Fast Re-Routing in Networks: On the Complexity
of Perfect Resilience

Matthias Bentert @0

University of Bergen, Bergen, Norway
TU Berlin, Berlin, Germany

Esra Ceylan & ®
TU Berlin, Berlin, Germany
Institute of Science and Technology Austria, Klosterneuburg, Austria

Valentin Hitbner 20

Institute of Science and Technology Austria, Klosterneuburg, Austria

Stefan Schmid &0
TU Berlin, Berlin, Germany

Jiri Srba =20
Aalborg University, Aalborg, Denmark

—— Abstract

To achieve fast recovery from link failures, most modern communication networks feature fully
decentralized fast re-routing mechanisms. These re-routing mechanisms rely on pre-installed static
re-routing rules at the nodes (the routers), which depend only on local failure information, namely
on the failed links incident to the node. Ideally, a network is perfectly resilient: the re-routing rules
ensure that packets are always successfully routed to their destinations as long as the source and the
destination are still physically connected in the underlying network after the failures. Unfortunately,
there are examples where achieving perfect resilience is not possible. Surprisingly, only very little is
known about the algorithmic aspect of when and how perfect resilience can be achieved.

We investigate the computational complexity of analyzing such local fast re-routing mechanisms.
Our main result is a negative one: we show that even checking whether a given set of static re-routing
rules ensures perfect resilience is coNP-complete. Additionally, we investigate other fundamental
variations of the problem. In particular, we show that our coNP-completeness proof also applies to
scenarios where the re-routing rules have specific patterns (known as skipping in the literature).

On the positive side, for scenarios where nodes do not have information about the link from

which a packet arrived (the so-called in-port), we present a linear-time algorithm to realize perfect
resilience whenever possible (which we show can also be determined in linear time).

2012 ACM Subject Classification Networks — Network protocol design; Networks — Network
properties; Theory of computation — Problems, reductions and completeness

Keywords and phrases routing in computer networks, fast re-route, perfect resilience, complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2025.31

Funding Matthias Bentert: ERC Horizon 2020 research and innovation programme (grant agreement
No. 819416) and ERC Consolidator grant AdjustNet (agreement No. 864228).

Esra Ceylan: German Research Foundation (DFG) project ReNO, Schwerpunktprogramm: Re-
silienz in Vernetzten Welten — Beherrschen von Fehlern, Uberlast, Angriffen und dem Unbekannten
(SPP 2378).

Stefan Schmid: German Research Foundation (DFG) project ReNO, Schwerpunktprogramm: Re-
silienz in Vernetzten Welten — Beherrschen von Fehlern, Uberlast, Angriffen und dem Unbekannten
(SPP 2378).

© Matthias Bentert, Esra Ceylan, Valentin Hiibner, Stefan Schmid, and Jifi Srba;
licensed under Creative Commons License CC-BY 4.0
29th International Conference on Principles of Distributed Systems (OPODIS 2025).
Editors: Andrei Arusoaie, Emanuel Onica, Michael Spear, and Sara Tucci-Piergiovanni; Article No. 31;
pp. 31:1-31:16
Leibniz International Proceedings in Informatics
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:bentert@tu-berlin.de
mailto:e.ceylan.96@hotmail.com
mailto:valentin.huebner@gmail.com
mailto:schmiste@gmail.com
mailto:srba@cs.aau.dk
https://doi.org/10.4230/LIPIcs.OPODIS.2025.31
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2

Complexity of Perfect Resilience

1 Introduction

1.1 Context and Motivation

Communication networks form a critical backbone of many distributed systems, whether
they are running in enterprises, in data centers, or are geographically distributed across the
Internet. In order to meet their stringent availability requirements, modern networks feature
local fast re-routing mechanisms: each router (henceforth called node) has conditional packet
forwarding rules which depend on the status of its links. These rules are configured ahead of
time, without knowledge of possible link failures, and allow routers to forward packets along
alternative links in case of failures, in a fully decentralized manner.

However, configuring such conditional forwarding rules to provide a high resilience, even
under multiple link failures, is algorithmically challenging, as the rules can only depend on
local information: a node is not aware of possible additional link failures downstream, in
other parts of the network. Hence, if no care is taken, the local re-routing rules of different
nodes can easily result in forwarding loops.

Ideally, a network and its local fast re-routing mechanism provide perfect resilience: the
local re-routing rules ensure that as long as the source is still connected to the destination in
the underlying network after the failures, then the packet is also successfully routed to the
destination on the network layer. Already at ACM PODC 2012, Feigenbaum et al. [1] gave
an example which shows that certain networks inherently cannot be configured to provide
perfect resilience.

On the positive side, it is known that under a single link failure, it is always possible
to successfully route packets to their destinations, as long as the underlying network is
connected [1, 2]. But also for multiple link failures, it is sometimes possible to achieve perfect
resilience, for example on networks whose topologies are based on graph families closed under
link subdivision, such as outerplanar graphs [1, 2].

It is also known that achievable resilience depends on the specific local information that
the forwarding rules can rely on. Although it is typically assumed that the forwarding rules
can depend on the status of the incident links, the packet’s destination, and the link incident
to the node from which the packet arrives (the so-called in-port), the achievable resilience
can increase if the rules can additionally also observe the packet’s source. In particular, Dai
et al. [3] showed that it is always possible to tolerate two link failures if the packet’s source
can be taken into account.

However, today, we generally still do not have a good understanding of the scenarios in
which perfect resilience can be achieved.

This paper initiates the study of the computational complexity of configuring local fast
re-routing algorithms. In particular, we investigate the question whether the resilience of a
network can be verified efficiently:

Does a given network and its local fast re-route mechanism provide perfect resilience?

Furthermore, we are interested in scenarios where networks can be efliciently configured.

In which scenarios can perfectly resilience networks be configured efficiently?

Our main contribution in this paper is the proof that the first problem is coNP-complete.
On the positive side, we also show that in a subclass of practically relevant scenarios, the
second problem can be solved efficiently.
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1.2 Contributions

In summary, we make the following contributions. We show that in the standard scenario
where nodes know the in-port (the link on which a packet arrived), verifying whether a given
network and its configuration provide perfect resilience is coNP-complete. This is even the
case when the routing functions are restricted to the simple case of priority lists (“skipping”).
The hardness result also holds when we restrict ourselves to the class of planar graphs.

On the positive side, for scenarios where nodes forward packets independently of the link
they received it on (i.e., the routing is “in-port oblivious”), verifying whether a given routing
is perfectly resilient, as well as deciding whether a given graph permits perfectly resilient
routing, are both decidable in linear time. The in-port oblivious routings are interesting as
they allow us to save memory for storing the routing tables.

We additionally contribute several smaller insights into the graph classes in which perfect
resilience is possible. For example, we provide the first example of a grid that does not
contain K5 or K33 as a minor, and does not permit a perfectly resilient routing. It was
previously known that K5 and K3 3 are forbidden subgraphs for being perfectly resilient,
and planar counterexamples are also known [2].

1.3 Additional Related Work

Local fast re-routing mechanisms have been studied intensively in the literature already, and
we refer the reader to the recent survey by Chiesa et al. [4] for a detailed overview. There
also exist industrial standards for resilient routing for most modern network protocols, from
IP networks [5] to MPLS networks [6] to recent segment routing [7] and software-defined
networks [8]. However, these standards typically focus on single link failures and do not
provide perfect resiliency guarantees.

There is a large body of applied literature in the networking community on the topic [9,
10, 11, 12, 13, 14], typically focusing on heuristics. In contrast, in our paper, we focus on
algorithms which provide formal resilience guarantees.

There are several interesting theoretical results for failure scenarios in which the number
f of link failures is bounded. In this context, a local fast rerouting scheme which tolerates f
link failures is called f-resilient. Chiesa et al. [15] showed that 2-resilient routing is always
possible if the graph is 3-link-connected, and Dai et al. [16] showed that 2-resilience is always
possible if rerouting rules can also depend on the source of a packet in addition to the target.
In their APOCS 2021 paper, Foerster et al. [17] proved that network topologies that form
outerplanar graphs are always perfectly resilient and allow for simple and efficient rerouting
algorithms based on skipping (each node stores an ordered priority list of alternative links to
try per in-port and failed links are then simply skipped). While skipping leads to compact
routing tables, it is an open question whether rerouting algorithms which are restricted to
skipping come at a price of reduced resilience [18, 17].

Perfectly resilient network configurations, when they exist, can also be generated auto-
matically with recent tools such as SyPer [19] and SyRep [20], using binary decision diagrams
with quantification. This also implies that the complexity of the problem of generating such
rules is in PSPACE.

In addition to perfect resilience, researchers also study a weaker notion of resilience in the
literature called ideal resilience [21]. Here it is assumed that initially (before the failures),
the network is k-edge-connected, that is, the network cannot be partitioned into isolated
components with up to & — 1 link failures. In such highly connected cases, the routing is
called ideal if it can tolerate up to k — 1 link failures. Note that since & — 1 link failures
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never disconnect a k-edge-connected graph, ideal resilience indeed describes a weaker notion
of resilience than perfect resilience, and that perfect resilience implies ideal resilience. It
is still an open research question whether ideal resilience can always be achieved, but at
least it has been shown to be always achievable for all £ < 5 [18]. It is also known that
at least |5 — 1] failures can be tolerated for general k [15]. It has further been proved
that k — 1 failures can be tolerated for special graphs including cliques, complete bipartite
graphs, hypercubes, or Clos networks, as well as in scenarios where the rerouting rules can
additionally also depend on the source [18]. The corresponding algorithms are based on
arborescence decompositions of the underlying graph, where all arborescences are rooted at
the target. If a packet traveling along an arborescence encounters a failed link, it is rerouted
to the next arborescence in a circular order (known as circular arborescence routing). This
technique builds upon Edmond’s classic result on edge-disjoint branchings and arborescent
decompositions [22], and was used in many papers [23].

Researchers have also already explored various variations for local fast rerouting models.
In particular, while we in this paper focus on deterministic algorithms, there are also results
on randomized algorithms: models where routers can generate random numbers or hash
packet headers. Chiesa et al. in their ICALP 20216 paper considered k-connected graphs
and showed that a simple randomized algorithm not only achieves a high robustness but also
results in short paths (in the number of hops). Bankhamer et al. in their DISC 2021 paper
considered datacenter networks (based on Clos topologies) and showed that as long as the
number of failures at each node does not exceed a certain bound, their algorithm achieves an
asymptotically minimal congestion up to polyloglog factors along failover paths.

Another model which has achieved attention in the literature allows routers to store and
modify (and hence communicate) information in the packet headers. This has been shown
to improve resilience [24, 25, 26, 27, 28, 18], but such header manipulation is not always
feasible in practice. There is also classic work on models where routers themselves can store
dynamic state, for example in the context of link reversal algorithms [29, 30], which can
provide a high resilience but which is also less practical [31, 17].

Further upfield, our work is related to distributed computing problems without communi-
cation (such as distributed scheduling for disconnected cooperation), as nodes need to decide
on the routing without communicating failures [32, 33].

1.4 Organization

The remainder of this paper is organized as follows. We introduce our model and notations
more formally in Section 2. In Section 3, we provide examples of graphs which do not support
perfectly resilient local routing. Our main contribution, the complexity results, appear in
Section 4. We conclude and provide open questions in Section 5.

2 Definitions

For technical convenience, we shall define networks as directed graphs while requiring bi-
directional edges. A directed graph is a pair G = (V, E) where V is a finite set of nodes
and F CV x V is a set of directed edges. Let src(e) = u and tgt(e) = v denote the source
and target nodes for an edge e = (u,v) € E, and let out(v) = {(v,w) | (v,w) € E} and
in(v) = {(u,v) | (u,v) € E} denote the outgoing and incoming edges to a node v € V. Let
local(v) = out(v) U in(v) be the set of edges that are local to the node v € V. We shall
assume that whenever (u,v) € E then also (v,u) € E. To simulate the injection of a packet
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into the network, we moreover require the existence of the self-loop edge (v,v) € E for each
node v € V. Since these loop-back edges always exist, we will not draw them in figures.

A path in G is a sequence of edges ejes ... e, € E* such that tgt(e;) = sre(e;y1) for all i,
1 <14 < n. Two nodes u,v € V are connected if there is a path ejes...e, from u to v such
that src(er) = u and tgt(e,) = v. In the rest of this paper, we shall consider only connected
graphs, meaning that there is a path between any two nodes.

» Definition 1 (Failure Scenario). A failure scenario F' C E is a subset of edges such that
Fn{(v,v) |veV} =0 and if (u,v) € F then also (v,u) € F.

This means that we assume that links are always failing in both directions and by the size of
F we shall mean the number of failed bi-directional links. We also assume that the self-loop
edges that are used to model the arrival of packets never fail. Edges in F are referred to as
failed edges and in E \ F as active edges. Due to our assumption, every node has at least
one active edge (self-loop) in any failure scenario.

» Definition 2 (Routing). A routing p is a collection of functions pr : E — E for every failure
scenario F such that pg for every edge e € E returns an active next-hop edge €' = pp(e)
satisfying €' € F and tgt(e) = src(e’).

From now on, we assume a fixed target node ¢ € V such that all packets that arrive at
any node in the graph should be forwarded to the node ¢. This corresponds to the (weakest
possible) assumption of only destination matching when analyzing packet headers.

» Definition 3 (Perfect resilience). Let G = (V, E) be a directed graph and let t € V be a
given target node. A routing p is perfectly resilient if for every failure scenario F and every
node v € V that is connected to t via some path in (E \ F)*, there is a nonnegative number
n > 0 such that tgt(ph((v,v))) =t.

In other words, a routing p is perfectly resilient if for any failure scenario F' and any node v
that is connected to t under F', a packet injected via the self-loop to the node v is eventually
delivered to the target t.

Clearly, if the routing p has complete knowledge of the global failure scenario, it is always
possible to construct a perfectly resilient routing. As we are interested in routings that allow
for fast re-routing based only on the information about locally failing links, we define the
notion of a local routing function.

» Definition 4 (Local Routing). A routing p is local if pr(e) = pp/(e) for every e € E and
any two failure scenarios F and F' such that F N local(tgt(e)) = F' N local(tgt(e)).

Hence, the decision of the next-hop can only depend on the knowledge of active and failing
links directly connected to a given node. We shall also call such a general local routing
function combinatorial because the size of a local routing table for a node v requires 2!%cai(v)|
routing entries and hence grows exponentially with the degree of v (size of local(v)). Storing
such routings is impractical due to high memory requirements. In order to save memory in

routing tables, several works consider the more practical notion of skipping routing [2, 34, 35].

» Definition 5 (Skipping Routing). A skipping priority list is a function m : E — E* such
that for every e € E the function w(e) = ejes...e, returns a permutation of all edges
in out(tgt(e)). A given skipping priority list T determines a skipping routing p such that
pr(e) = e; where w(e) = ejey...e, and i is the lowest index such that e; € E N F.
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node | in-port riority list
1% p y
node | in-port priority list u v v, V3, V4, V1
o U1
U1 V1 V2 , U3, V4, V1 U1 V2 V3, V4, V2, V1
U1 V2 VU3, V4, V2, U1 U1 V3 V4 , V2, U3, V1
V1 V3 V4, V2, V3, V1 V1 V4 V2, V3, V4, U1
Y1 U4 Y2, U3, U4, U1 V2 vy Vg, v, V2
v v Vs , V1, Vs
e U2 ® U3 ® Ui 2 ! &l v v2 v2 v2 5, V1, v2
V2 V2 Vs, V1, V2 v3 v1 Vg, v1, U3
V3 V1 Vs, V1, U3 VU3 V3 % V1, U3
U3 v3 U5, U1, U3 Vg V1 V5 , V1, V4
V4 v Us; U1, U4 (2 V4 Vs, U1, V4
o Us V4 V4 Us, U1, V4 .
() A routing path for the
(a) Example graph (b) Perfectly resilient skipping rout- given failure scenario F =
with the target ing; a routing path with no failing {(v2,vs), (vs,v2), (v3,vs), (vs,v3)} is
node vs; all edges edges when a packet is injected to v1 (v1,v1)(v1,v2)(v2,v1)(v1,v3)(v3, 1)
are bi-directional is (v1,v1)(v1,v2)(v2,v5). (v1,v4)(va, v5).

Figure 1 Example of a graph with target vs and a perfectly resilient skipping routing.

» Observation 6. Clearly, any skipping routing is also local (combinatorial) because the
forwarding decision is based only on the status of edges outgoing from a given node. Moreover,
to represent a skipping priority list for a node v on a given incoming edge requires us to store
only |local(v)| outgoing edges.

We refer to Figure 1 for an example of a graph with a perfectly resilient skipping routing.
We depict the priority list function 7 : E — E* as a routing table where the first column
is the node that receives a packet on the given in-port (in the second column) and returns
the respective priority list in the third column. For example, the first row in the routing
table denotes the routing entry m((vi,v1)) = (v1,v2)(v1,v3)(v1,v4)(v1,v1). The example
shows routing paths for a packet injected at the node v; in the scenario where no edges fail
and when the edges between vy and vs as well as between v3 and vs fail. As the routing is
perfectly resilient, in both scenarios the packet is delivered to the target node vs.

A more restricted type of routing is the one that does not consider the in-port information
for the routing decision. This is formalized in the following definition.

» Definition 7 (In-port Oblivious Routing). A routing p is in-port oblivious if pr(e) = pr(e’)
for any failure scenario F and any two edges e, e’ € E such that tgt(e) = tgt(e’).

Hence, when using in-port oblivious routing, a node v makes always the same next-hop,
regardless of which edge (port) the packet arrives to v. In-port oblivious routing is more
memory efficient as it requires fewer entries in the routing tables.

Finally, we shall introduce two decision problems related to perfect resilience. In the
verification problem, we are given a directed graph G = (V, E), a target node ¢t € V together
with a local routing p and we have to decide whether p is perfectly resilient. In the synthesis
problem, we ask whether there exists a local (or skipping) routing that is perfectly resilient
for a given graph and a target node. As we shall see in the next section, there are graphs
that do not have any perfectly resilient local routing.

3 Examples of Graphs with no Perfectly Resilient Local Routing

Foerster et al. [36, 37] examined the resilience of different graphs and graph classes and
showed that all outerplanar graphs admit a perfectly resilient skipping routing. Conversely,
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their study demonstrated that certain non-planar graphs, such as K5 and K3 3 do not show
perfect resilience. Due to the minor stability result [36], proving that if a graph is perfectly
resilient so are all its minors, they conclude that all non-planar graphs are not perfectly
resilient. Furthermore, they observed that among planar graphs, there exist some that are
perfectly resilient and others that are not.

The different examples of non-perfectly resilient graphs published in the literature require
specialized proofs for each case. We shall now present a theorem that generalizes these proofs
into a single property that prevents the existence of perfectly resilient routings.

» Theorem 8. Let G = (V, E) be a directed graph and let t € V be a target node. If there
exist four different nodes s, u,v,w € V.~ {t} such that
u, v and w are neighbours of s, and
for any permutation of the nodes u, v and w
there is a path from u to v that does not contain any of the nodes s, w and t, and
from w we can reach the target node t without visiting any node on the path connecting
u to v
then the graph G has no local (and hence also no skipping) perfectly resilient routing.

Proof. We shall demonstrate that for any local routing on G, we can always construct a
failure scenario that causes a forwarding loop. Let p be an arbitrary local routing and we
shall construct such a failure scenario F for p. First of all, we add to F all edges connected to
s, except for the edges connecting s with u, v and w. We can assume w.l.o.g. that a packet
injected to s is as the first priority forwarded to the node w, i.e., pr((s,s)) = (s,u). This is
because we consider an arbitrary permutation of u, v and w in the premise of the theorem.

Next, we assume w.l.o.g. that pr((v,s)) = (s,u). In case that the node s never forwards
a packet received on any of the in-ports v and w to the node u, we can create a forwarding
loop by failing all edges connected to all nodes on the path from v to w, except for the edges
that are on the v-w path and those connecting v and w with s. A packet injected to the
node v will now necessarily arrive back to the node s but keep cycling, never reaching the
target node t even if the node u is connected to the target node. This is because p is a
local routing and the node s cannot see that additional edges were failed at other parts of
the graph. Hence, such a p cannot be perfectly resilient and we can w.l.o.g. assume that
pr((v,5)) = (s,u).

We summarize that necessarily pr((s, s)) = (s,u) and pr((v,s)) = (s,u) can be the only
alternative for a possible perfectly resilient local routing. However, we can now add to F' all
edges connected to all nodes on the u—v path, except for the edges that are on this path and
those that connect v and v to the node s. Now, by the assumption that p is a local routing,
a packet injected at the node s will keep cycling on the path (s, u)u—v(v, s) and never be
delivered to the node ¢ via the path available from s through the node w.

As we exhaustively analyzed all possible local routings p and showed that none of them
is perfectly resilient, we can conclude that the graph G has no perfectly resilient local
routing. <

» Remark 9. None of the graphs in Figure 2 (3 x 4 grid, K3 3, and K5 with one removed
edge) has a perfectly resilient routing for the depicted target node ¢. In each case, we can
choose the nodes s, u, v, and w as depicted and then apply Theorem 8 as any two nodes
from the set {u,v,w} are connected by a path that does not intersect with any of the nodes
on the path from the remaining node to the target t. The fact that K33 does not have any
perfectly resilient local routing was previously shown by a dedicated proof in [38].

31:7

OPODIS 2025



31:8

Complexity of Perfect Resilience

w w { t

Figure 2 Applications of Theorem 8 on 3 x 4 grid, K3 3 and K5 without the edge between s and ¢

4 Complexity Results

We shall start by stating an obvious upper-bound on the complexity of perfect resilience
verification and at the same time point out to an interesting fact that the synthesis problem is
decidable in polynomial time thanks to the well-know Robertson and Seymour [39] theorem.

» Theorem 10. Verification of PERFECT RESILIENCE (the question to decide whether a
given local routing function on a given graph is perfectly resilient) is in coNP. The problem
of PERFECT RESILIENCE synthesis (the question to decide whether for a given graph there
exists some perfectly resilient local routing function) is in P.

Proof. For the verification problem, we can guess a failure scenario and a source node that
is connected to the target but where the routing tables create a forwarding loop, which can
be for the given failure scenario checked in polynomial time. Hence, if there exists a failure
scenario creating a forwarding loop, the given instance of the verification problem is not
perfectly resilient, showing that the problem belongs to coNP.

The containment in P for the synthesis problem is a direct consequence of the minor-
stability property for this kind of graphs [38] and the seminal result of Robertson and
Seymour [39] showing that any such property can be characterized by a finite set of forbidden
minors—together with a polynomial time algorithm for checking whether a graph contains
a forbidden minor, we know that there must exist an algorithm with a polynomial running
time that decides perfect resilience for the case where all nodes can become possible target
nodes. Using rooted minors (the target ¢ is a root), it is easy to show that deciding whether
a given graph with a fixed given target node is perfectly resilient can be also done in
polynomial time [40, 41]. <

However, the line of arguments used in the proof of P containment of perfect resilience
does not provide a concrete algorithm with a polynomial running time, only points to its
existence. The problem of effectively (in polynomial time) designing perfectly resilient routing
tables, in case they exist, remains a major open problem.

Next, we shall study the complexity of in-port oblivious perfect resilience, which is an
interesting problem from the practical point of view as in-port oblivious routing tables can
be stored with reduced memory foot-print.

4.1 Routings with no In-port Matching

We shall first state a necessary and sufficient condition for a graph to allow for in-port
oblivious routings.

» Lemma 11. Let G = (V, E) be a connected graph. There exists a perfectly resilient in-port
oblivious local (or skipping) routing for any given target node if and only if all simple cycles
of G have length at most 3.
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v

Figure 3 Triangle

PRrOOF. "=": For the sake of contradiction, assume that there is an in-port oblivious perfectly
resilient local routing p for a given target node ¢ and that the graph G contains a simple
cycle of length 4 or more. The existence of this cycle implies that there are three different
nodes s,u,v € V ~\ {t} such that

(s,u) € E and (s,v) € E,
there is a path from u to ¢ which does not contain the node v and s, and similarly

there is a path from v to ¢t which does not contain the node u and s.

Now a packet injected to s in a failure scenario where all outgoing edges from s are failed,
except for (s,u) and (s,v), will have to be forwarded to either u or v. Let us w.l.o.g. assume
that it is forwarded to u. We extend the failure scenario by failing also all outgoing edges
from u, except for the edge between u and s. This means that the packet returns back to
s and because the routing is local and cannot see the failed edges at the node u, and we
are in-port oblivious, the node s has to forward the packet back to u. A forwarding loop is
hence created; however, the node s is still connected to the target ¢ via the node v. This is a
contradiction to the assumption that p is a perfectly resilient routing.

"<": Let us assume that the graph G contains only cycles of length at most 3. This

implies that from any node in G there is a unique shortest path to the given target node t.

We shall construct an in-port oblivious, perfectly resilient skipping (and hence also local)
routing p as follows. For every node s that is not on any simple cycle of length 3 in G, we
define p((*,s)) = (s,u) where wu is the first node on the unique shortest path from s to ¢,
and where * stands for any neighbour node of s. There is no point in sending the packet
along any other outgoing edge as it will have to necessarily return back to s and hence
create a forwarding loop. Let us now consider three nodes s, u,v € V' that are on a cycle of
length 3 as depicted in Figure 3. Let u be the unique node that has a path to the target ¢
without visiting s or v. We define p((*,u)) = (u,u’) where ' is the unique next-hop node
on the shortest path from w to t. As before, this is the only choice should p be perfectly
resilient and the edges following after (u,w’) in the priority list are irrelevant. Finally, we set
p((x,8)) = (s,u)(s,v) and p((*,v)) = (v,u)(v,s). By case analysis, we can observe that this
yields a perfectly resilient routing. |

Let us observe that the way we constructed the routing p (except for the unimportant
routing entries that cannot help us to reach a target) is the only possible and unique choice of
priorities should p remain perfectly resilient. If we instead, e.g., defined p((*, s)) = (s,v)(s, u)
then a failure scenario where the edge between v and u fails creates a forwarding loop for a
packet injected to the node s.

In Figure 4 we can see a graph which allows for a perfectly resilient skipping routing for

the target node ¢ constructed according to the algorithm in the proof of the previous lemma.

Only the highlighted unique priority list entries are important.
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node | in-port priority list

U3.' U1 * Vs , V2, V1

V2 * Vs , V1, V2

Uz. U5“ U4. U3 * Vs , U3
/ / V4 * V6 , Us , U4
Uig” Uty le Vs * Ve , V4 , V1, V2, U3,Us
Ve * t , V4, Us, Vs

Figure 4 A graph and a perfectly resilient in-port oblivious skipping routing for the target ¢

We can now conclude with the fact that both the verification and synthesis problems for
in-port oblivious routings are efficiently solvable.

» Theorem 12. Verification and synthesis problems for PERFECT RESILIENCE using in-port
oblivious local and skipping routings are decidable in linear time.

Proof. First, by using Lemma 11, we shall check for the existence of cycles of length 4 or
more in the connected component containing t. Such a check can be performed in linear time
using, e.g., a slightly modified BFS from ¢ where for each node v, we keep track of the parent
p(v) and for each link not part of the BFS tree, we check that the two endpoints have the
same parent and each vertex is only incident to one such edge. If this linear-time check fails,
we output that no perfectly resilient local routing exists. Otherwise, by Lemma 11 there is
an in-port oblivious skipping routing p and we have a positive instance for the synthesis
problem. Algorithm 1 is a pseudocode implementation of this algorithm.

For the verification problem, we just have to check that the important priority list entries
for the given skipping or combinatorial routing agree with the choices made by p in any
local failure scenario. If they agree with the entries computed by the procedure described in
Lemma 11 then the given routing is perfectly resilient, otherwise it is not. <

4.2 Hardness of Perfect Resilience Verification

In this section, we show that the verification of perfect resilience problem is coNP-complete.
This results contrasts to the fact that the seemingly more difficult problem of perfect
resilience synthesis is decidable in polynomial time (see Theorem 10). To show hardness
of the verification problem, we reduce from 3-SAT. The main idea for the reduction is to
have one central node ¢, which is the only node that is connected to ¢, and is furthermore
connected to one gadget representing each clause of the given 3-SAT instance. Each failure
set is interpreted in each gadget as an assignment of truth values to the variables of the
respective clause. We construct a routing function that, starting from v, iterates through the
gadgets. Each gadget is connected to v with two links. If the gadget represents a clause that
is satisfied, it routes back to v on one link, and if the clause is not satisfied, it routes back on
the other. In that way, the routing function at v knows whether a clause that it just iterated
through is satisfied or not. If a clause that is not satisfied is encountered, v immediately
routes to t. Otherwise, v routes to the next gadget. In case all clauses are satisfied, the
routing function will cycle through all gadgets indefinitely and never route to t. Therefore, a
failure set that prevents a packet inserted at v from reaching t exists exactly if the 3-SAT
instance is satisfiable.

» Theorem 13. Verification for PERFECT RESILIENCE with skipping priorities is coNP-
complete even if the input graph is planar.
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Algorithm 1 Tests the existence of a perfectly resilient routing. Takes a graph (represented as V
and E) and a target node ¢t and outputs true if such a routing exists; false otherwise.

1: procedure SYNTHESIS(V, E, t)

2 Initialize queue @ < [t]

3 for all v € V do

4: L visited[v] «+ false

5: parent|v] < null

6 visited[t] < true

7 while @ # () do

8 u < DEQUEUE(Q)

9: cycleFound < false

10: for all (u,v) € E do

11: if not visited[v] then

12: visited[v] < true

13: parent[v] < u

14: ENQUEUE(Q, v)

15: else > (u,v) is an off-tree edge
16: if parentlu] # parent[v] then
17: _ return false

18: if cycleFound then > u has more than one off-tree edge
19: _ return false
20: || cycleFound < true
21: | return true

Proof. Containment in coNP is proved in Theorem 10. To show coNP-hardness, we present
a reduction from 3-SAT, a variant of SATISFIABILITY where each clause contains exactly 3
literals. This problem is among Karp’s original 21 NP-complete problems [42]. We show a
polynomial-time reduction from 3-SAT to the verification problem of PERFECT RESILIENCE
where the constructed skipping routing is perfectly resilient if and only if the original instance
of 3-SAT (a formula ¢) is not satisfiable.

Let V = {x1,22,...,2,} and C = {C1,Cy, ..., Cy,} be the set of variables and clauses
of an input formula ¢. We construct an instance of the verification problem for PERFECT
RESILIENCE with skipping priorities. We start with two nodes ¢ and ¢, which are connected by
a link and where ¢ is the target. Next, for each variable x; € V, we add four nodes p,,, nz,, Pz7,
and nz; and the six links (¢, ps,), (¢, ", )y (Da; Nz, )y (6, 077), (¢, nz7), and (pzr, na;) together
with the respective link in the other direction. For each clause C; € C, we add three

nodes u;,v;, w; and three links (¢, u;), (¢,v;), (c,w;) and the links in the other direction.

See Figure 5a for an example of the construction and note that the graph is planar and the
number of nodes and links is linear in the number of variables and clauses in ¢.

We continue with the priority lists. Note that if the link (¢, t) fails, then only packets
starting in ¢ can reach t. Hence, we assume in the remainder of the proof that this link
does not fail. Hence, we only need to state the priority lists for ¢ (for different in-ports) up
to t. The priority lists are given in Figure 5 (right). Before we formally state the proof, let
us give some high-level intuition. The goal is to find a set of failing links that cause the
packet to loop forever between ¢ and variable nodes (p,,, n.,, Pz and nz;) and clause nodes
(uj,v;, and w;). First, if the center node ¢ ever receives the packet from a node p,, or pz
for some z;, then it immediately forwards the packet to ¢t. We next show for each 7 that
exactly one of the links (¢,n,,) and (¢, nz;) fails in any solution. Assume that ¢ receives
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node | in-port priority list
Pz, c Ng,;, C
wso t Pz, Pz; Nz; s Px; Cy N
V2 Ny N, c Pz;s C
(%] Pz Na,; Pz, Nax; C, Px;
Dir c Nz, C

w1 najl T, T;
Pz Nz Pzy C, Nz
U1 Yz Mgy c Dz7, C
Uy Ny Nz; T Wy C Pz
Uj * C

N
3 Pz vj * c
DPzs Nzy

nIB pls wj * C
. c c Days Pzt

(a) Construction of a graph for a formula ¢ rrre
with three variables and two clauses; all ¢ Pz Pz; t
edges are bi-directional. c Nz, Nz7, Pay 1 Priy
c Nz Na;s Paiyr Prgrs b
c N, Nz, U1, U1, W1, t
¢ Mo nﬂ?vuulavhwlzt
¢ Um n111n,7p$17pac17t
c Um n’l‘mvpzlvpzlvt
c Wm n3m7p$17 zlat
¢ uj Mgy Uj+1, Vj+1, Wi+1,1
¢ vj Ty s Ujt 1, Vi1, Wit1, L
¢ wj My Uj+1, Vj+1, Wi+1, 1

Figure 5 Table of the priority lists for all nodes (except for the target ¢). The symbol * stands
for the case that the priority list does not depend on the in-port. We use ¢;,r;, and s; to denote
the three literals in clause C, respectively. As an example, if clause Co = (z V y V Z), then qo = =,
ro =y, and so = Z. Priority lists for node ¢ are only shown up to the target t.

the packet from n,, , or nz— (or from wy,, Uy, Wy, or it starts in ¢ for ¢ = 1). Then not
both the links (¢, p.,) and (¢, pz;) can fail as otherwise the packet is sent to ¢. Assume the
packet is sent to pz; (the other case is symmetric). If either of the links (pz;, nz) or (nz,¢)
fails, then the packet is sent back from pz; to ¢ and then sent to ¢t. Hence, neither of these
links fail and the packet is forwarded over these links. Now assume the link (¢,n,,) does
not fail. Then, the packet is sent through that link. Now at least one of the links (ns,, ps;)
and (pg,,c) has to fail or ¢ receives the packet from p,,. Hence, the packet is sent back to ¢
from n,,. However, by construction the packet is now sent to nz; and consequently to pz,
back to ¢, and then to ¢ (and since we assume that if a link fails, then also the link in the
other direction fails, it holds that none of these links fail as we assumed or showed before).
Thus, exactly one of the links (¢, n,,) and (¢, nz;) fails in any solution and whichever does
not fail, the entire respective loop also does not fail. We say that if the link (¢, n.,) fails,
then z; is set to true and if the link (¢, nz;) fails, then z; is set to false.

We now show that the reduction is correct, that is, ¢ is satisfiable if and only if the
constructed routing is not perfectly resilient. In the forward direction, assume that a satisfying
assignment [ for ¢ exists. We let the links (¢, p,,) and (¢, n,,) fail for each variable z; set
to true by § and we let the links (¢, pz) and (¢, nz7) fail whenever z; is set to false by g.
Moreover, for each clause C; = (¢; V r; V s;), we pick one variable that satisfies the clause
under . If ¢; is picked, then we let links (c,v;) and (c,w;) fail. If r; is picked, then we let
links (c,u;) and (c,w;) fail. If s; is picked, then we let links (¢, u;) and (¢, v;) fail. Now,
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the packet goes through p,, and n,, or pz and nz; for all ¢ in increasing order. Then, for
each clause C; in increasing order, it goes to the previously chosen node (u;, v;, or w;) and
immediately returns to c¢. Then, it goes to the next clause as we have a satisfying assignment
and hence the link to ng, /n,; /ns, fails. Afterwards it again goes through all variables and
this cycle continues indefinitely. Thus, the constructed routing is not perfectly resilient.

In the other direction, assume that the constructed routing is not perfectly resilient and
let F' be a failure scenario where the packet does not reach ¢ from some source node. We
have already shown that exactly one of the links (¢, n,,) and (¢, nz;) fails for each variable x;
and how this corresponds to an assignment. If the packet reaches some clause node u;,v;,
or w; (or starts there and there exists some path to ¢ and t), then it is sent to ¢. Then, ¢
tries to send the packet to a node n,, or nz; for some z;. If this link does not fail (which
corresponds to the case where the clause C; is not satisfied by the respective assignment of the
corresponding variable), then the packet is sent to the respective node n, and subsequently
to p, and back to ¢ from p, as the entire loop is not failing whenever the link (c,n,) is not
failing (as shown above). If all three links to a clause gadget fail, then the packet is directly
sent to ¢, so we may assume that at least one of them is not failing. The first one that is
not failing will encode the satisfying assignment for the respective clause. The packet is
then sent to one of the three nodes for the next clause and the cycle continues. This cycle
can only continue indefinitely, if all clauses are satisfied by the chosen assignment, that is,
the formula ¢ is satisfiable. This concludes the proof. We note that the hardness result
holds even in case that we know the source of the packet as, e.g., injecting the packet at c is
already enough to argue for coNP hardness. |

Note that the size of the network constructed in the previous proof is linear in the
number of variables and clauses of the input formula. Assuming a complexity hypothesis
called the exponential time hypothesis (ETH), 3-SAT cannot be solved in 2°("*™) time [43],
where n and m are the number of variables and clauses in the input formula. Hence,
both verification problems cannot be solved in 2°("*™) time. This contrasts with the
typical results that many problems on planar graphs can be solved in subexponential time
(usually 2™ time) [44, 45, 46]. However, as we just proved, this is surprisingly not the case
for the perfect resilience verification problem (assuming P # NP).

5 Conclusion and Open Questions

Fast re-route mechanisms that allow for a local and immediate reaction to link failures are
essential in present-day dependable computer networks. Several approaches for fast re-routing
have been implemented and deployed in essentially every type of computer network. However,
the question for which graphs we can efficiently construct perfectly resilient protection
mechanisms, meaning that they should guarantee packet delivery in any failure scenario
as long as the source and target nodes remain physically connected, has not been solved
yet. The exact computational complexity of deciding whether a given network topology
together with a target node allows for a perfectly resilient routing protection is showed to be
polynomial by the application of Robertson and Seymour theorem [39] together with the
minor-stability result [38] for the existence of a perfectly resilient routing to all possible target
nodes as well as to a given target node (via the rooted variant of this result [40, 41]). This
contrasts to our result that the verification problem is computationally hard—we showed by
a nontrivial reduction from 3-SAT that the question whether a given set of routing tables for
a fixed target node is perfectly resilient is coNP-complete.
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As a sufficient condition that no perfectly resilient routings exist, we provided a general
theorem that allows us to efficiently identify network topologies where such a routing is not
possible. We have also studied a variant of a local fast re-route that is in-port oblivious (i.e.,
the packet’s incoming interface is not part of the routing tables). This potentially enables a
faster failover protection as well as a more memory-efficient way of storing the forwarding
tables. In this restricted case, we were able to provide a fast linear-time algorithm that
determines whether a given in-port oblivious routing is perfectly resilient and we showed
that the synthesis problem is also decidable in linear time, allowing us to efficiently construct
in-port oblivious routing tables for the topologies where this is indeed possible.

A major open problem is to design a concrete algorithm that for a given network constructs
in polynomial time perfectly resilient routing tables whenever this is possible.
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