
Fast Rerouting Against Dynamic Failures:
2-Resilience via Ear-Decomposition and Planarity
Wenkai Dai #

TU Berlin, Germany
Faculty of Computer Science and UniVie Doctoral School Computer Science DoCS, University of
Vienna, Austria

Klaus-Tycho Foerster #

Department of Computer Science, Technical University of Dortmund, Germany

Stefan Schmid #

TU Berlin and Fraunhofer SIT, Germany

Abstract
Modern communication networks employ local fast failover mechanisms in the data plane, swiftly
reacting to link failures through pre-installed rerouting rules. This paper investigates resilient
routing schemes that guarantee packet delivery under up to k link failures, provided the source and
destination remain connected in the degraded network. While prior theoretical studies have mainly
addressed static failures, where multiple links fail simultaneously and permanently, real networks
often experience dynamic failures, such as transient link flapping caused by short-lived faults.

We study the limits of basic and source-matched failover routing with packet-header rewriting
against dynamic failures in general graphs. In basic routing, forwarding depends only on active links,
incoming ports, and the destination, whereas source-matched routing additionally incorporates the
source, requiring more memory (and logic) at the router. The 2-resilient source-matched routing for
static failures is shown to fail under permanent but non-simultaneous failures. Moreover, even with
source matching, we prove that in planar graphs k≥2 resilience is impossible without bit rewriting,
and in general graphs, perfect k-resilience is unachievable by only rewriting O(log k) bits.

For planar graphs, we introduce ear-decomposition into basic routing and develop novel local
rerouting mechanisms that tolerate dynamic failures. These yield tight 2-resilient basic routing by
rewriting only one or two bits, closing the gap between lower bounds and practical routing scheme.

2012 ACM Subject Classification Networks → Routing protocols; Computer systems organization
→ Dependable and fault-tolerant systems and networks

Keywords and phrases Resilience, Local Failover, Routing, Dynamic Link Failures, Link Flapping

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2025.20

Related Version Preliminary Version: On the Resilience of Fast Failover Routing Against
Dynamic Link Failures [9]

Funding German Research Foundation (DFG) project ReNO, Schwerpunktprogramm: Resilienz in
Vernetzten Welten – Beherrschen von Fehlern, Überlast, Angriffen und dem Unbekannten (SPP 2378),
2023–2027.

1 Introduction and Related Work

Communication networks are a critical infrastructure of the digital society. Since link
failures—inevitable and increasingly frequent in large-scale systems [18]—can severely degrade
service [1, 30, 35], modern networks deploy local fast failover in the data plane to respond
faster to failures. These mechanisms rapidly reroute packets along preinstalled backup paths,
avoiding global recomputation and enabling recovery times orders of magnitude faster [13,22].

The core challenge of devising efficient data-plane failover mechanisms is to precom-
pute local rerouting rules ensuring reachability under link failures, without knowledge of

© W. Dai, K.-T. Foerster, and S. Schmid;
licensed under Creative Commons License CC-BY 4.0

29th International Conference on Principles of Distributed Systems (OPODIS 2025).
Editors: Andrei Arusoaie, Emanuel Onica, Michael Spear, and Sara Tucci-Piergiovanni; Article No. 20;
pp. 20:1–20:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:wenkai.dai@univie.ac.at
https://orcid.org/0000-0002-2153-4250
mailto:klaus-tycho.foerster@tu-dortmund.de
https://orcid.org/0000-0003-4635-4480
mailto:stefan.schmid@tu-berlin.de
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.4230/LIPIcs.OPODIS.2025.20
https://arxiv.org/abs/2410.02021
https://arxiv.org/abs/2410.02021
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Resilient Routing Against Dynamic Failures

Table 1 Summary of related work and our contributions: prior results appear in white–gray
(static failures) and green (dynamic failures) rows, while our new results are highlighted in blue.

Failure Rewriting Routing information Graph Resilience results for
Type Bits # Per-source Per-dest. Classes static & deterministic routing
static no ✓ • (k − 1)-resilience for k ≤ 5, open for k ≥ 6 [5]
static no ✓ • (⌊k/2⌋)-resilience for any k [5]
static no ✓ ✓ • (k − 1)-resilience for any k [14]
static 3 ✓ • (k − 1)-resilience [5]
static no ✓ △ 1-resilience [13], no ≥ 2-resilience (□) [5]
static no ✓ ✓ △ arbitrary k-resilience impossible [17]
static no ✓ ✓ △ 2-resilience possible, 3-resilience impossible [8]

dynamic no ✓ • (k − 1)-resilience possible for k ≤ 5 [10]
dynamic no ✓ • (⌊k/2⌋)-resilience possible for any k [10]
dynamic log k ✓ • (k − 1)-resilience possible for any k [10]

semi-dynamic 3 ✓ • (k − 1)-resilience possible for any k [10]
dynamic 3 ✓ • HDR-3-Bits in [5, Algorithm 2] inapplicable [10]
dynamic no ✓ • (k − 1)-resilience imposs. for k ≥ 2 (link-circular) [10]
dynamic no ✓ △ 1-resilience possible [10], no ≥ 2-resilience (□) [5, 10]
dynamic no ✓ ✓ □ ≥ 2-resilience is impossible [Thm. 3]
dynamic log k ✓ ✓ △ arbitrary k-resilience impossible [Thm. 4]

semi-dynamic no ✓ ✓ △ 2-resilient algo. (static failures) in [8] inapplicable [Thm. 2]
dynamic 1 or 2 ✓ □ 2-resilient basic routing on planar graphs [Thms. 18 & 16]

Legend: ✓indicates that this parameter is included in forwarding function. Graph classes are denoted
as • k-edge-connected, □ planar, and △ general.

downstream link states. This reduces to the following fundamental question:

Can we devise a failover routing scheme capable of tolerating any k link failures as long
as the underlying topology remains connected?

Resilient failover mechanisms have attracted significant attention [5, 7, 8, 13, 16, 31].
Randomized approaches [3, 6], resembling random walks for graph exploration, can offer
resilience but are impractical due to packet reordering and limited router support [14].
Similarly, packet duplication techniques such as flooding impose prohibitive overhead.

Standard routers implement basic failover routing by deterministically forwarding packets
using only local information such as active links, in-ports, and destinations. Feigenbaum
et al. [13] introduced DAG-based failover resilient to a single failure, but perfect resilience—
tolerance to arbitrarily many failures—is impossible even in small graphs [15]. Chiesa et
al. [5] further proved that basic routing cannot achieve 2-resilience even in planar graphs.
Consequently, research has explored heuristics, extra local inputs [8,10], header rewriting [4,5],
or dense connectivity [3, 5, 7, 17,34]. In particular, header rewriting allows routers to modify
reserved header bits to guide subsequent forwarding decisions.

For k-edge-connected graphs, Chiesa et al. [5] showed that (k−1)-resilient basic routing
can be efficiently computed for k ≤ 5, while the case k > 5 remains open; with header-
rewriting, they devised schemes that achieve (k−1)-resilience in arbitrary k-edge-connected
graphs using either log k or 3 header bits.

However, real networks are often sparse with locally dense subregions [11,16], necessitating
the study of general topologies. Dai et al. [8] showed that 2-resilient routing is feasible in
general graphs when forwarding depends on both source and destination (source-matched
routing), but ≥ 3-resilience is impossible. Source-matched routing, however, incurs up to
n-fold overhead in computing and storing per-pair routing tables compared to basic routing.

Most theoretical work assumes simultaneous fail-stop failures, where links fail once and
remain unavailable, i.e., static graphs. In practice, however, failures are often asynchronous,

W. Dai, K.-T. Foerster, and S. Schmid 20:3

with links recovering or flapping [24, 27, 29, 32]. Gill et al. [18] further classify datacenter
link failures as long-lived or sporadic short-lived, the latter typically caused by software or
transient errors.

As such dynamics turn the network into a time-varying graph, invalidating conventional
failover routing schemes, Dai et al. [10] model link failures into three types: dynamic, where
unstable links arbitrarily switch between up and down states; semi-dynamic, where fail-stop
links may fail during packet traversal; and static, where all fail-stop links fail simultaneously.
They revisit the ideal resilience results of [5] under dynamic settings and show that certain
established results, e.g., the 3-bit rewriting, may become ineffective (see Tab. 1 for details).

Hence, this paper investigates deterministic worst-case k-resilience on general graphs
under the dynamic link failure models of [10], focusing on basic routing augmented with
packet-header rewriting. Our work is closely related to Dai et al. [8, 10] and Chiesa et al. [5],
as we extend the results of [8] to dynamic failures only on basic routing functions.

We show that in dynamic settings, the power of source-matched routing collapses to that
of basic routing.

For instance, although 2-resilient source-matched routing is always achievable under
static failures in general graphs [8], it becomes impossible even for planar graphs (see the
counterexample in Fig. 4), as backtracking to the original source may be infeasible.

At the same time, we resolve the open question of [5] by providing the first 2-resilient
basic routing on planar graphs by rewriting one- or two-bit in the packet header, even under
dynamic failures. An overview of related results and our contributions is given in Table 1.

1.1 Contributions
This paper initiates the study of perfect resilience of fast rerouting under dynamic, non-
simultaneous link failures. A summary of our results is given in Table 1. We prove that
the 2-resilient source-matched routing of Dai et al. [8] already fails under semi-dynamic
failures, and that 2-resilience via source-matched routing is impossible in planar graphs
without packet-header rewriting. This impossibility extends to k-resilience in general graphs,
even with O(log k) rewritable bits. In contrast, we present the first algorithms achieving
2-resilience against dynamic failures in planar graphs using basic routing by rewriting only
one or two header bits. This is tight with respect to our dynamic lower bounds stated in
Theorem 3 and the static lower bound of [5], thereby resolving the open problem of [5]. We
can compute the routing scheme in O(n + m) time per destination on planar graphs, whereas
source-matched routing [8] needs O(nm) per source–destination pair, i.e., Ω(n2) times slower.

Technical Novelty We introduce ear-decomposition into basic routing to design ear-based
schemes that mimic source-matched routing, where each ear serves as a local source without
interfering with others. Unlike existing approaches [5, 8, 17], which detour along induced
cycles containing the failure (and thus risk looping under dynamic failures), our method
selects landmark nodes to terminate such detours independently of the failure. Our algorithms
leverage structural properties of planar embeddings, and we believe these techniques may be
of independent interest for future studies on resilience against dynamic failures.

1.2 Organization
The remainder of this paper is organized as follows. We introduce our formal model in §2,
then discuss the limitations of prior methods [5, 8] and present impossibility results for k-
resilient routing by rewriting bits under dynamic failures in §3. Next, we develop algorithms

OPODIS 2025

20:4 Resilient Routing Against Dynamic Failures

for computing 2-resilient basic routing schemes on planar graphs via one- or two-bit rewriting
in §4, and conclude in §5 with open questions. We defer lengthy proofs to Appendix A–B.

2 Models and Preliminaries

We model the network as an undirected simple G = (V, E), where vertices in V represent
routers and undirected edges {u, v} ∈ E represent bi-directed links. For E′ ⊆ E, let
G \ E′ = (V, E \ E′); for V ′ ⊆ V , G \ V ′ denotes the graph obtained by removing V ′ and
all incident edges. For a subgraph G′ ⊆ G, we write NG′(v), EG′(v), and ∆G′(v) for the
neighbors, incident edges, and degree of v in G′, respectively, omitting the subscript G′

when clear from context. Each undirected edge {u, v} ∈ E corresponds to two directed arcs
(u, v) and (v, u). For E′ ⊆ E and v ∈ V , we slightly abuse notation to let E′

v denote the
subset of edges in E′ that are incident to v. For multigraphs, we extend the graph definition
appropriately by allowing multiple distinguishable edges between any two vertices in V .

Failure Models. Let F ⊆ E denote a set of link failures in G, where each e ∈ F may fail to
transfer packets in both directions when its state is down (failed). A link is fail-stop if its
down state is permanent. We classify F as:

Static — all links in F are fail-stop and fail simultaneously;
Semi-dynamic — all links in F are fail-stop but may fail at different times;
Dynamic — links in F may alternate arbitrarily between up and down states over time.

Failover Routing Functions. In failover routing, each node v ∈ V stores a predefined, static
forwarding (interchangeably, routing) function to deterministically select an outgoing link
(out-port) for each incoming packet based solely on local information at v. Formally, given a
graph G, a general routing function at v ∈ V is

πG,v : V × (V ∪ {⊥})× (NG(v) ∪ {⊥})× 2EG(v) → EG(v),

where V is the destination t ∈ V of the incoming packet; V ∪ {⊥} gives the source of the
incoming packet, with ⊥ meaning “no source information,”; NG(v)∪{⊥} is the incoming link
(in-port) at v, with ⊥ indicating packet origination at v; and 2EG(v) is the set of currently
active (non-failed) links incident to v. For multigraphs, πG,v extends naturally.

The routing function πG,v is basic if the source is always ⊥, and source-matched otherwise.
Unless stated, we consider basic routing. Fixing a destination t ∈ V (basic) or a pair of
source-destination (s, t) ∈ V ×V (source-matched), we write πt

G,v and π
(s,t)
G,v , omitting G when

clear. A routing scheme is the collection of routing functions on V , e.g., Πt =
⋃

v∈V \{t} πt
v.

It is worth noting that Feigenbaum et al. [13] showed that 1-resilience against static
failures is impossible when using fewer parameters than those available in basic routing.

Header-Rewriting Routing. Header-rewriting augments a routing scheme by reserving
k ∈ N rewritable bits in each packet’s header. A routing function π at v ∈ V can interpret
and modify these bits to influence the current and subsequent forwarding decisions:

HDR-k-π : dom(π)× {0, 1}k → EG(v)× {0, 1}k.

In practice, k is limited by competing fields (e.g., TTL, checksums, QoS). Bit-rewriting
adds processing overhead, latency, and potential packet loss, so minimizing k improves
transmission efficiency.

W. Dai, K.-T. Foerster, and S. Schmid 20:5

Further Concepts in Failover Routing. We introduce several commonly used notions in
failover routing. A packet is said to get stuck if it halts at a node other than its destination.
For deterministic routing without header bit rewriting, a forwarding loop occurs when a
packet traverses the same directed link (arc) twice; both directions of an undirected link may
each be traversed once without forming a loop. Any loop possible under static failures can
also occur under semi-dynamic or dynamic failures. A packet fails to reach its destination t if
it either gets stuck or enters a forwarding loop. A routing function at node v is link-circular if
v forwards packets through an ordered circular sequence ⟨u1, . . . , uℓ⟩ of neighbors, forwarding
from ui to ui+1 (indices taken modulo ℓ). If link {v, ui+1} fails, the packet is sent to ui+2,
and so forth, cycling back to u1 after uℓ [5].

▶ Definition 1 (k-Resilient Failover Routing Problem). Let G = (V, E) be a graph and let
t ∈ V be a designated destination. The k-resilient failover routing problem is to compute
a k-resilient routing scheme for t in G under the static, semi-dynamic, or dynamic failure
models. A forwarding scheme for t is k-resilient if, for every source s ∈ V and every set
of link failures F ⊆ E with |F | ≤ k, the scheme delivers a packet from s to t in the given
failure model whenever s and t remain connected in G \F . Here, G \F denotes the subgraph
obtained by removing all edges in F , independent of the failure model.

Note on Definition 1. The subgraph G \ F may have multiple connected components. We
assume that dynamic or semi-dynamic failures in F do not cause the routing functions to
forward packets between distinct components of G \ F ; such cases are beyond the scope of
our resilient routing model. Static failures are a subset of semi-dynamic failures, which in
turn are a subset of dynamic failures; a resilient routing algorithm for one failure type applies
to its subsets, while impossibility results extend to its supersets. Since resilient routing may
require packets to retrace paths in reverse, dynamic and semi-dynamic failures can introduce
inconsistencies in the set of active links perceived by deterministic routing functions, thereby
increasing the likelihood of forwarding loops.

We focus on computing a k-resilient routing scheme for a fixed destination t, as the same
algorithm applies to any u ∈ V . For source-matched routing, it suffices to consider a fixed
pair (s, t), since the algorithm generalizes to any s, t ∈ V .

Further Notations and Graph Theory Concepts. We first introduce the graph-theoretic
concepts and notations used in this chapter. A path P from u to v in G is called a u–v

path. Two paths are edge-disjoint if they share no edges (but may share vertices), and two
edge-disjoint u–v paths P1 and P2 are node-disjoint if V (P1) ∩ V (P2) \ {u, v} = ∅.

We focus on edge-connectivity, referred to simply as connectivity. For u, v ∈ V , two nodes
u and v are (interchangeably, u − v is) k-edge-connected (or k-connected) if there exist k

edge-disjoint u–v paths in G. The graph G is k-edge-connected (or k-connected) if any two
distinct nodes are k-connected. Nodes u and v are exactly k-connected if they are k-connected
but not (k + 1)-connected.

Given a path P = (x0, x1, . . . , xk), with xi ∈ V (P) for 0 ≤ i ≤ k, the notation xiPxj ⊆ P

denotes the subpath of P from xi to xj for 0 ≤ i < j ≤ k. For V ′ ⊆ V , the induced subgraph
G[V ′] contains all edges {u, v} ∈ E with u, v ∈ V ′.

A graph G = (V, E) is planar if it can be drawn on the Euclidean plane R2 without
two edges intersecting except possibly at a common endpoint; such a drawing is a plane
embedding of G. Given a plane embedding, a face is a connected component of R2 \G whose
boundary consists of vertices and edges of G. The unique unbounded face is the outer face
(or unbounded face), and all other faces are inner (interior) faces (or bounded faces).

OPODIS 2025

20:6 Resilient Routing Against Dynamic Failures

s t

(a)

s t

×
×

(b)

Figure 1 The main idea of 2-resilient source-matched routing scheme [8] computes a special
planar subgraph G ⊆ G in which both s and t lie on the outer face, and every inner face shares at
least one edge with the outer face. The routing rules are simple: packets traverse the outer face
counterclockwise (red dashed arrows in Fig. 1a) and, upon encountering a failure, detour clockwise
around the corresponding inner face (blue dotted arrows). As illustrated in Fig. 1b, a packet starting
at s first follows the directed s–t path along the outer face. If an arc (u, v) fails, the packet is rerouted
along the directed path that includes the reverse (failed) arc (v, u). This approach successfully
tolerates two static failures. However, under dynamic failures, the detour may revisit a previously
failed edge after it has recovered, leading to routing loops.

3 Limitations of Previous Approaches and Lower Bounds

In this section, we first highlight the limitations of previous failover approaches under dynamic
failures, then show that 2-resilient source-matched routing is infeasible even for planar graphs,
and finally prove that perfect k-resilience is impossible with only rewriting O(log k) bits.

3.1 Limitations of Prior Work
Without utilizing rewritable bits in packet headers, Chiesa et al. [5] proved that 2-edge-
connected (planar) graphs do not admit 2-resilient routing against static failures. In contrast,
Dai et al. [8] developed a 2-resilient routing algorithm for static failures in general graphs
by additionally incorporating source matching. However, achieving 3-resilience under static
failures is already impossible [8].

The 2-resilient routing algorithm of Dai et al. [8] computes, for each source–destination
pair (s, t) in a general graph G, a planar kernel graph G ⊆ G that preserves s–t connectivity
under any two edge failures. In this kernel graph, s and t lie on the boundary of the outer
face f∞, and every inner face shares an edge with f∞ (see Fig. 1a). Routing then proceeds
counterclockwise along f∞ from s to t, switching to a clockwise traversal of an inner face
upon encountering a failure (Fig. 1b).

Compared to basic routing, source-matched routing incurs higher computational and
memory costs, as it requires computing and storing routing tables for every pair of nodes,
i.e., Θ(n2) tables, whereas basic (only destination-based) routing needs only Θ(n) tables.

Dynamic failures transform the overlay graph from a static to a dynamic structure,
rendering some classical failover routing rules ineffective.

As a common technique, the bouncing reroute rule, illustrated in Fig. 1b, upon a failed
arc, bounces a packet back via its reverse, detours around the induced cycle, and reencounters
the failed edge in reverse to terminate the detour. This technique is widely used [5, 8, 17].

However, as shown in Fig. 1b, if the dynamic failure becomes recovered on the second
visit, the packet falls into a routing loop within the current induced cycle. A similar issue has
also been observed in (k−1)-resilient routing against dynamic failures on k-edge-connected
graphs using three-bit rewriting [10].

Moreover, in Theorem 2, we show that the 2-resilient source-matched routing by Dai et
al. [8, Algorithm 1] no longer functions correctly even for two semi-dynamic failures. Due to
space limitations, we present in Fig. 2 a counterexample that sketches the proof of Theorem 2.

W. Dai, K.-T. Foerster, and S. Schmid 20:7

ts

v1 v2

v3 v4 v8

v7

v6

v5
v11v10 v0 v9

u1 u2
u10 u0

u3 u4

u5

u6

u7

u8
u11u9

Figure 2 Example of applying the 2-resilient source-matched routing algorithm proposed by Dai
et al. [8, Algorithm 1] to a graph G = (V, E) shown as bold lines without arrows in Fig. 2 ([8, Fig. 1])
for the source-destination pair (s, t) to obtain its kernel graph G by excluding these four red bold lines:
{{v1, v4}, {v2, v3}, {u1, u4}, {u2, u3}} as shown in [8, Fig. 2], where a kernel graph G is a subgraph
of G, s.t., for any two failures F ⊆ E, if s− t is connected in G \ F then s− t is also connected in
G \F . By [8, Definition 6.2], a forwarding scheme Π(s,t) defines a link-circular forwarding function at
each node of G, and we can easily verify that Π(s,t) is 2-resilient against static failures. In this figure,
Π(s,t) is illustrated by solid (red) arcs, dotted (green) arcs, and dashed (blue) arcs respectively, s.t.,
at a node v, a packet from an incoming arc (u, v) is forwarded to an outgoing arc (v, w) that has the
same dash pattern (color) as (u, v). If an outgoing arc (v, w) is failed, then the arc (w, v) is treated
as an incoming arc to continue forwarding on the dash pattern (color) of (w, v), while a packet
originated at s can select either the solid (red) arc (s, v10) or the dashed (blue) arc (s, u10) arbitrarily
to start. However, this forwarding scheme Π(s,t) is not 2-resilient against semi-dynamic failures. For
semi-dynamic failures F = {{v1, v2}, {v7, v9}}, by starting at s and following forwarding rules (red
arcs), the packet goes through (s, v10, v0, v5, v1, v2, v7) to meet the first failure (v7, v9), and then it
is rerouted by the dashed forwarding rules (green arcs) to traverse (v7, v2) to hit the second failure
(v2, v1). Now, Π(s,t) makes the packet stuck in the connected component on {v2, v7}, but in the
graph G \ F , there is still a path from v7 to t, e.g., (v7, v2, v3, v4, v8, v9, v11, t), implying that Π(s,t)

is not 2-resilient against semi-dynamic failures. Moreover, after adapting Π(s,t) by additionally
enforcing clockwise link-circular routing at v1 and v2 to include {{v1, v4}, {v2, v3}}, we can easily
verify that it becomes a 2-resilient source-matched routing against semi-dynamic failures.

▶ Theorem 2. There exists a graph G where the 2-resilient source-matched routing of Dai et
al. [8, Algorithm 1], designed for static failures, fails under two semi-dynamic failures, even
though G admits such a routing scheme.

3.2 Impossibility of Handling Dynamic Failures in General Graphs
After discussing the limitations of existing failover approaches under dynamic failures, we
show in Theorem 3 that no source-matched routing scheme can tolerate two dynamic failures.
The proof idea is illustrated in Fig. 3, while the formal proof is deferred to Appendix A.

▶ Theorem 3. There exists a 2-edge-connected planar graph G as shown in Fig. 3, where it
is impossible to have a 2-resilient source-matched routing scheme against dynamic failures
without rewriting bits in packet headers.

For the counter-example graph G as shown in Fig. 3, fixing πs (⊥) = v0 when Fs = ∅, the
routing functions at v1 and v3 cannot know whether an incoming packet currently should
either continue searching a path towards t in G [V ′ ∪ {s, t}] or finding a path back to s in
G [V ′ ∪ {s, t}] to try paths in G [U ′ ∪ {s, t}]. Simply, by rewriting one bit in packet headers,
the source-matched routing functions can resolve this weakness to achieve 2-resilience against
dynamic failures again in G. Now, a fundamental question arises: Can we achieve k-resilience
against dynamic failures in a general graph by only rewriting O (log k) bits in packet headers?

In light of Theorem 4, we demonstrate that achieving perfect resilience through the
modification of O (log k) bits is impossible and defer its formal proof to Appendix A.

OPODIS 2025

20:8 Resilient Routing Against Dynamic Failures

v1 v3
v2

v4 v5v0

ts
u1 u3

u2

u4 u5u0

Figure 3 Counter-example topology G for 2-resilient source-matched routing scheme against
dynamic failures, where s is the source and t is the destination. Let V ′ = {v0, . . . , v5} and
U ′ = {u0, . . . , u5}. By symmetry, w.l.o.g., we can assume πs (⊥) = v0 when Fs = ∅. Then, we can
show that each node v ∈ V ′∪{s}must use a link-circular routing function, which has only two possible
orderings for its neighbors, i.e., clockwise and counter-clockwise for the shown drawing. For instance,
the clockwise and counter-clockwise orderings for v1 are ⟨v0, v2, v4⟩ and ⟨v0, v4, v2⟩, respectively. We
can further show that v1 and v3 must have the same type of orderings (clockwise or counter-clockwise),
otherwise a routing loop can occur, e.g., if v1 and v3 select clockwise and counter-clockwise orderings
respective, then a loop (s, v0, v1, v2, v3, v4, v1, v0, s) occurs for a static failure F = {s, u0}. When v1

and v3 both use the clockwise (resp., counter-clockwise) ordering, for a dynamic failure {v2, v3} ∈ F

(resp., {v3, v4} ∈ F) , let (v2, v3) (resp., (v4, v3)) be down and (v3, v2) (resp., (v3, v4)) be up. Then,
a routing loop: (s, v0, v1, v2, v1, v4, v3, v2, v1) (resp., (s, v0, v1, v4, v1, v2, v3, v4, v1)) appears and the
packet originated at s cannot reach t even there is an s− t a path containing no dynamic failure. A
similar proof can be given when πs (⊥) = u0 for Fs = ∅.

▶ Theorem 4. There exists graphs for which any resilient source-matched routing that can
tolerate 2k dynamic failures needs rewriting of at least k bits in packet headers for k ∈ N.

4 2-Resilient Routing Against Dynamic Failures on Planar Graphs

In contrast to our impossibility result, we now present algorithms achieving 2-resilience
against dynamic failures on planar graphs. We first reduce the general problem, then
introduce the elementary routing rules based on ear-decomposition and faces, and finally
describe our 2-resilient basic routing scheme via one- or two-bit rewriting.

4.1 Problem Reductions and Basic Observations
By Claim 5, we reduce the problem to the case where G is a simple 2-edge-connected plane
graph, and in Lemma 6 we highlight an important observation on this simplified structure.

▷ Claim 5 (Problem Reduction). The problem of devising a 2-resilient routing algorithm
against dynamic failures in a general planar graph G = (V, E) can be reduced to the case
of 2-edge-connected planar graphs. Throughout, we can assume that G is a simple (plane)
graph, i.e., it contains no parallel edges and has a plane embedding already.

Proof. For a ≥ 3-edge-connected graph G, Dai et al. [10] showed that a 2-resilient routing
scheme against dynamic failures can be devised using three arc-disjoint arborescences, building
on the original idea of [5]. Alternatively, we can obtain a 2-edge-connected graph G′ of by
replacing any edge {u, v} in G with two edges {u, νu,v} and {νu,v, v}, s.t., any 2-resilient
routing scheme for G′ can also work for G.

Let G = (V, E) be a 1-edge-connected graph. Define the set of bridges as E′ := { e ∈ E |
G\{e} is disconnected }. Removing all bridges yields a collection C of connected components
of G \ E′. By contracting each component Ci ∈ C to a single node vCi

, we obtain an
abstract tree T (G) :=

(
{vCi : Ci ∈ G \E′}, E′), where every edge e ∈ E′ connects the two

components in G \ E′ that e originally joined.

W. Dai, K.-T. Foerster, and S. Schmid 20:9

Since T (G) is a tree, one can directly construct a 2-resilient routing on T (G). Moreover,
for each component Ci, which is itself a subgraph of G with edge-connectivity at least 2, if
we can compute a 2-resilient routing within Ci that reaches the endpoint corresponding to
the bridge edge in E′, then combining these local routings with the tree routing on T (G)
yields a global 2-resilient routing for G.

If G contains parallel edges between two nodes u, v ∈ V , each such edge {u, v}i can
be replaced by a path of length two, namely {u, µi

uv} and {µi
uv, v}, where µi

uv is a newly
introduced auxiliary node. ◀

▶ Lemma 6. If G = (V, E) is a ≥ 2-edge-connected plane (embedded planar) graph, then each
edge e ∈ E is shared by two distinct faces, i.e., e ∈ E (fi) and e ∈ E (fj), where fi, fj ∈ F
(F including the outer face) and i ̸= j.

Proof. If G is ≥ 2-edge-connected, then every edge e ∈ E lies on a cycle. By [12, Lema 4.2.2],
each edge e ∈ E on a cycle of G must be shared by two distinct faces. ◀

▶ Remark 7. Even in the reduced setting, the problem remains challenging. Basic routing
based solely on faces is already non-trivial: two failures on a face fi may require traversing
its boundary in both clockwise and counterclockwise directions. This necessitates at least
one rewritable bit to indicate the current direction, since an arc may be used in opposite
directions by two adjacent faces sharing the same edge. This observation motivates us to
design routing schemes that exploit not only faces but also additional structural information.

4.2 Routing on Ear Decomposition and Faces
Our 2-resilient routing algorithms combine ear-based routing with face detours. We begin by
introducing the basic routing based on ear-decomposition and faces in the following.

4.2.1 Routing Rules Based on Ear Decomposition.
Several variants of ear-decomposition appear in the literature (e.g., [19,21,23,26]). In this
work, we adopt the definition provided in the textbook [33].

Ear Decomposition. An ear decomposition P (G) (abbreviately, P) of a graph G is a
sequence of subgraphs G = P0 ∪ P1 ∪ · · · ∪ Pκ, where P0 is a cycle in G, and for each i ≥ 0,
Pi+1 is a path whose endpoints lie in P0 ∪ P1 ∪ · · · ∪ Pi, while all internal vertices of Pi+1
are disjoint from P0 ∪ P1 ∪ · · · ∪ Pi. The cycle P0 is called the initial ear, and each Pi+1 (for
i ≥ 0) is called an ear. If the two endpoints of Pi+1 coincide (so that Pi+1 forms a cycle), it
is referred to as a closed ear ; otherwise, it is an open ear [19,23,25,33]. In particular, the
family {E(Pi)}κ

i=0 forms a partition of E(G); that is, every edge e ∈ E(G) lies in exactly
one ear Pi ∈ P. Robbins (1939) [25,33] showed that a graph G is 2-edge-connected if and
only if it admits an ear-decomposition, in which each Pi for i ≥ 1 is either an open ear or a
closed ear, and every cycle in a 2-edge-connected graph G can be the initial ear P0 in some
such decomposition. More specifically, one can compute an ear decomposition such that a
specified vertex v ∈ V is contained in the initial ear [19,21,23,26,28]. In the following, we
assume that the destination t ∈ V is implicitly contained in the initial ear.

▶ Definition 8 (Routing Rules on Ears). For a closed ear Pi ∈ P (including the initial ear),
Pi itself is a cycle. For an open ear Pi ∈ P with endpoints uPi , vPi ∈ V (Pi) and i ≥ 1, we
form the auxiliary cycle Pi ∪ {uPi

, vPi
} by adding the edge {uPi

, vPi
}.

OPODIS 2025

20:10 Resilient Routing Against Dynamic Failures

For each (either open or closed) ear Pi ∈ P, we define the left (resp., right) routing on Pi

(excluding the added edge {uPi
, vPi
} if Pi is open) as the traversal of Pi in the direction such

that the interior of the corresponding cycle—Pi itself if closed, or Pi ∪ {uPi
, vPi
} if open—

lies on the left-hand (resp., right-hand) side during your traversing. In the case of an open
ear, the endpoint visited last under the left (resp., right) routing is called the left (resp., right)
endpoint. For a closed ear, the left and right endpoints coincide, yielding a unique endpoint.

Finally, for each ear Pi ∈ P, we define −→Pi (resp., ←−Pi) as the directed cycle (resp., path, if
Pi is open) obtained by traversing Pi in the right (resp., left) direction, from its left (resp.,
right) endpoint to its right (resp., left) endpoint.

Since each edge {u, v} ∈ E uniquely belongs to some ear Pi ∈ P, each oriented arc of
{u, v} is uniquely contained in either −→Pi or ←−Pi, even if Pi is closed.

By Definition 9, we define a function that maps each node to an ear to start routing.

▶ Definition 9. Since a node v ∈ V may appear in multiple ears of P, we define the function
Pmin(v) that returns the earliest ear Pi ∈ P (in terms of index i) containing v ∈ V \ {t} as
an internal node in the subgraph P0 ∪ P1 ∪ · · · ∪ Pi ⊆ G. In particular, let Pmin(t) = P0.

4.2.2 Routing Rules on Faces of Plane Graph
After defining the ear-based routing rules, Definition 10 presents the face-based routing rules.

▶ Definition 10 (Routing Rules on Faces). Given a plane embedding of a planar graph G, for
each inner face fi ∈ F of G, which is bounded by a cycle C (fi) ⊆ G, we define the left (resp.,
right) routing on fi as the traversal on the boundary (cycle) C (fi) of fi in the direction such
that the bounded region of C (fi) lies on the left-hand side (resp., right-hand side) during
your traversing. Analogously, for the outer face f∞ ∈ F of G, the left (resp., right) routing
on f∞ is defined as the traversal of the cycle C(f∞) in the direction such that the unbounded
region of C(f∞) lies to the left-hand side (resp., right-hand side) of the traverser.

Henceforth, for each face fi ∈ F (including f∞), let
←−
fi (resp.,

−→
fi) denote the directed

cycle obtained by traversing the boundary C(fi) of fi according to the left (resp., right) routing
of fi. And we define a collection of directed cycles −→F :=

⋃
fi∈F

−→
fi , (resp., ←−F :=

⋃
fi∈F

←−
fi).

By Lemma 11, the face-based routing defined in Definition 10 yields consistent routing rules.

▶ Lemma 11. Given a set of faces F of a plane graph G, fix a routing direction (either left
or right) for all faces. Then no two directed cycles in −→F (resp., ←−F) share an arc. Moreover,
once the routing direction is fixed (either −→F or ←−F), each orientation of an edge {u, v} ∈ E,
i.e., an arc (u, v) or (v, u), uniquely determines the corresponding face fi ∈ F . In particular,
for any edge {u, v} ∈ E, if (u, v) ∈

−→
fi and (v, u) ∈

←−
fj with

−→
fi ∈

−→
F and

←−
fj ∈

←−
F , then fi = fj .

Proof. We present the argument for right routing; the case of left routing follows analogously.
By Lemma 6, every edge e ∈ E is incident with exactly two distinct faces, say fi, fj ∈ F .

Consider an embedding of G on the Euclidean plane, and let {u, v} ∈ E be an edge shared
by fi and fj . The infinite line by expanding {u, v} separates the plane into two half-planes,
with fi lying entirely on one side and fj entirely on the other. Now, when traversing an
arc (u, v) (resp., (v, u)), exactly one of these half-planes (and thus exactly one of the two
faces) lies to the right of the traversal. Consequently, in a right routing, the directed cycles
−→
fi and

−→
fj cannot share the same directed arc of {u, v}. Therefore, once the routing direction

W. Dai, K.-T. Foerster, and S. Schmid 20:11

is fixed, each arc (u, v) of an edge {u, v} ∈ E is contained in exactly one directed cycle
−→
fi ,

which uniquely determines the corresponding face fi ∈ F .
By definition, for any edge {u, v} and any face fi ∈ F , if the arc (u, v) belongs to

←−
fi ,

then the reverse arc (v, u) belongs to
−→
fi . ◀

In Definition 12, we define the rightmost and leftmost nodes on each face respectively, which
serve as checkpoints to terminate face-based routing.

▶ Definition 12 (Associated Ear and Leftmost/Rightmost Node of a Face). Given a 2-edge-
connected plane graph G = (V, E), for each face fi ∈ F (including the outer face f∞), the
associated ear Pass (fi) of fi is the first ear Pj ∈ P (with minimum index j) such that
E(fi) ∩ E(Pj) ̸= ∅. Given the associated ear Pj of fi, let e∗ ∈ E(Pj) ∩ E(fi) be the edge
traversed last along the right (resp., left) routing −→Pj (resp., ←−Pj) in terms of the edges in
E(Pj) ∩E(fi). The endpoint v ∈ V (e∗) visited later in −→Pj (resp., ←−Pj) is called the rightmost
node (resp., leftmost node) of fi, denoted by vr (fi) (resp., vl (fi)). The leftmost or rightmost
node of a face fi is uniquely determined and independent of the traversal direction on faces.
We have vl(fi) = vr(fi) if they coincide as the unique endpoint of a closed ear Pj.

Lemma 13 shows that our face-based routing can visit all nodes of a face fi ∈ F , including
the leftmost and rightmost nodes of fi, provided there is at most one failure in fi.

▶ Lemma 13. Given −→F (resp., ←−F), for a dynamic failure {u, v} ∈ F , if one of its arcs, say
(v, u), lies on a directed cycle

−→
fi ∈

−→
F (resp.,

←−
fi ∈

←−
F). Then, starting at u and traversing

along
−→
fi (resp.,

←−
fi), one can visit all nodes of V (fi) and eventually reach v, provided that

the face fi contains at most one failed edge, i.e., |F ∩ E(fi)| ≤ 1.

Proof. Our proof is carried out for the right routing −→F ; the case of the left routing←−F follows
analogously. Suppose (v, u) ∈

−→
fi is failed. Starting from u, the outgoing link (arc) along

−→
fi

is not failed, and hence there exists a directed sub-path from u to any node t ∈ V (fi) that is
entirely contained in

−→
fi \ {(v, u)} that is a directed path from u to v along

−→
fi . ◀

4.3 Dynamic 2-Resilient Basic Routing with One- or Two-Bit Rewriting
Now, we formally present dynamic 2-resilient routing schemes on planar graphs using one- or
two-bit rewriting. We first describe the two-bit rewriting algorithm and then show how to
refine it to a one-bit algorithm. Finally, we provide the runtime analysis of these algorithms.

4.3.1 2-Resilient Basic Routing Algorithm by Rewriting Two Bits
We first present our 2-resilient routing scheme on plane graphs by rewriting two bits,
implemented in Algorithm 1 and Algorithm 2, with an illustrative example in Fig. 4.

The core idea of the two-bit rewriting algorithm is to route packets through ears Pℓ ∈ P in
a waterfall manner towards Pℓ−1 when α = 0: a packet first follows←−Pℓ and, upon encountering
a failure, switches to −→Pℓ. If every ear contains at most one failure, the packet eventually
reaches t without invoking face-based routing (This case is proved by Lemma 14).

If a second failure (u, v) ∈ −→Pℓ occurs on the same ear Pℓ, routing switches to face-based
mode (α = 1) on the adjacent faces fi and fj , with (v, u) ∈

−→
fi and (v, u) ∈

←−
fj .

The algorithm first attempts
−→
fi with β = 0, and if unsuccessful, retries

←−
fj with β = 1.

Since at least one of {
−→
fi ,
←−
fj} contains a failure, the packet is guaranteed to reach the rightmost

OPODIS 2025

20:12 Resilient Routing Against Dynamic Failures

Algorithm 1 A 2-resilient basic routing scheme in 2-edge-connected planar graphs against
dynamic failures, achieved by rewriting one or two bits in packet headers.

Data: a plane graph G = (V, E) with ears P and faces F , and destination t ∈ V ;
1 Let vcursor ∈ V denote the current node processing a packet;
2 For a packet originated at v ∈ V , let vcursor ← v and decide an outgoing link (arc)

(vcursor, u) ∈ ←−−−Pcurr (left routing) with the current ear Pcurr ← Pmin (vcursor);
3 Initialize α← 0 ; // Bit α ∈ {0, 1}: 0 indicates routing on ears, otherwise on faces

4 Initialize β ← 0 ; // Bit β ∈ {0, 1}: 0 means right routing on faces, otherwise left

5 while the packet is not delivered to t ∈ V do
6 if α = 0 then

/* Routing on Ears */

7 vcursor decides the current ear Pcurr ∈ P and its direction by an incoming link
(arc), i.e., either (u, vcursor) ∈

←−−−
Pcurr or (u, vcursor) ∈

−−−→
Pcurr;

8 if the current node vcursor is not an endpoint of Pcurr then
9 decides the outgoing link: (vcursor, w) ∈ ←−−−Pcurr or (vcursor, w) ∈ −−−→Pcurr;

10 else
11 update Pcurr ← Pmin (vcursor) and follow ←−−−Pcurr (left) for outgoing link;
12 if the outgoing link (arc) (vcursor, w) is failed then
13 if (vcursor, w) ∈ −−−→Pcurr, then α← 1;
14 reverse (vcursor, w) to use (w, vcursor) as incoming link to continue;
15 else
16 moving from vcursor to next node w;

17 else
/* Routing on Faces; The bit β is not required by Algorithm 3 */

18 apply the subroutine of either Algorithm 2 (rewriting 2-bits) or Algorithm 3
(rewriting 1-bit) with the incoming link (w, vcursor) as the input;

19 α← 0;

node of either vr(fi) or vr(fj) to exit Pℓ, thereby resuming ear-based routing on some Pℓ′

with ℓ′ < ℓ to finally reach t. Note that Pℓ need not coincide with Pmin(fi′) for i′ ∈ {i, j}.

▶ Lemma 14. If every ear in P contains at most one failure in F , then Algorithm 1 routes
a packet to the destination t under two dynamic failures by only traversing along ears.

Proof. In Algorithm 1, when a packet begins at an internal node in an (including the initial)
ear Pcurr ∈ P, it is first routed along the left direction ←−−−Pcurr of Pcurr. Upon encountering a
failure, the traversal switches to the right direction −−−→Pcurr. If each ear satisfies |E(Pcurrent) ∩
F | ≤ 1, then one of the two routings, i.e., ←−−−Pcurr or −−−→Pcurr, always leads to an endpoint of
Pcurrent. From there, the packet proceeds into an earlier ear Pi ∈ P with i < curr, and
ultimately reaches P0 to arrive at t. Since ear indices strictly decrease, no ear is revisited,
and thus routing loops cannot occur. ◀

By Lemma 15, if two failures F = {e1, e2} are only shared by distinct faces fi, fj ∈ F ,
then this scenario can be excluded from the resilient routing design, as the node, where a
packet is currently staying, and destination t lie in separate connected components of G \F .

W. Dai, K.-T. Foerster, and S. Schmid 20:13

Algorithm 2 Two-Bit Rewriting Subroutine of Algorithm 1.

1 repeat
2 Traverse the directed cycle (face)

−→
fi with(w, vcursor) ∈

−→
fi if β = 0, otherwise

traverse along
←−
fi with (w, vcursor) ∈

←−
fi ;

3 until an outgoing link (vcursor, w) in
−→
fi (resp.,

←−
fi) is failied or vcursor = vr (fi);

4 if arriving at the rightmost vr (fi) of fi, i.e., vcursor = vr (fi) then
5 decide an outgoing link (arc) (vcursor, w) ∈ −−−→Pcurr (right routing) with the current

ear Pcurr ← Pmin (vcursor), and then move to w, i.e., vcursor ← w;
6 else
7 β ← 1;
8 vcursor updates the incoming link (arc) as (u, vcursor) ∈

←−−−
Pcurr (left routing) with

the current ear Pcurr ← Pmin (vcursor); // Pmin(vcursor) ≤ Pi, where the ear Pi

originally has two failures, triggering routing on faces

▶ Lemma 15. Let G = (V, E) be a 2-edge-connected plane graph with face set F . If two
distinct faces fi, fj ∈ F share two distinct edges e1, e2 ∈ E, i.e., e1, e2 ∈ E(fi) ∩ E(fj), then
G \ {e1, e2} is disconnected.

Proof. Consider the plane dual graph G∗ = (U∗, X∗) of G = (V, E), where each vertex
u∗

i ∈ U∗ corresponds to a face fi ∈ F of G, and each edge e ∈ E shared by two faces
fi, fj ∈ F corresponds to an edge {u∗

i , u∗
j} ∈ X∗. Note that G∗ may contain multi-edges

even if G is simple. Since e1, e2 are common to fi and fj , their duals e∗
1, e∗

2 are parallel edges
between u∗

i and u∗
j ; thus, {e∗

1, e∗
2} forms a simple cycle of length two in G∗.

By the cut–cycle duality for plane graphs [12], a set J ⊆ E is a minimal edge cut (bond)
in G iff the dual set X∗ (J) := {e∗ ∈ X∗ : e ∈ J} is a simple cycle in G∗. Applying this to
J = {e1, e2} shows that {e1, e2} is a bond of G. Thus, deleting e1 and e2 disconnects G. ◀

Now, we formally prove the correctness of the 2-bits rewriting algorithm in Theorem 16.

▶ Theorem 16. By combining Algorithm 1 with Algorithm 2, a packet can be successfully
routed to its destination t under two dynamic failures by rewriting two bits in its header.

Proof. By Lemma 14, we may assume that both failures e1, e2 ∈ F lie on the same ear
Pcurr ∈ P, and that the packet is currently located at a node vcursor between e1 and e2 on
Pcurr; otherwise, t can be reached solely via ear-based routing.

Let e2 = (u, v) be the second failure, with (u, v) ∈ −−−→Pcurr. By Lemma 11, there exist two
distinct faces fi, fj ∈ F (with one possibly being the outer face), such that (v, u) ∈

−→
fi and

(v, u) ∈
←−
fj . By Lemma 15, at least one of fi, fj contains only e2 but not e1.

We first traverse
−→
fi starting at u due to β = 0. If no further failure occurs, then by

Lemma 13, we reach the rightmost node vr(fi) of fi, closer to the right endpoint of Pcurr

than (u, v) along −−−→Pcurr. Note that the directed subpath of −−−→Pcurr from vr(fi) cannot include
either e1 or e2 by Definition 12. From vr(fi), either routing continues along −−−→Pcurr to reach
the endpoint of Pcurr, or vr(fi) is already an internal node of an ear Pj with j < curr, from
which t is reachable by ear-based routing alone. Note that Pcurr may not be Pmin (fi).

If instead traversal of
−→
fi encounters e1, switching back to ear-based routing either leads

to the endpoint of Pcurr along ←−−−Pcurr or to revisiting (u, v) along −−−→Pcurr. In this case, face-based
routing resumes via

←−
fj (since β = 1 and (v, u) ∈

←−
fj), eventually reaching the rightmost vr(fj)

OPODIS 2025

20:14 Resilient Routing Against Dynamic Failures

P0

P1

o

P2

f0

f1

f2

f∞

t

s

a

P3 P4
f3 f4vl

3
vr

3 vr
4

vl
4

vl
1 vr

1vl
2 vr

2b c
×
e1

×
e2

Figure 4 An illustration of executing Algorithm 1 with one- or two-bit rewriting subroutines.
On the shown plane graph, right (resp., left) routing on faces fi ∈ F with i ̸= ∞ follows the
counterclockwise (resp., clockwise) direction. For each face fi with i ̸= 0,∞, the rightmost (resp.,
leftmost) node denoted by vr

i (resp., vl
i) is marked in red (resp., yellow), while the rightmost/leftmost

node of fi with i = 0,∞ is t. Starting from s, the packet first traverses ←−P1 to reach P0 (containing t)
via vl

1, and continues along ←−P0 upon the first failed edge e1 at b, and then switches to −→P0, hitting the
second failed arc e2 = (c, vr

2) and setting α = 1. Using Algorithm 2 (two-bit rewriting), the packet
starts with the bit-string (α, β) = (1, 0). Taking the failed arc (vr

2 , c) as the incoming link, it is
routed along

−→
f2 through (c, vr

1 , s, vl
1, b), where it revisits the failure e1. The bits (α, β) then updates

from (1, 0) to (0, 1), causing the routing on ear P0 to be repeated and the packet to meet e2 again to
set α = 1. Since (α, β) = (1, 1) with incoming arc (vr

2 , c), the algorithm enforces left routing on f4,
following

←−
f4 via (c, vr

1 , vl
4, vr

4). The packet halts at the rightmost node vr
4 of f4 and finally reaches

t along −→P0. Note that Algorithm 2 considers only the rightmost nodes. However, for Algorithm 3
(one-bit rewriting), which enforces only right routing on faces, the behavior differs. After traversing
−→
f2 via (c, vr

1 , s, vl
1, b) and encountering the failed arc (b, vl

2) ∈
−→
f2 , the value α = 1 is not updated.

The packet then uses (vl
2, b) ∈

−→
f3 as an incoming link to continue along

−→
f3 , but does not stop at the

rightmost node vr
3 of f3 because its incoming link (vl

1, vr
3) ∈ −→P0. Instead, it halts at the leftmost

node vl
3 of f3, since the incoming link (vr

3 , vl
3) /∈

←−
P0, and then resumes routing along ←−P0 to reach t.

of fj . Although vr(fj) may differ from vr(fi), the directed subpath of −−−→Pcurr from vr(fj)
onward avoids both e1 and e2. From vr(fj), the above ear-based procedure applies. ◀

4.3.2 Improved 2-Resilient Routing Algorithm by Rewriting One Bit
After presenting the 2-bit rewriting approach, we refine the analysis of structural properties
of the plane embedding and reduce the rewriting requirement from two bits to one. This is
achieved by traversing all faces exclusively in the rightward direction, i.e., only along −→F .

The key idea of 1-bit rewriting is as follows: upon hitting a second failed arc (u2, v2) ∈ −−−→Pcurr

(Pcurr is the current ear), routing switches to
−→
fi with (v2, u2) ∈

−→
fi . If |E(fi)∩F | = 1, packet

halts at vr(fi) and resumes along −−−→Pcurr to leave Pcurr. Otherwise, revisiting the first failed arc
(u1, v1) ∈

−→
fi (also in←−−−Pcurr), rerouting proceeds via

−→
fj with (v1, u1) ∈

−→
fj and {u2, v2} /∈ E(fj).

In this case, packet halts at vl(fj) and continues along ←−−−Pcurr to exit Pcurr. Lemma 17
states that all arcs of

−→
fi belonging to a common ear Pj are oriented consistently, either

entirely as −→Pj or entirely as ←−Pj . This property is used to prove the correctness of detour
termination in Algorithm 3. The proof of Lemma 17 is deferred to Appendix B.

▶ Lemma 17. Given −→F , for each face fi ∈ F and an ear Pj with |E(fi) ∩E(Pj)| ≥ 2, there
cannot exist arcs (a, b), (c, d) ∈

−→
fi such that {a, b}, {c, d} ∈ E(fi) ∩ E(Pj) with (a, b) ∈ −→Pj

and (c, d) ∈ ←−Pj. Hence,
−→
fi must be consistent with either −→Pj or ←−Pj if |E(fi) ∩ E(Pj)| ≥ 1.

Next, we introduce a 2-resilient basic routing scheme with one-bit rewriting for plane
graphs (Algorithms 1 and 3) and establish its correctness in Theorem 18.

W. Dai, K.-T. Foerster, and S. Schmid 20:15

Algorithm 3 One-Bit Rewriting Subroutine of Algorithm 1.

1 repeat
2 Traverse the directed cycle (face)

−→
fi with (w, vcursor) ∈

−→
fi . Upon a failure

(outgoing arc) (vcursor, w) ∈
−→
fi , update fi ← fj , s.t., fj ∈ F and

(w, vcursor) ∈
−→
fj , and continue along

−→
fi (i = j) ; // Only right routing on faces

3 until
(
vcursor is an endpoint of Pℓ

)
or

(
vcursor = vr(fi) ∧ (u, vcursor) /∈

−→
Pℓ

)
or(

vcursor = vl(fi) ∧ (u, vcursor) /∈
←−
Pℓ

)
, where Pℓ = Pass(fi) and (u, vcursor) ∈

−→
fi is the

incoming link;
4 decide an outgoing link (arc) (vcursor, w) ∈ −−−→Pcurr if vcursor = vr (fi), otherwise

(vcursor, w) ∈ ←−−−Pcurr, where Pcurr ← Pmin (vcursor), and move to w, i.e., vcursor ← w;

▶ Theorem 18. Algorithm 1, in conjunction with Algorithm 3, can route a packet to the
destination t under two dynamic failures by rewriting one bit in the packet header.

Proof. It remains to consider the case where a packet gets stuck on an ear Pcurr ∈ P containing
two failures, where first hitting (u1, v1) ∈ ←−−−Pcurr and then encountering (u2, v2) ∈ −−−→Pcurr.

Let fi ∈ F with associated ear Pℓ := Pass(fi) and (v2, u2) ∈
−→
fi . Then

−→
fi is consistent

with ←−−−Pcurr (Lemma 17), while its consistency with Pℓ depends on whether Pcurr = Pℓ.
If fi contains only one failure, we will show a traversal along

−→
fi from u2 terminates at

either the rightmost node vr(fi), the leftmost node vl(fi), or an endpoint of Pℓ (Algorithm 3,
Lines 1–3;), from which ear-based routing resumes to reach t. By Lemma 13, all nodes of V (fi)
are eventually visited. If the current node vcursor is an endpoint of Pℓ, the traversal along−→
fi terminates and routing leaves Pℓ through this endpoint. We now assume vr(fi) ̸= vl(fi);
otherwise, vr(fi) = vl(fi) is itself an endpoint of Pℓ (Definition 12).

If Pcurr = Pℓ, then
−→
fi is consistent with ←−Pℓ. In this case, we can show the traversal must

halt at the rightmost node vr(fi) (not at vl(fi)). Let (u, vr(fi)) ∈
−→
fi be the arc preceding

vr(fi) along
−→
fi (we may have u2 = vr(fi) with v2 = u). Suppose {u, vr(fi)} ∈ E(Pℓ). Then,

by (u, vr(fi)) ∈
−→
fi and Lemma 17, it follows that (u, vr(fi)) ∈

←−
Pℓ. By Definition 10, this

would imply (vr(fi), u) ∈ −→Pℓ, contradicting that vr(fi) is the rightmost node of fi. Hence,
it implies {u, vr(fi)} /∈ E(Pℓ) and the traversal along

−→
fi halts at vr(fi). To show that the

traversal cannot halt at vl(fi), assume there exists an arc (µ, vl(fi)) ∈
−→
fi . If (µ, vl(fi)) /∈

←−
Pℓ,

then by Lemma 17, we have {µ, vl(fi)} /∈ E(Pℓ). By Definition 12, vl(fi) must have a
neighbor ν with (vl(fi), ν) ∈

−→
fi and (vl(fi), ν) ∈ ←−Pℓ. This implies ν is visited after vl(fi)

along ←−Pℓ, contradicting that vl(fi) is the leftmost node. Hence, (µ, vl(fi)) ∈
−→
fi implies

(µ, vl(fi)) ∈
←−
Pℓ, indicating that the traversal cannot stop at vl(fi). Consequently, from vr(fi)

the ear-based traversal along −−−→Pcurr leaves Pcurr without further failures and finally reaches t.
If Pcurr ̸= Pℓ, then

−→
fi can be consistent with either ←−Pℓ or −→Pℓ. Starting at u2 /∈ V (Pℓ), if

−→
fi consistent with ←−Pℓ (resp., −→Pℓ), the traversal along

−→
fi stops at vr (fi) (resp., vl (fi)) since

the incoming link (arc) (w, vcursor) /∈
←−
Pℓ (resp., (w, vcursor) /∈

−→
Pℓ). As Pℓ contains no failure

(ℓ < curr), the ear-based routing from vr(fi) (resp., vl(fi)) along −→Pℓ (resp., ←−Pℓ) always leaves
Pℓ and continue traversing on the ears Po with o < curr to reach t.

If there are two failures on Pcurr, upon hitting
(
u1, v1)

∈
←−−−
Pcurr (stopping at u1), by

Lemma 17, we know
(
v2, u2)

∈
−→
fi and

(
u1, v1)

∈
−→
fi since

−→
fi is consistent with ←−−−Pcurr. In this

case there exists a face fj ∈ F with associated ear Pℓ′ := Pass(fj) such that (v1, u1) ∈
−→
fj

(By Lemma 15, only one failure on fj), because
−→
fj is consistent with −−−→Pcurr. If Pcurr = Pℓ′ ,

OPODIS 2025

20:16 Resilient Routing Against Dynamic Failures

then traversing
−→
fj from u1 halts at either an endpoint of Pℓ′ or at vl(fj). Then, following

←−
Pℓ′ from vl (fj) (resp., the endpoint of Pℓ′) by ear-based routing can leave Pℓ′ to eventually
reach t. However, if Pcurr ̸= Pℓ′ , we can argue similarly as above, since no failures on Pℓ′ . ◀

Complexity Analysis. We compute the routing rules of Algorithm 1 in a centralized model.
The one- and two-bit rewriting approaches have identical time costs. For a graph G with n

nodes and m edges, a planar embedding can be computed in O(n) [2,20], an ear-decomposition
in O(n + m) [26], and ear-/face-based routing rules in O(m). In the worst case, recomputing
ear-decompositions per destination yields O(n2 + mn) total time. By comparison, source-
matched routing [8] needs O(nm) per source–destination pair, i.e., at least n2 times slower.
Memory usage is reduced from n2 tables (source–destination) to only n (per destination).
Moreover, our reliance on ear-decomposition and planar embeddings—well studied in parallel
and distributed computing—underscores the practical feasibility of our routing schemes.

5 Conclusions and Future Work

In this paper, we investigated the resilience achievable by basic routing augmented with
packet-header rewriting under dynamic failures. We proved that k ≥ 2 resilience without any
rewriting is impossible in planar graphs, and that, in general graphs, the perfect k-resilience
is unfeasible by only rewriting log k bits. For planar graphs, we presented tight 2-resilient
basic routing algorithms that require rewriting only one or two bits. Future work includes
designing 2-resilient basic routing algorithms for general graphs with limited bit rewriting.

References
1 Mohammad Alizadeh et al. Data center TCP (DCTCP). In SIGCOMM. ACM, 2010. doi:

10.1145/1851182.1851192.
2 John Boyer and Wendy Myrvold. On the cutting edge: Simplified o(n) planarity by edge

addition. Journal of Graph Algorithms and Applications, 8(3):241–273, January 2004. doi:
10.7155/jgaa.00091.

3 Marco Chiesa et al. On the resiliency of randomized routing against multiple edge failures. In
ICALP, 2016. doi:10.4230/LIPIcs.ICALP.2016.134.

4 Marco Chiesa et al. The quest for resilient (static) forwarding tables. In INFOCOM. IEEE,
2016. doi:10.1109/INFOCOM.2016.7524552.

5 Marco Chiesa et al. On the resiliency of static forwarding tables. IEEE/ACM Trans. Netw.,
25(2):1133–1146, 2017. doi:10.1109/TNET.2016.2619398.

6 Marco Chiesa et al. Fast reroute on programmable switches. IEEE/ACM Trans. Netw.,
29(2):637–650, 2021. doi:10.1109/TNET.2020.3045293.

7 Marco Chiesa et al. A survey of fast-recovery mechanisms in packet-switched networks. IEEE
Commun. Surv. Tutorials, 23(2):1253–1301, 2021. doi:10.1109/COMST.2021.3063980.

8 Wenkai Dai et al. A tight characterization of fast failover routing: Resiliency to two link
failures is possible. In SPAA, pages 153–163. ACM, 2023. doi:10.1145/3558481.3591080.

9 Wenkai Dai et al. On the resilience of fast failover routing against dynamic link failures, 2024.
arXiv:2410.02021, doi:10.48550/arXiv.2410.02021.

10 Wenkai Dai et al. On the resilience of fast failover routing against dynamic link failures. In
IFIP Networking, 2025.

11 Fabien de Montgolfier et al. Treewidth and hyperbolicity of the internet. In NCA, pages 25–32.
IEEE Computer Society, 2011. doi:10.1109/NCA.2011.11.

12 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.7155/jgaa.00091
https://doi.org/10.7155/jgaa.00091
https://doi.org/10.4230/LIPIcs.ICALP.2016.134
https://doi.org/10.1109/INFOCOM.2016.7524552
https://doi.org/10.1109/TNET.2016.2619398
https://doi.org/10.1109/TNET.2020.3045293
https://doi.org/10.1109/COMST.2021.3063980
https://doi.org/10.1145/3558481.3591080
https://arxiv.org/abs/2410.02021
https://doi.org/10.48550/arXiv.2410.02021
https://doi.org/10.1109/NCA.2011.11

W. Dai, K.-T. Foerster, and S. Schmid 20:17

13 Joan Feigenbaum et al. Brief announcement: On the resilience of routing tables. In PODC.
ACM, 2012. doi:10.1145/2332432.2332478.

14 Klaus-Tycho Foerster et al. CASA: congestion and stretch aware static fast rerouting. In
INFOCOM. IEEE, 2019. doi:10.1109/INFOCOM.2019.8737438.

15 Klaus-Tycho Foerster et al. Brief announcement: What can(not) be perfectly rerouted locally.
In DISC, pages 46:1–46:3, 2020. doi:10.4230/LIPIcs.DISC.2020.46.

16 Klaus-Tycho Foerster et al. Grafting arborescences for extra resilience of fast rerouting schemes.
In INFOCOM, pages 1–10. IEEE, 2021. doi:10.1109/INFOCOM42981.2021.9488782.

17 Klaus-Tycho Foerster et al. On the feasibility of perfect resilience with local fast failover. In
Symposium on Algorithmic Principles of Computer Systems (APOCS), 2021. doi:10.1137/1.
9781611976489.5.

18 Phillipa Gill et al. Understanding network failures in data centers: measurement, analysis,
and implications. In SIGCOMM. ACM, 2011. doi:10.1145/2018436.2018477.

19 S. Hannenhalli et al. A distributed algorithm for ear decomposition. In Proceedings of
ICCI’93: 5th International Conference on Computing and Information, pages 180–184, 1993.
doi:10.1109/ICCI.1993.315382.

20 John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–568, October
1974. doi:10.1145/321850.321852.

21 Louis Ibarra and Dana Richards. Efficient parallel graph algorithms based on open ear decom-
position. Parallel Computing, 19(8):873–886, 1993. doi:10.1016/0167-8191(93)90071-R.

22 Junda Liu et al. Ensuring connectivity via data plane mechanisms. In NSDI, 2013. URL: https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda.

23 L. Lovasz. Computing ears and branchings in parallel. In 26th Annual Symposium on
Foundations of Computer Science (sfcs 1985), pages 464–467, 1985. doi:10.1109/SFCS.1985.
16.

24 Athina Markopoulou et al. Characterization of failures in an operational ip backbone network.
IEEE/ACM transactions on Networking, 16(4):749–762, 2008. doi:10.1145/1453698.1453699.

25 H. E. Robbins. A theorem on graphs, with an application to a problem of traffic control.
The American Mathematical Monthly, 46(5):281–283, 1939. URL: https://doi.org/10.2307/
2303897.

26 Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Information Processing
Letters, 113(7):241–244, 2013. doi:10.1016/j.ipl.2013.01.016.

27 Aman Shaikh et al. A case study of ospf behavior in a large enterprise network. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet Measurment, IMW ’02, pages 217–230.
ACM, 2002. doi:10.1145/637201.637236.

28 Y. H. Tsin. On finding an ear decomposition of an undirected graph distributively. Information
Processing Letters, 91(3):147–153, 2004. doi:10.1016/j.ipl.2004.04.004.

29 Daniel Turner et al. California fault lines: understanding the causes and impact of network
failures. In SIGCOMM. ACM, 2010. doi:10.1145/1851182.1851220.

30 Balajee Vamanan et al. Deadline-aware datacenter tcp (D2TCP). In SIGCOMM. ACM, 2012.
doi:10.1145/2342356.2342388.

31 Erik van den Akker and Klaus-Tycho Foerster. Short paper: Towards 2-resilient local
failover in destination-based routing. In ALGOCLOUD. Springer, 2024. doi:10.1007/
978-3-031-94677-6_2.

32 David Watson et al. Experiences with monitoring ospf on a regional service provider network.
In Proceedings of the 23rd International Conference on Distributed Computing Systems, ICDCS
’03, page 204, USA, 2003. IEEE Computer Society. doi:10.1109/ICDCS.2003.1203467.

33 Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2 edition, September 2000.
34 Baohua Yang et al. Keep forwarding: Towards k-link failure resilient routing. In INFOCOM.

IEEE, 2014. doi:10.1109/INFOCOM.2014.6848098.
35 David Zats et al. Detail: reducing the flow completion time tail in datacenter networks. In

SIGCOMM. ACM, 2012. doi:10.1145/2342356.2342390.

OPODIS 2025

https://doi.org/10.1145/2332432.2332478
https://doi.org/10.1109/INFOCOM.2019.8737438
https://doi.org/10.4230/LIPIcs.DISC.2020.46
https://doi.org/10.1109/INFOCOM42981.2021.9488782
https://doi.org/10.1137/1.9781611976489.5
https://doi.org/10.1137/1.9781611976489.5
https://doi.org/10.1145/2018436.2018477
https://doi.org/10.1109/ICCI.1993.315382
https://doi.org/10.1145/321850.321852
https://doi.org/10.1016/0167-8191(93)90071-R
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/liu_junda
https://doi.org/10.1109/SFCS.1985.16
https://doi.org/10.1109/SFCS.1985.16
https://doi.org/10.1145/1453698.1453699
https://doi.org/10.2307/2303897
https://doi.org/10.2307/2303897
https://doi.org/10.1016/j.ipl.2013.01.016
https://doi.org/10.1145/637201.637236
https://doi.org/10.1016/j.ipl.2004.04.004
https://doi.org/10.1145/1851182.1851220
https://doi.org/10.1145/2342356.2342388
https://doi.org/10.1007/978-3-031-94677-6_2
https://doi.org/10.1007/978-3-031-94677-6_2
https://doi.org/10.1109/ICDCS.2003.1203467
https://doi.org/10.1109/INFOCOM.2014.6848098
https://doi.org/10.1145/2342356.2342390

20:18 Resilient Routing Against Dynamic Failures

A Deferred Proofs of Theorems and Lemmas in Section 3

We restate the theorems and lemmas before the proofs for ease of readability.

▶ Theorem 3. There exists a 2-edge-connected planar graph G as shown in Fig. 3, where it
is impossible to have a 2-resilient source-matched routing scheme against dynamic failures
without rewriting bits in packet headers.

Proof of Theorem 3. We first assume that a 2-resilient source-matched forwarding scheme
Π(s,t) exists in the graph G as shown in Fig. 3. Then, for contradiction, we show that a
packet originated at s cannot be routed to the destination t anymore, but is forwarded in a
loop when there are two dynamic failures F in G, even if there exists an s− t path in the
graph G \ F .

Let V ′ = {v0, . . . , v5} and U ′ = {u0, . . . , u5}. For each node v ∈ V (G), we define a
forwarding function πv (u, Fv) at v, where Fv ⊆ F denotes a subset of dynamic failures F

that incidents on v and the source-destination (s, t) is used implicitly in this proof. Clearly,
the induced graphs G[U ′] and G[V ′] are symmetric. By symmetry, when Fs = ∅, an arbitrary
node in {v0, u0} can be chosen as the outgoing port for the packet originated at s. W.l.o.g.,
we assume that v0 is chosen, i.e., πs (⊥) = v0 for Fs = ∅.

Let dynamic failures F ⊆ E (G) be a set of arbitrary links, s.t., |F | ≤ 2 and F can be
empty. Next, we claim that, given πs (⊥) = v0 with Fs = ∅, for each node v ∈ V ′ ∪ {s}, its
routing function must be link-circular even when F are static failures. If v ∈ V ′ ∪ {s} has
∆G\F (v) = 1, then πv (u, Fv) = u, where πv ∈ Π(s,t) and u ∈ EG\F (v) denotes its unique
neighbor in G\F , otherwise packets get stuck at v. This case can be thought as a special case
of the link-circular forwarding. If v ∈ V ′∪{s} has ∆G\F (v) = 3, i.e., ∆G (v) = ∆G\F (v) and
Fv = ∅, a non-link-circular forwarding function at v must imply ∃x, y ∈ NG\F (v) : πv (x) = y

and πv (y) = x, where NG\F (v) = {x, y, z} are neighbors of v in G \ F . However, a non-link-
circular forwarding function cannot be 2-resilient if the only s− t path remained in G \F has
to go through the link {v, z}. For example, when F = {{s, u0}, {v2, v3}} and ∆G\F (v1) = 3,
if a non-link-circular forwarding function has πv1 (v0) = v2 and πv1 (v2) = v0, then a packet
starting at s cannot approach t anymore even if s− t is connected via {v1, v4}. A similar
argument can be established if πv1 (v0) = v4 and πv1 (v4) = v0, and F = {{s, u0}, {v4, v3}}.
Moreover, for each v ∈ V ′ ∪{s} having ∆G\F (v) = 2, a non-link-circular forwarding function
at v must imply ∃x ∈ NG\F (v) : πv (x) = x for NG\F (v) = {x, y}, which can make v become
a dead-end node, i.e., a packet cannot traverse from one neighbor of v to the other neighbor
to approach t anymore. Therefore, each v ∈ V ′ ∪ {s} must have a link-circular forwarding
function.

If v ∈ V ′ ∪ {s} has ∆G\F (v) = 2, then its link-circular forwarding function is unique,
i.e., from one neighbor to the other neighbor. If v ∈ V ′ ∪ {s} has ∆G\F (v) = 3, where
Fv = ∅, then there are two possible circular orderings for its neighbors NG\F (v), i.e., one
clockwise and the other counter-clockwise based on their geometric locations in Fig. 3. For
example, at v1, the clockwise ordering of NG (v1) is ⟨v0, v2, v4⟩ and the counter-clockwise
ordering of NG (v0) is ⟨v0, v4, v2⟩. Thus, for each v ∈ V ′∪{s} that has ∆G\F (v) = 3, its link-
circular forwarding function can choose one of two options: clockwise and counter-clockwise,
arbitrarily.

Fixing {s, u0} ∈ F , let {v2, v3} ∈ F (resp., {v4, v3} ∈ F) be a dynamic failure in
G [V ′ ∪ {s, t}] if v0 and v9 both have the clockwise (resp., counter-clockwise) of link-
circular forwarding functions. In this case, even if s, t are connected in G [V ′ ∪ {s, t}],
a packet originated at s will enter a forwarding loop: (v0, v1, v2, v1, v4, v3, v2, v1) (resp.,
(v0, v1, v4, v1, v2, v3, v4, v1)), where the dynamic failure {v2, v3} (resp., {v4, v3}) is down only

W. Dai, K.-T. Foerster, and S. Schmid 20:19

for the first hitting but always up since then, but never traverses the link {v3, v5} to arrive
at t. When v1 and v3 have the different type, by fixing {s, u0} ∈ F , even if there is no
dynamic failure in G [V ′ ∪ {s, t}], a forwarding loop: (s, v0, v1, v2, v3, v4, v1, v0, s) occurs if v1
and v3 take forwarding functions of clockwise and counter-clockwise orderings respectively,
otherwise another forwarding loop: (s, v0, v1, v4, v3, v2, v1, v0, s) exists. Moreover, a similar
discussion can be applied when πs (⊥) = u0 for Fs = ∅.

Thus, no 2-resilient source-matched forwarding scheme against dynamic failures for (s, t)
exists in Fig. 3. ◀

▶ Theorem 4. There exists graphs for which any resilient source-matched routing that can
tolerate 2k dynamic failures needs rewriting of at least k bits in packet headers for k ∈ N.

Proof of Theorem 4. We prove Theorem 4 by induction on k. Theorem 3 implies that there
is a graph G = (V, E) as shown in Fig. 3, where any 2-resilient source-matched routing for
(vs, vt) needs rewriting at least one bit, proving the initial case of k = 1. We assume that
there is a general graph H = (U, EU), where a 2k-resilient source-matched routing against
dynamic failures for a source-destination pair (us, ut) (resp., (ut, us)) with us, ut ∈ U needs
rewriting at least k ≥ 2 bits.

Now, as illustrated in Fig. 5, we can construct another graph G′ = (V ′, E′) by re-
placing each edge {vi, vj} ∈ E in G with a graph Gi,j = Hi,j ∪

{
{vi, ui,j

s }, {u
i,j
t , vj}

}
,

where Hi,j =
(

U i,j , Ei,j
U

)
is isomorphic to H, i.e., U i,j =

{
ui,j

ℓ : uℓ ∈ U
}

and Ei,j
U ={

{ui,j
ℓ , ui,j

o } : {uℓ, uo} ∈ EU

}
, and nodes ui,j

s , ui,j
t ∈ U i,j . We note that we use vs and s

(resp., vt and t) interchangeably in this proof.
Next, we claim that any (2k + 2)-resilient source-matched routing for (vs, vt) in G′ needs

rewriting at least k + 1 bits. Let F ′ = F i,j ∪ F be any 2k + 2 dynamic failures in E′, where
F i,j ⊂ Ei,j

U for {vi, vj} ∈ E has
∣∣F i,j

∣∣ = 2k and F ⊆
{{
{vi, ui,j

s }, {u
i,j
t , vj}

}
: {vi, vj} ∈ E

}
has |F | = 2.

In the graph G as shown in Fig. 3, we always assume πs (⊥) = v0 for Fs = ∅. Let
F ∗ = {e1, e2} denote two dynamic failures in G. For example, when e1 = {v5, t} and
e2 = {v1, v4}, the packet starting at s meets the first failure (v5, t), and it has to go through
(v2, v1) back to v1 since {v1, v4} failed. Clearly, one bit in the packet header must be rewritten
to inform v1 whether the packet has already visited v3, s.t., v1 can decide forwarding it to s or
v4 provided that {v1, v4} is recovered. Similarly, for F ∗ in G′, we set {u5,t

t , vt}, {u1,4
t , v4} ∈ F

and F i,j = F 1,2, we still need one bit at v1 to indicate whether the packet has already visited
v3. Still, to go through H1,2 to arrive at v1, we need rewriting of additional k bits under
failures F i,j . Thus, we need rewriting k + 1 bits for 2k + 2 dynamic failures in G′. For other
failure cases in G, we can similarly map them to scenarios in G′. ◀

B Deferred Proofs of Theorems and Lemmas in Section 4

We restate the theorems and lemmas before the proofs for ease of readability.

▶ Lemma 17. Given −→F , for each face fi ∈ F and an ear Pj with |E(fi) ∩E(Pj)| ≥ 2, there
cannot exist arcs (a, b), (c, d) ∈

−→
fi such that {a, b}, {c, d} ∈ E(fi) ∩ E(Pj) with (a, b) ∈ −→Pj

and (c, d) ∈ ←−Pj. Hence,
−→
fi must be consistent with either −→Pj or ←−Pj if |E(fi) ∩ E(Pj)| ≥ 1.

OPODIS 2025

20:20 Resilient Routing Against Dynamic Failures

vi vj

H i,j
ui,j

tui,j
s

vjvi

Gi,j

Figure 5 An illustration of constructing the graph G′ in the proof of Theorem 4, where we
replace each edge {vi, vj} in the graph G as shown in Fig. 3 with another graph Gi,j = Hi,j ∪{
{vi, ui,j

s }, {ui,j
t , vj}

}
.

Proof. We assume that there is a face fi ∈ F and an ear Pj ∈ F such that |E(fi) ∩ E(Pj)| ≥
2, s.t., there are two distinct arcs (a, b), (c, d) ∈

−→
fi that satisfies {a, b}, {c, d} ∈ E(fi)∩E(Pj),

(a, b) ∈ −→Pj and (c, d) ∈ ←−Pj , and then we prove the theorem by a contradiction.
For a plane graph G, removing any edge preserves planarity [12, 33]. Let Gi :=⋃

ℓ≤i Pℓ, i ≤ κ, denote the plane subgraph after inserting the ear Pi. By the defini-
tion of ear-decomposition, only the endpoints of Pi+1 lie in Gi, so adding Pi+1 is equivalent
to inserting an edge into Gi (this edge can be a self-loop on the endpoint of Pi+1 if Pi+1 is
a closed ear). Moreover, after inserting Pi+1, the graph Gi+1 is 2-edge-connected, and by
Lemma 6, at least one new face is created in Gi+1 compared to Gi.

Since both Gi ⊆ Gi+1 and Gi+1 are plane, adding Pi+1 (treated as an edge) can only
split a face of Gi (including outer face) into two faces in Gi+1, otherwise, Gi+1 would not be
plane. It implies that the region of any face of Gi+1 must be only contained in a face of Gi.

Consider Gj :=
⋃

ℓ≤j Pℓ with an edge Pj ∈ P that satisfies |E(fi) ∩ E(Pj)| ≥ 2. Hence,
Pj must divide some face of Gj−1 into two faces f j

i , f j
j ∈ F(Gj), sharing Pj as common

boundary. Right-routing along
−→
f j

i and
−→
f j

j induces the directed paths −→Pj and ←−Pj , respectively.
As further ears are added, faces f j

i and f j
j may be further subdivided.

Now suppose there exist arcs (a, b), (c, d) ∈
−→
fi with {a, b}, {c, d} ∈ E(fi) ∩ E(Pj), where

(a, b) ∈ −→Pj , (c, d) ∈ ←−Pj and fi ∈ F (G). Then the region of fi (unbounded if fi = f∞) would
intersect both regions of f j

i and f j
j in Gj , contradicting the planarity of G.

Hence,
−→
fi must be consistent with either ←−Pj or −→Pj . Specifically, if E∩ (fj , Pj) ̸= ∅,

then either |E∩ (fj , Pj)| =
∣∣∣E (−→

fi

)
∩ E

(−→
Pj

)∣∣∣ or |E∩ (fj , Pj)| =
∣∣∣E (−→

fi

)
∩ E

(←−
Pj

)∣∣∣, where

E∩ (fj , Pj) := E (fi)∩E (Pj), E
(−→

fi

)
∩E

(−→
Pj

)
(resp., E

(−→
fi

)
∩E

(←−
Pj

)
) implies the common

arcs of
−→
fi and −→Pj (resp., ←−Pj). ◀

	1 Introduction and Related Work
	1.1 Contributions
	1.2 Organization

	2 Models and Preliminaries
	3 Limitations of Previous Approaches and Lower Bounds
	3.1 Limitations of Prior Work
	3.2 Impossibility of Handling Dynamic Failures in General Graphs

	4 2-Resilient Routing Against Dynamic Failures on Planar Graphs
	4.1 Problem Reductions and Basic Observations
	4.2 Routing on Ear Decomposition and Faces
	4.2.1 Routing Rules Based on Ear Decomposition.
	4.2.2 Routing Rules on Faces of Plane Graph

	4.3 Dynamic 2-Resilient Basic Routing with One- or Two-Bit Rewriting
	4.3.1 2-Resilient Basic Routing Algorithm by Rewriting Two Bits
	4.3.2 Improved 2-Resilient Routing Algorithm by Rewriting One Bit

	5 Conclusions and Future Work
	A Deferred Proofs of Theorems and Lemmas in Section 3
	B Deferred Proofs of Theorems and Lemmas in Section 4

