a min-CoD in g̃d and |C′| ≥ rd + 1. However, some arcs in C′ are289

projection of arcs in C that are not the contribution of gd (Definition 9). They traverse some290

gd′ , d′ 6= d in the uphill direction and hence are the contribution of gd′ . Observe that these291

arcs are created due to Line 2.12 when a BP in gd
i is extended into the next gd-instance292

via a pair of walks that traverse other dimensions including d′, and they correspond to arcs293

induced by BPgd that are eliminated by the procedure 5.2. Definition 5.3 guarantees at294

least rd non-eliminated arcs left which implies at least rd + 1 arcs in C′ cross gd and are its295

contribution. There must be one arc that traverses all dimensions except d in the downhill296

direction, which means in total there are at least rd + 1 arcs contributed from gd.297

Else, if C does not contain cross gd-link, then it only traverses gd. Recall that traversing298

gd is guided by the closed walk constructed in Lemma 6 and with each (FINISHED) visit299

to nodes there is an increment, i.e. an uphill traversal. Hence, gd in this case contributes a300

number of arcs equal to the number of FINISHED visits, which in turn is the number of its301

nodes, or |V [gd]| ≥ rd + 1.302

Else, C both traverses and crosses gd. Then there are links with equal dth digits at their303

endpoints which shrink into loop links. We remove all arcs (`′, `′′) ∈ C′ where `′ or `′′ is a304

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:9

0

1
2

2
3

3
1

0,3

1,0

0,2 0

1
2

2
3

3
4

4

1

0,3

4,0

1,0

2,
0

2,0
,4 1,0,3

Figure 2 Maximally resilient schemes for K4 and K5. The numbers on each link are the internal
nodes of the link’s backup path.

loop link, as well as loop arcs. As a result, parts of C′ along which the dth digit does not305

change, is eliminated and C′ is segmented into separate PoDs. Let S ⊂ C′ denote the set of306

remaining arcs (tails and heads of which in g̃d). Notice that arcs in S form disconnected307

PoDs. Moreover, for each PoD P ⊆ S, the tail of the first arc and the head of the last arc308

belongs to g̃d. The remaining arcs (which do not include any gd-link) are in S := C \ S. Due309

to the segmentation of C, S forms disconnected PoDs, each beginning with an arc tailed at a310

link in g̃d and ends at an arc headed at link in g̃d. Since these PoDs cross gd only at their311

end links, we apply Lemma 11 to each PoD P ′ ⊆ S and we obtain a PoD P̃ induced by312

BPgd . Then, by adding each obtained P̃ to C, we reconnect all consecutive PoDs in S and313

join them into a CoD C̃ induced by BPgd , which means |C̃| ≥ rd + 1. Due to proof of Lemma314

11, every arc in C̃ is either projected from an arc in C that has gd-links as endpoints, i.e.,315

crossing gd, or is projected from some arc in C that traverses gd in the uphill direction. Thus316

by definition 9, every arc in C̃ is the contribution of gd. J317

4 Generalized Hypercubes and Tori318

We have described above how to construct a maximally resilient scheme for Cartesian319

products of given base graphs using their well-structured schemes. In this section, we320

showcase examples of these base graphs and apply our results to their products. In particular,321

we will present efficient and robust path restoration schemes for generalized hypercube graphs322

and tori.323

4.1 Complete Graphs and Generalized Hypercubes324

A complete graph over n nodes is defined as Kn = (V, E) where V = {0, . . . , n− 1} and the325

links E = {{i, j}|i, j ∈ V, i 6= j}. We present a (n− 2)-resilient scheme for Kn denoted by326

BPKn
, which we later leverage for generalized hypercubes. In the following assume every327

increment (+1) is performed in modulo n and it skips 0. That is, i + 1 ≡ i (mod n− 1) + 1328

We generate all backup paths in two simple cases as described in Algorithm 3.329

Algorithm 3 Construction of BPKn

1: for each link ` ∈ E[Kn] do
2: if 0 ∈ ` then . i.e. ` = {0, i}
3: BPKn(`) = [0, i + 1, i]
4: else . i.e. ` = {i, j}, i, j 6= 0
5: BPKn(`) = [i, j + 1, 0, i + 1, j]

1:10 Maximally Resilient Replacement Paths for a Family of Product Graphs

I Theorem 13. The backup path scheme BPKn
is (n− 2)-resilient.330

Proof. The dependencies from a link {i, j} where i, j 6= 0, to other links can be observed331

in four distinct types: {i, j} A→ {i, j + 1}, {0, j} B→ {0, j + 1}, {i, j} C→ {0, j + 1} and332

{0, j} D→ {j, j + 1}. Note that with each type, i and j are interchangeable due to the333

symmetry in paths of Case 5. In Figure 2 (right), an exemplary cycle of dependencies that334

consists of all the four types can be: {1, 2} → {1, 3} → {0, 4} → {0, 1} → {1, 2}. Next,335

we show that any cycle of dependencies consists of at least n − 1 arcs, implying n − 2336

resiliency. If C consists of links all incident to some node i 6= 0, then C = {i, j} A→ {i, j +1} A→337

{i, j +2} . . . {i, i−1} C→ {i, 0} D→ {i, i+1} A→ . . . {i, j}. Obviously |A[C]| = n−1 and therefore338

we exclude this case from the rest of our proof.339

Given a cycle of dependencies C, we construct a non-descending sequence of node ids340

S = (v0, v1, . . . , n − 1, . . . , v0) such that for every 0 ≤ t < |S|, we have St ∈ Ct and341

St+1 ≤ St + 1. That is, S is monotonically contiguous. In words, S is a circular sequence342

1+, . . . , (n− 1)+, and consecutive elements in S are endpoints of consecutive links in C. Since343

every arc increments only one endpoint by 1, there must be at least n − 1 arcs in C. We344

construct S as follows.345

1. All dependencies in C are of type A. Assume the packet p that realizes the CoD is346

currently at node i and hits the failed link {i, j} 63 0. Let S be the sequence of nodes that347

p visits during the loop. The next failure is either {i + 1, j} or {i, j + 1}. Therefore p348

either is rerouted to the node i + 1 or it stays at i. The packet eventually leaves the node349

i, otherwise there is a non-A arc. That is, p visits all nodes in a non-descending order350

before it arrives back to i. Therefore, S is a non-descending sequence of all non-zero node351

ids.352

2. All dependencies in C are of type B. We take the sequence of non-zero endpoints. I.e.,353

S[t] = v ∈ Ct, v 6= 0.354

3. In this case C includes multiple dependency types. We refer to a path of arcs all in type355

X as type X-PoD. We split C into maximal dependency paths of types A and B, which356

are concatenated by dependency arcs of type C and D. We extract a sub-sequence from357

each maximal PoDs and patch them into a single sequence S as follows. Initially, let358

S = ∅ and start with a maximal A-PoD {i0, j0}
A→, . . . chosen arbitrarily.359

a. Given a A-PoD, say {i, j} A→, . . . ,
A→ {i′, j′}, the packet that realizes the PoD visits360

two sub-sequences depending on whether it starts at i or j. Let S1 and S2 be the361

produced sub-sequences ending with i′ and j′ respectively. The A-PoD is followed by362

a type C arc, that is {i′, j′} C→ {i′ + 1, 0} or {i′, j′} C→ {0, j′ + 1}. With the first case,363

pick the sequence S1, otherwise pick S2. Append to S the chosen sequence and then364

the incremented node id at the head of the C-arc (i.e. i′ + 1 or j′ + 1).365

b. If C proceeds with a B-PoD then append to S the sequence of non-zero node ids.366

c. After the C-arc and possibly a B-PoD, there must be a D-arc. E.g., {0, j′′} D→367

{j′′, j′′ + 1}. The D-arc is then followed by a A-PoD (possibly the first one). If we368

are back to the first A-PoD, i.e., {j′′, j′′ + 1} = {i0, j0}, then S is already a circular369

sequence. Else, we continue the construction by repeating from step (a)370

It is easy to see that the current sequence is monotonically contiguous after (a), (b) and (d).371

In particular, after (d), S ends with j′′ and any sub-sequence chosen next in (a) begins with372

j′′ or j′′ + 1. In either case the property is preserved. J373

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:11

1
0

2

3

4 5

1′
0′

2′

3′

4′ 5′

Figure 3 A (6, 2)-cube. Each dashed blue line is a K2-instance. They connect the two K6-
instances. They admit (respectively) 0- and 4-resilient schemes. The dotted line traces BPG({2, 5}) =
[2, 2′, 1′, 0′, 0, 3, 5]. On K6, Lemma 6 gives the feedback walk 0, 1, 0, 2, 1, 3, 1, 4, 1, 5, 1, if it starts
with node 0. The FINISHED order is 0, 1, 2, 3, 4, 5. In turn, Algorithm 2 generates backup paths such
as BPG({0, 0′}) = [0, 1, 1′, 0′] and BPG({1, 1′}) = [1, 0, 2, 2′, 0′, 1′]. Hence, K2-instances induce the
CoD: {0, 0′} → {1, 1′} → {2, 2′} → {3, 3′} . . . {0, 0′}. Observe in example CoDs {2, 5} ∗→ {2′, 1′} →
{0′, 3′} → {0′, 4′} → {0′, 5′} → {1, 5} → {2, 5} and {2, 5} ∗→ {2, 2′} → {2, 1} → {2, 0} → {2, 3} →
{2, 4} → {2, 5}, the starred arcs are counted as the contribution of K2 (0 + 1 arcs), while the rest
are the contribution of K6 (4 + 1 arcs).

In the following lemmata, we show that this scheme is well-structured. First, we need to374

determine the feedback links.375

I Lemma 14. Every CoD induced by the scheme from Theorem 13 includes a link in376

BKn
:= {{1, i} | 0 ≤ i ≤ n−1} and the subset of arcs {{i, n−1} → {i, 1} | i ∈ {0, 2, 3, . . . , n−377

2}} ∪ {{1, n− 1} → {0, 1}} are feedback arcs.378

Proof. The sequence S constructed in the Proof 13 contains every non-zero node id regardless379

of the given CoD. This means that for any node v ∈ {1, . . . , n− 1}, every CoD includes some380

link incident to v. We pick v = 1 w.l.o.g. We identify feedback arcs as those that head to a381

feedback link which is a unique arc in every CoD except the one induced by BKn
. For this382

case (i.e. CoD(1)), we designate {1, n− 1} → {0, 1} as the feedback arc. J383

Next, we observe the properties required by Definition 5.384

I Lemma 15. The scheme BPKn
(Theorem 13) is well-structured.385

Proof. We observe the conditions in Definition 5 as follows. The set of feedback links in386

Lemma 14 form a single CoD. Moreover, for every v ∈ V [Kn], v 6= 1, we have BKn
(v) = {1, v}387

and BKn(1) = {1, 0}, which means every CoD has some link in L∗BPKn
as the endpoint of388

some arcs. Therefore the procedure 5.2 can break all CoDs. Definition 5.3 can be observed389

in the proof of Theorem 13. J390

Next, we formally define the generalized hypercube (GHC) as a special product graph.391

Given ri > 0, i ∈ [k], nodes in (rk, . . . , r1)-cube are represented as k-tuples (ak, . . . , a1),∀i ∈392

[k] : 0 ≤ ai < ri (Figure 3). Therefore there are
∏

i∈[k] ri nodes in a k-GHC. Every two nodes393

(ak, . . . , a1) and (bk, . . . , b1) that differ only at their ith digit, say ai and bi, are connected by394

an i-dim link. The degree of each node is ∆ =
∑

i∈[k](ri − 1) and the graph is ∆-connected.395

Observe that i-dim links form cliques of ri nodes. More precisely, there are
∏

j 6=d rj instances396

of Krd
for every 1 ≤ d ≤ k. Thus, Algorithm 2 integrates individual complete graph’s397

schemes into one scheme BPGHC . See Figure 3 for an example.398

I Corollary 16. The backup path scheme BPGHC is (∆− 1)-resilient.399

1:12 Maximally Resilient Replacement Paths for a Family of Product Graphs

0

0̀

1
` 1

2

n
` n+1

. . .

Figure 4 Solid lines are links of the cycle graph Cn+1. Dotted lines
perpendicular to the cycle represent incident links that belong to a
base graph in another dimension. Dashed lines follow backup paths in
BPG where G is the Cartesian product of Cn+1 and some other base
graphs. The walk constructed in Lemma 6 is 0, 1, 2, . . . , n− 1, n, n−
1, n − 2, . . . , 2, 1, 0. By Lemma 17, in order to break all CoDs, the
backup path of `0 (dashed green) detours every other link in Cn+1

using the next dimension base graph. The backup path of `1 (dashed
blue) takes `0, but detours every other link. Similarly, `2 (not shown
here) takes `0, `1 on its backup path and detours `3 to `n+1. This goes
on until `n+1 which uses only links on the Cn+1.

Proof. By Lemma 15, the scheme from Theorem 13 is well-structured. Due to the fact that400

a GHC is the Cartesian product of complete graphs, we can apply Theorem 12 which directly401

implies the claim. J402

Observe that ∆ failures can disconnect generalized hypercubes, i.e., (∆− 1)-resiliency is403

the best we can hope for.404

4.2 Torus and Grid405

Let B := {Cn1 , . . . , Cnk
} be a given set of base graphs where each Cnd

, d ∈ [k] is a cycle on nd406

nodes. A k-dimensional torus T is the Cartesian Product of k cycles. That is, T =
∏

d∈[k] Cnd
.407

Consider a cycle Cn ∈ B and its links `0, `1, . . . , `|n|−1 as they appear on the cycle. Any408

cycle is 1-resilient since simply every link includes every other link on its backup path:409

∀` ∈ E[Cn] : BPCn
(`) = E[Cn] \ {`}. Clearly, BPCn

induces
(

n
2
)
CoDs, each on two arcs.410

The set B = E[Cn] \ {`0} includes a link from every CoD, therefore it is a (minimal) set of411

feedback links. We choose the set of feedback arcs to be F := {(`i, `j) | 0 ≤ i < j ≤ |n| − 1}.412

Observe that it includes one of the two links in every min-CoD.413

I Lemma 17. The scheme BPCn
is well-structured.414

Proof. Every link `j ∈ E[Cn] has a non-feedback arc to every link `i ∈ E[Cn], i < j415

(i.e. (`j , `i) 6∈ F). Any CoD includes at least one arc (`j′ , `i′) where j′ > i′. Hence it includes416

at least one non-feedback arc, which satisfies Definition 5 trivially. J417

Now that we know BPCn is well-structured, we construct BPT using Algorithm 2 and418

apply Theorem 12 directly. (See Figure 4 and Figure 5 for an illustration, in the appendix)419

I Corollary 18. The backup path scheme BPT is (2k − 1)-resilient on the k-dimensional420

torus T .421

As a k-dimensional torus can be disconnected by 2k failures, our scheme is maximally resilient.422

Next, we address k-dimensional grids via a reduction to torus. By the construction423

of BPT , only the link `0 ∈ Cn has a feedback arc to every other link in Cn. Let `d
0 ∈424

Cnd
be the link that corresponds to `0 in the base graph Cnd

, for every d ∈ [k]. Let425

B′ = {Pn1 , . . . , Pnk
} be the set of paths where each Pnd

is obtained by removing `d
0 from426

Cnd
∈ B (i.e. Pnd

= Cnd
\ `d

0). We construct a scheme for the grid M =
∏

d∈[k] Pnd
as427

follows. Consider the scheme BPT from Corollary 18. For every d ∈ [k] and every backup428

path that uses (an instance of) `d
0 ∈ Cnd

, we replace `d
0 with its backup path. Formally,429

∀d ∈ [k], ` ∈ E[T], 6= `d
0 : BPM(`) = (BPT (`) \ `d

0) ∪ BPT (`d
0). Since every ` ∈ E[T], 6= `d

0430

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:13

includes `d
0 on its backup path, (after short-cutting wherever applies) we have a backup path431

BPM(`) for every ` ∈ E[M]. Each dependency to or from `d
0, d ∈ [k] is now replaced by a432

dependency to a link on BPT (`d
0). Hence, we have replaced PoDs of two arcs with one arc,433

which in turn reduces the length of some min-CoDs by one. Hence, the (2k − 1)-resilient434

scheme is reduced to a (2k − 1 − k) = (k − 1)-resilient scheme BPM. As a k-dimensional435

grid can be disconnected by k failures, we obtain a maximally resilient scheme:436

I Theorem 19. The backup path scheme BPM is (k − 1)-resilient on the k-dimensional437

gridM.438

5 Related Work439

Motivation. Resilient routing is a common feature of most modern communications440

networks, and the topic has already received much interest in the literature. However, most441

prior research on static fast rerouting aims at restoring connectivity to the final destination,442

without considering waypoint properties as in our work. Such waypoint preservation is443

motivated by the advent of (virtualized [10]) middleboxes [4], respectively local protection444

schemes in Multiprotocol Label Switching (MPLS) terminology [25], and by the recent445

emergence of Segment Routing (SR), where routing is based off label stacks—more precisely446

by the label on top of the stack [23], which is treated as the next routing destination.447

Path restoration. Only little is known today about static fast rerouting under multiple448

failures, while preserving waypoints. In TI-MFA [15], it has been shown that existing solutions449

for SR fast failover, based on TI-LFA [17], do not work in the presence of two or more failures.450

However, TI-MFA [15] and non-SR predecessors [20] rely on failure-carrying packets, which451

is undesirable as discussed before and we overcome in the current paper.452

For the case of two failures, heuristics [7] exist, but they do not provide any formal453

protection guarantees, except for torus graphs [22]. Beyond a single failure [17] in general454

and two failures on the torus [22], we are not aware of any approaches that work in the by455

us considered model, except for a recent work on standard binary hypercubes [16]. However,456

it is not clear how to extend [16] to e.g. generalized hypercubes, and the approach followed457

in this paper presents a more generic scheme for the Cartesian product of any set of base458

graphs, as long as well-structured base graph schemes are provided.459

Connectivity restoration without waypoints. Static fast failover mechanisms without460

waypoints are investigated by Feigenbaum et al. [11], Chiesa et al. [5,6] leveraging arc-disjoint461

network decompositions, also by Elhourani et al. [8], Stephens et al. [27, 28], and Schmid462

et al. [3, 12–14, 24]. Even though they provide Ω(k)-resilience in k-connected graphs, this463

guarantee pertains only to reaching the destination, and does not transfer to link protection.464

We note that there is furthermore a relatively large set of works that relies on recomputing465

the routing structure after failures, e.g., [2, 9, 19,21,26,29,30]. However, such mechanisms do466

not provide protection during convergence and are hence orthogonal to our model.467

6 Conclusion and Future Work468

This paper studied the design of algorithms for local fast failover in the setting that requires469

guaranteed (policy and function preserving) visits to every waypoint along the original470

path, under multiple link failures. Our main result is a maximally resilient backup path471

scheme for the Cartesian product of any set of base graphs, as long as for each base graph472

a well-structured scheme is provisioned. We showcased applications of this result using473

1:14 Maximally Resilient Replacement Paths for a Family of Product Graphs

complete graphs, cycles, and paths by providing a well-structured scheme for each base474

graph separately. This allowed us to devise algorithms for important network topologies,475

such as generalized hypercubes and tori. In general, the result applies to the product of any476

combination of these base graphs as well.477

We see our work as a first step and believe that it opens several promising directions478

for future research. From a dependability perspective, the main open question is whether479

k-connectivity is always sufficient for (k − 1)-resiliency w.r.t. backup paths. It might be480

insightful to understand the logic behind schemes formulated by Definition 5.481

References482

1 Saeed Akhoondian Amiri et al. Charting the algorithmic complexity of waypoint routing.483

CCR, 48(1):42–48, 2018.484

2 Alia K Atlas and Alex Zinin. Basic specification for ip fast-reroute: loop-free alternates. IETF485

RFC 5286, 2008.486

3 Michael Borokhovich and Stefan Schmid. How (not) to shoot in your foot with sdn local fast487

failover: A load-connectivity tradeoff. In OPODIS, 2013.488

4 B. Carpenter and S. Brim. Middleboxes: Taxonomy and issues. RFC 3234, RFC Editor,489

February 2002. http://www.rfc-editor.org/rfc/rfc3234.txt.490

5 Marco Chiesa et al. The quest for resilient (static) forwarding tables. In Proc. IEEE INFOCOM,491

2016.492

6 Marco Chiesa et al. On the resiliency of static forwarding tables. IEEE/ACM Trans. Netw.,493

25(2):1133–1146, 2017.494

7 Hongsik Choi, Suresh Subramaniam, and Hyeong-Ah Choi. On double-link failure recovery in495

WDM optical networks. In Proc. IEEE INFOCOM, 2002.496

8 Theodore Elhourani, Abishek Gopalan, and Srinivasan Ramasubramanian. Ip fast rerouting497

for multi-link failures. IEEE/ACM Trans. Netw, 24(5):3014–3025, 2016.498

9 Gábor Enyedi, Gábor Rétvári, and Tibor Cinkler. A novel loop-free ip fast reroute algorithm.499

In EUNICE, pages 111–119. Springer, 2007.500

10 ETSI. Network functions virtualisation. In White Paper, 2013.501

11 Joan Feigenbaum et al. Ba: On the resilience of routing tables. In Proc. ACM PODC, 2012.502

12 Klaus-Tycho Foerster et al. Local fast failover routing with low stretch. ACM SIGCOMM503

CCR, 1:35–41, January 2018.504

13 Klaus-Tycho Foerster et al. Bonsai: Efficient fast failover routing using small arborescences.505

In Proc. IEEE/IFIP DSN, 2019.506

14 Klaus-Tycho Foerster et al. Casa: Congestion and stretch aware static fast rerouting. In Proc.507

IEEE INFOCOM, 2019.508

15 Klaus-Tycho Foerster, Mahmoud Parham, Marco Chiesa, and Stefan Schmid. TI-MFA: keep509

calm and reroute segments fast. In Global Internet Symposium (GI), 2018.510

16 Klaus-Tycho Foerster, Mahmoud Parham, Stefan Schmid, and Tao Wen. Local fast segment511

rerouting on hypercubes. In Proc. OPODIS, 2018.512

17 Pierre François, Clarence Filsfils, Ahmed Bashandy, and Bruno Decraene. Topology Independ-513

ent Fast Reroute using Segment Routing. Internet-Draft draft-francois-segment-routing-ti-514

lfa-00, Internet Engineering Task Force, November 2013. URL: https://datatracker.ietf.515

org/doc/html/draft-francois-segment-routing-ti-lfa-00.516

18 Pierre François et al. Achieving sub-second IGP convergence in large IP networks. CCR,517

35(3):35–44, 2005.518

19 Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding network failures in519

data centers: measurement, analysis, and implications. In ACM SIGCOMM CCR, volume 41,520

pages 350–361, 2011.521

http://www.rfc-editor.org/rfc/rfc3234.txt
https://datatracker.ietf.org/doc/html/draft-francois-segment-routing-ti-lfa-00
https://datatracker.ietf.org/doc/html/draft-francois-segment-routing-ti-lfa-00
https://datatracker.ietf.org/doc/html/draft-francois-segment-routing-ti-lfa-00

M. Parham and K.T. Foerster and P. Kosic and S. Schmid 1:15

00

1

2

n− 2

n− 1

1

. . .

m− 1`0

`m

..
.

00

1

2

n− 2

n− 1

1 2

. . .

m− 1`0 `1

`m

..
.

Figure 5 Each solid line is a link of the 2-dimensional m × n torus T , which is the Cartesian
product of Cm and Cn. Horizontal cycles are Cm-instances and vertical cycles are Cn-instances.
Dashed lines depict example backup paths in BPT . In the left picture, backup path of four instances
of `0 ∈ Cm are shown. Notice how all instances of `0 use each other sequentially on their backup
paths. The backup path of `0 in the nth instance (in green, thick) has to detour all the other `0’s in
order to use the `0-instance at row 0. This is imposed by the walk on Cn constructed in Lemma 6
(Figure 4). Also notice backup paths of `1’s on the right picture. The only difference backup paths
of `′0s is that they use the `0 in the same instance before proceeding to the next Cm-instance. In a
similar fashion, each `2-instance uses `0, `1 in the same Cm-instance and so on, up to `m which uses
only the links on the same Cm-instance.

20 Karthik Lakshminarayanan, Matthew Caesar, Murali Rangan, Tom Anderson, Scott Shenker,522

and Ion Stoica. Achieving convergence-free routing using failure-carrying packets. In Proc.523

ACM SIGCOMM, pages 241–252. ACM, 2007.524

21 Srihari Nelakuditi, Sanghwan Lee, Yinzhe Yu, Zhi-Li Zhang, and Chen-Nee Chuah. Fast local525

rerouting for handling transient link failures. IEEE/ACM Trans. Netw, 15(2):359–372, 2007.526

22 Eunseuk Oh, Hongsik Choi, and Jong-Seok Kim. Double-link failure recovery in WDM optical527

torus networks. In Proc. ICOIN, 2004.528

23 P. Pan, G. Swallow, and A. Atlas. Fast reroute extensions to rsvp-te for lsp tunnels. RFC529

4090, RFC Editor, May 2005.530

24 Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan. Load-optimal local fast rerouting531

for dependable networks. In Proc. IEEE/IFIP DSN, 2017.532

25 Stefan Schmid and Jiri Srba. Polynomial-time what-if analysis for prefix-manipulating mpls533

networks. In Proc. IEEE INFOCOM, 2018.534

26 Aman Shaikh, Chris Isett, Albert Greenberg, Matthew Roughan, and Joel Gottlieb. A case535

study of ospf behavior in a large enterprise network. In Proc. ACM SIGCOMM Workshop on536

Internet Measurment, 2002.537

27 Brent Stephens, Alan L. Cox, and Scott Rixner. Plinko: Building provably resilient forwarding538

tables. In Proc. 12th ACM HotNets, 2013.539

28 Brent Stephens, Alan L Cox, and Scott Rixner. Scalable multi-failure fast failover via540

forwarding table compression. SOSR. ACM, 2016.541

29 Junling Wang and Srihari Nelakuditi. Ip fast reroute with failure inferencing. In Proc.542

SIGCOMM INM, pages 268–273, 2007.543

30 Baobao Zhang, Jianping Wu, and Jun Bi. Rpfp: Ip fast reroute with providing complete544

protection and without using tunnels. In Proc. IWQoS, 2013.545

1:16 Maximally Resilient Replacement Paths for a Family of Product Graphs

Proof of Lemma 11. By assumption, P begins with an arc tailed at `first ∈ gd
i . Let546

(`first, `′) be the feedback arc induced by BPgd
i
that is picked at Line 2.9 and then is handled547

by detouring a feedback link `′ ∈ L∗
gd

i

via gd
i+1 at Lines 2.9 to 2.14. Let A ⊆ P be the set548

of arcs in P that traverse gd in the uphill direction. Note the dth digit changes only along549

arcs in A and remains unchanged along arcs P \A. We construct a PoD P̃ over a subset of550

feedback links in L∗gd , as follows. The first arc in P̃ is (`first, `′). With each arc in A, the dth551

digit increases by 1 from its tail to its head. Recall that the value of this digit is a node label552

in gd, and an increment by 1 corresponds to traversing a feedback link of gd. Consider arcs553

in A sorted in the order they appear in P . Let `∗ ∈ L∗BP
gd

be the feedback link traversed by554

the first arc in A (possibly, `∗ = `′). Let P ′ := P \ {(`first , `1), (`s, `last}. By assumption, P ′555

does not cross gd and therefore it begins at `∗ and ends at `∗∗, the feedback link traversed556

by the last arc in A. we consider two cases.557

Case i) `last is a feedback link, i.e., `last ∈ L∗gd , then we apply Lemma 10 to P ′ and we558

obtain a PoD P ′′, |P ′′| ≤ |P ′|, over the feedback links traversed by A. (1) Due to Line 2.12 and559

Lemma 6.2, arcs in A traverse feedback links of BPgd in the same order they appear in C∗BP
gd
.560

(2) The dth digit does not change, from the head of the last arc in A until the arc headed561

at `s. Combining (1) and (2) implies that `last succeeds `∗∗ in this ordering and therefore562

(`∗∗, `last) ∈ C∗BP
gd

is an arc induced by BPgd . Thus, P̃ := {(`first , `∗)} ∪ P ′′ ∪ {(`∗∗, `last)}563

is a PoD (induced by BPgd) and |P | = |P ′|+ 2 ≥ |P ′′|+ 2 = |P̃ |, which satisfies the lemma.564

Case ii) `last is not a feedback link, i.e., `last 6∈ L∗gd . Let wt the value of the dth digit at `s.565

The walk WBP
gd

from Lemma 6 visits the node wt ∈ gd immediately before traversing the566

incident feedback link `∗∗ := Ł∗gd(wt) (Line 6.3d). The pair of paths computed at Line 2.12567

traverse nodes of gd (i.e., values of the dth digits along the paths) in the same order as they568

are walked on by WBP
gd
. This means that BPG(`s) traverses (some two instances of) `∗∗569

before any other link in gd, in particular, before `last . Therefore `∗∗ ∈ BPG(`s) and (`s, `∗∗)570

is an arc induced by BPG . Then, P ′ := P \ {(`s, `last)} ∪ {(`s, `∗∗)} is a PoD as well. By571

Lemma 6.3, the walk WBP
gd
, after traversing `∗∗, walks on BPgd(`∗∗) until the next feedback572

link is reached. Hence, `last is on this backup path and (`∗∗, `last) is an arc induced by BPgd .573

is a PoD induced by gd. Now, similarly to the case (i), we remove the first and the last574

arcs in P ′ and obtain a PoD P ′′ that does not cross gd. By applying Lemma 10 to P ′′, we575

obtain a PoD P ∗ induced by gd s.t. |P ∗| ≤ |P ′′|. Thus, P̃ := {(`first , `∗)} ∪P ∗ ∪ {(`∗∗, `last)}576

is a PoD induced by gd and |P | = |P ′| = |P ′′| + 2 ≥ |P ∗| + 2 = |P̃ |, which concludes the577

lemma. J578

	Introduction
	Contributions
	Organization

	Preliminaries
	Resiliency Under Cartesian Product
	The Construction
	Analysis of Resiliency

	Generalized Hypercubes and Tori
	Complete Graphs and Generalized Hypercubes
	Torus and Grid

	Related Work
	Conclusion and Future Work

