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—— Abstract

Small-world networks are attractive for the efficient routing they provide, requiring only a low link
density. They have hence also been considered for the design of distributed systems, such as peer-to-
peer networks. However, existing small-world network designs are oblivious to the actual traffic they
serve. In this paper, we initiate the study of demand-aware small-world networks. In particular, we
extend the Kleinberg graph model, by allowing the nodes to choose the distribution of long-range
links according to the traffic demand. We present a formal analysis of the weighted route lengths
for the important case of clustered demands. We show both in theory and in simulations, using
real-world traffic workloads, that demand-aware small-world graphs can significantly outperform
their demand-oblivious counterparts.
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1 Introduction

Small-world networks have fascinated researchers for many decades. They are not only used
to describe natural and social networks, but also to build distributed systems such as peer-
to-peer systems [20, 26]. In his influential experiment, Milgram [30] uncovered that distances
among two people are often surprisingly short, also known as the six-degrees-of-separation
phenomenon. The latest since Kleinberg’s algorithmic explanation [24], showing that simple
greedy strategies can lead to (poly-)logarithmic routes in augmented grids, such navigable
networks have also inspired computer scientists to develop communication networks aiming
to imitate the desirable properties of small-world networks, e.g., [10, 28].

A popular approach to model and design small-world networks, first introduced by Watts
and Strogatz [36], is to combine two networks: as the basis, we take a network that has a
large cluster coefficient or a d-dimensional grid, and then we augment such a graph with
random links, according to a certain distribution, typically a power law distribution. This
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augmentation represents acquaintances that connect nodes to parts of the network that
would otherwise be far away.

In this paper, we revisit such small-world networks from a novel perspective and initiate
the study of demand-aware small-world network designs. Our perspective is motivated
by the observation that existing small-world network designs are optimized in a demand-
oblivious manner, for the worst-case diameter or route lengths, in case of uniform all-to-all
communication demands. However, in practice, communication demands typically come with
much structure and are highly skewed [5], which may be exploited to provide even shorter
routes. Demand-aware networks have recently also received much attention in the context of
datacenter network designs, enabled by novel reconfigurable optical switches [22].

We first consider a one-dimensional grid and assume that the demands are clustered and
sparse, where a majority of the nodes does not communicate at all. Such demand graphs can
be found in real-world datasets such as Facebook datacenters [15] and in high performance
computing (HPC) cluster traffic traces [5] that we analyze in this work. We show a strategy
to augment the one-dimensional grid network such that the expected distances between any
pair of nodes in the demand-aware setting are improved over the demand-oblivious strategies.
We also extend our theoretical analysis to the standard case of two-dimensional grids. In
our experiments on synthetic and real-world data, we show that the demand-aware strategy
considerably outperforms the existing demand-oblivious strategies.

1.1 Contribution

In this work, we initiate the study of demand-aware small-world network designs. We present
a theoretical analysis of two main settings where the nodes are arranged along a cycle
(one-dimensional grid) and along a two-dimensional grid. The demands are assumed to be
sparse and clustered. The cluster sizes are analyzed for the case of Uniform, Poisson, and
power law distributions. We show that adding edges to a network locally in a randomized but
demand-aware manner outperforms the original demand-oblivious augmentation methods
based on Watts and Strogatz [36] and Kleinberg [24].

Our theoretical analysis is motivated by the empirical fact that the demands are clustered
in datacenter networks and that many nodes do not participate in communication. Indeed,
we perform an empirical analysis of the HPC cluster traffic traces [5] and show that the actual
traces are well represented by the theoretical demand-aware small-world model in the one-
dimensional grid case. We then run simulations of our algorithm on synthetically generated
data as well as on the HPC cluster traffic traces. Also our empirical evaluations show
that demand-aware strategies to augment the network outperform their demand-oblivious
counterparts.

1.2 Further Related Work

Our paper combines two active areas of research: small-world networks and demand-aware
network designs.

The first algorithmic approach to capture the small-world phenomenon was introduced
by Watts and Strogatz [36], who presented networks suited for decentralized search. This
approach was later generalized by Kleinberg [24] who initiated the study on decentralized
search algorithms of networks augmented with random edges. Navigability in networks
has since then received a lot of attention in the literature [3, 7, 17, 18, 27]. Besides the
original model, also other small-world models [12, 29] have been proposed, hyperbolic metric



87

88

89

90

91

92

93

9

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

C. Avin, R. Elsasser, A. Figiel, D. Melnyk and S. Schmid

spaces have been studied to model complex networks [32, 25, 8], and different routing
methods [16, 34] have been investigated in the past.

Demand-aware networks are motivated by their applications in datacenters, where re-
configurable optical communication technologies have recently introduced unprecedented
flexibility in network design. An optical circuit switch controls which edges in the network
are active, as defined by a schedule. Commonly, at any given time the active edges form
a matching and connectivity in the network is established over time. Prior work focuses
on designing schedules for the optical circuit switch in a demand-aware manner to ensure
efficient transmission of data [2, 4, 6, 11, 19, 21, 23, 35, 37, 38, 39]. Contrary to these works,
where edges are added by some deterministic process, our work assumes that augmented
edges are added only with some probability. For a review of the enabling technologies of
dynamic datacenter networks, we refer to the recent survey by Hall et al. [22].

1.3 Overview

We start by presenting the formal model of demand-aware small-world networks in Section 2.
We thereby differentiate between the case of directed cycles and grids. In Section 3 we
present an algorithm that augments the original communicating network in a demand-aware
manner and show that this strategy outperforms the demand-oblivious strategy presented
by Kleinberg [24]. In Section 4, we extend this result to the case of grids. In Section 5, we
present a practical evaluation of our demand-aware algorithms for synthetically generated and
real-world demand matrices. We show that the analyzed sparse communication structures
indeed appear in real-world datacenter networks. Finally, we conclude in Section 6.

2 Model

In this section, we present the demand-aware variant of the small-world network model
originally introduced by Kleinberg [24]. Given a set of n nodes V', we assume that the nodes
are communicating with respect to a predefined n x n-demand matriz D. This demand
matrix represents the communication in a datacenter network and is therefore assumed to be
sparse. We differentiate between two main communication patterns - communication on a
cycle and communication in a grid.

Communication on a cycle

The demand graph for communication on a cycle is defined as follows: Communicating
nodes are placed at the nodes of a large cycle in a one-to-one fashion. Subsets of up to =
communicating nodes are placed at neighboring nodes along a cycle each forming a connected
component, called cluster. We assume that there are y clusters that are disjoint from
each other, that is, any pair of clusters along the cycle has at least one (possibly many)
non-communicating node between them. We further assume that for any pair of neighboring
clusters (i.e., clusters between which only non-cluster nodes lie) a direct link connects the
two closest nodes. This ensures connectivity in the demand graph. Observe that z -y < n
as the demand graph is sparse.

We now define the weights in the demand matrix D. In this matrix, any node u located
inside a cluster communicates with probability p to nodes within its cluster. With probability
¢, v communicates to the nodes in other clusters. Here we have ¢ = 1 — p. Observe that the
demands to all other nodes outside of clusters as well as the demands between the nodes
outside of the clusters are set to 0.
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Communication in a grid

In addition to the one-dimensional case mentioned above, we consider the demand graph
for communication in a grid. We view each node of the grid as a supernode that contains a
cluster of communicating nodes. The y clusters are arranged in a /y x |/y-grid-like structure.
Each cluster contains up to x nodes. The communicating nodes inside a cluster are arranged
along a cycle, i.e., in a worst-case manner. To make sure that the clusters are connected as
in a grid, we connect the designated “first” node in a cluster to the designated “last” node in
the cluster on the top and to its left, while the last node in a cluster is connected to the first
node of the cluster below and to its right.

The demand matrix D for the communications between and inside the clusters is defined
equivalently to the case of cycles.

Decentralized algorithms

The idea of small-world networks is to augment the original graph with edges such that the
expected distance between any two nodes is minimized. Each communicating node in the
network is allowed to add one directed (long-range) edge to another node in the network.
This augmentation is performed by each node locally in a randomized fashion.

The communication between the nodes works according to a decentralized search algorithm.
In particular, we assume that the nodes use greedy routing to forward the messages: Assume
that a node v wants to send a message m to node v. We assume that node u knows the
location of the destination v, the location of its adjacent nodes, as well as the distances from
its adjacent nodes to v. When using greedy routing, v will send its message to the adjacent
node closest to the destination v. This process is repeated by every node that receives m
until m reaches its destination.

In this paper, the goal is to find a random distribution according to which the nodes add
a directed edge such that the weighted expected distance between all communicating nodes
is minimized. For simplicity, we assume that the entries of D are normalized in the analysis.
Let D denote the demand graph augmented with random edges and let G j(u,v) denote
the greedy routing distance between the nodes u and v on the augmented graph D. We are
interested in minimizing the expected routing distance (ERD) between any two nodes in the
augmented network:

E[G(u,v)|D] = ZG u,v) - D(u,v).

u,veV

3 Demand-aware small-world phenomenon on a cycle

In this section, we present how the demand matrix can be used in the randomized process of
selecting augmenting edges. Observe that in the demand-oblivious version of small-world
networks, the edges are added proportional to the inverse of the distance between two nodes.
In a sparse demand matrix, however, many nodes may not be communicating at all and thus
adding an edge in a demand-oblivious manner may only reduce the communication distance
between non-communicating nodes and not the ERD, meaning that we “waste” augmenting
edges.

We start this section by presenting the distribution according to which augmenting edges
are chosen locally and demand-aware. We then analyze different sparse demand matrices
for communication in the cycle (see Section 2) and show that the presented demand-aware
process of finding augmenting edges outperforms the demand-oblivious strategy.
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Distribution of augmented edges

Let D be the demand matrix as presented in Section 2. Here, we discuss how D is constructed
from D by adding long-range edges to the demand matrix. Let d,(-,-) denote the distance
along the line (the number of hops) between any two vertices that belong to the same cluster.
To simplify the analysis, we assume that the nodes inside a cluster are also connected along
a cycle. Let d;(Iy,I,) denote the “cluster hop” distance between two clusters I, and I,
computed by assuming that each cluster can be represented as a supernode, and that there
is an edge between the two closest nodes of any two neighboring clusters. The “cluster hop’
distance between node u € I,, and v € I, is defined as the cluster hop distance between the
corresponding clusters.

Then, each node adds an extra edge with the following probabilities: A node u in cluster
I, adds exactly one long-range edge. It adds this edge to a distinguished node identified as
the first node in cluster I, with probability proportional to q - dl_l(lu, I,,)). If two nodes u
and v are in the same cluster, an edge is added with probability proportional to p - d; ! (u,v).

To determine the actual probabilities used to add edges, we calculate the normalization
factor:

i

z/2 y/2
1 1
—1 —1 _
> 2pedit(wow)+ Y 2q-d; (Ii,Ij)—2p~Z(;) +2q-2(5)
v,wel 1;,1; 1=1 =1
vFEW I;#1;

<2+42p+2q+2p-log(x/2) + 2q - log(y/2).

Observe that u can only connect to one node, i.e., the normalization factor only considers
nodes within the same clusters, while every other cluster is viewed as a supernode. Therefore,
for two nodes u € I, and v € I,,, the probability that u connects to v (that is, to cluster I,)

1S
1

~d™ Y (u,v).
2p -log(x) + 2q - log(y) + ¢ (u,0)
Here d(-,-) represents the distance inside the same cluster or the cluster hop distance,
depending on where the nodes u and v are located.

3.1 Analysis on clusters of the same size

We start by analyzing the demand-aware small-world network on a restricted case, where
each cluster consists of exactly x nodes. This case is then generalized to cluster sizes
drawn from the Poisson and power law distributions in Sections 3.2 and 3.3. This analysis
considers the worst-case demand matrix D, where the two furthest nodes inside a cluster (two
furthest clusters respectively) communicate with probability p (probability ¢ respectively).
The derived expected greedy routing distance in this section is thus an upper bound on
E[G(u,v)|D].

In the next steps, we will show that the expected number of steps to reach the destination
is O(log(zy)(plog(x) + qlog(y))). We will perform the analysis in two steps: in the first
part, we show that the expected cluster distance decreases exponentially until the destination
cluster is reached. In the second part, we analyze the expected number of hops needed inside
the destination cluster to reach the destination node. Note that the long-range edges are
always added to the first node of a cluster thus making it possible to split the analysis. This
analysis follows the analysis outline in [13, Chapter 20] for one-dimensional grids.

» Lemma 1 (Routing between the clusters). Routing between the clusters takes O(log(y) - (p -
log(z) + ¢ - log(y))) steps in expectation.
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Proof. We start by considering clusters as supernodes and say that the routing starts in
cluster I,, and terminates in cluster I,,. Let J denote the set of clusters in the |.J|-neighborhood
of I,. Assume further that source cluster I, is exactly |J| cluster hops away from cluster
I,,. We first show that it takes O(p - log(z) + ¢ - log(y)) rounds in expectation for the greedy
routing from I,, to I, to end up in J/2, i.e. inside the |J|/2-neighborhood of I,.

There are at least |.J| clusters that any node in I,, can connect to in J/2. The probability
for a node u to have a direct link to a cluster in J/2 is at least

¥ .
2p - log(z) +2q - log(y) + ¢

where T, is the farthest cluster at distance 3|.J|/2. That is,

’ d;l(Iuv Iw)

7] B 7]
-dy (L, Iy) >
2 Tog(@) + 2q Tog(y) + ¢ 1 L) > G T logly) + @) 3171
1

3(p - log(z) + ¢ -log(y) + )

Here, we lower bounded the probability assuming that the largest cluster hop distance is
3|J|. Recall that this is possible since any node that draws its long-range edge to another
cluster considers the cluster as a supernode. This view helps us to deal with the fact that we
may iterate over nodes from the same cluster for many steps.

Let X; be a random variable denoting the number of rounds for the greedy routing to
reach a cluster in J/2. The probability that a node u does not reach a node in J/2 within r
rounds is

) r—1
Pr[X; > r] < (1  3(p-log(z) + q - log(y) + Cl)) .

Here we used the fact that all clusters have the same size and thus every node uses the same
probability distribution for its long-range edges. Next, we bound the expected value of X;,
i.e. the expected time (number of steps) to half the distance to the destination cluster:

E[X;] = ZPT[XZ- > j].

This results in E[X;] = 3(p - log(x) + ¢ - log(y) + ¢).

Let X denote the number of rounds to reach the destination cluster. Since we half the
cluster distance until we end up in the destination cluster, we have X = X; +Xo+. .. 4+ Xjogy-
Then,

E[X] <log(y) - 3(p - log(z) + ¢ - log(y) + ¢). <

Similarly, we can derive the number of rounds that a node needs to route inside the
cluster.

» Lemma 2 (Routing within a cluster). Routing within a cluster takes O(log(z) - (p - log(z) +
q-log(y))) steps in expectation.

We omit the proof of this lemma as it is analogous to the analysis in [13], with the
exception that the normalization factor from Lemma 1 is applied. By summing up the
expected number of steps from Lemma 1 and 2.

» Theorem 3 (Routing with equal cluster sizes). Greedy routing on a demand-aware cycle
containing y clusters of size x each together with augmented edges takes O( log(xy)(plog(x) +
qlog(y))) steps in expectation.
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Observe that this bound corresponds to the upper bound of [13] when the matrix is dense,

like for example in the stochastic block model [1] where all nodes belong to some cluster.

In that case log(x) + log(y) = log(zy) = log(n). When the demand matrix is sparse, i.e.,
ry < n, the average distances become much smaller than in the demand-oblivious model.

3.2 Cluster sizes following the Poisson distribution

So far, we assumed that all clusters have the same size z. In this section, we relax this
condition and assume that each cluster Iy, k € [y], has a different size || > 1, and that the
cluster sizes are distributed according to the Poisson distribution. Under this assumption,
each node has to compute its own normalization factor, as the normalization factor depends
on the size of the cluster to which the node belongs:

> 2p-dt(v,w)+ Y 2q-dy (I 1) = 2p + 2q + 2p - log(|Ii) + 2¢ - log(y).
v,wely I;,1;
vEW I;#1;
In the following, we restrict the distribution according to which the cluster sizes of y
clusters are chosen and compute the number of cluster hops that are needed to reach the
destination cluster.

» Theorem 4 (Routing between clusters under Poisson distribution). Assume that the cluster

sizes X follow the Poisson distribution Pois(k, ), i.e., Pr(X =k) = )‘k;?, Routing between
the clusters takes

O(log(y) - (p - log(A+ C1v/Alogn) + q - log(y))) steps in expectation if A > clogn,
O(log(y) - (p - log(Csologn) + q - log(y))) steps in expectation if A < c¢-logn,
O(log(y) - (p - log(C3 =252 + ¢ - log(y))) steps in expectation if A = const,

loglogn
where C1,Co,C3 and c are large constants.

Before proving the theorem, we first show a concentration of the cluster sizes for each
choice of A\ and then proceed with the analysis as in Lemma 1. Similar tail bounds for
Poisson distribution have been analyzed in the literature. In the following, we adapt the tail
bounds from [33] to our approach.

» Lemma 5. Let A > clogn. Then, the cluster sizes are concentrated in the interval
[)\ —Cy/Alogn, A\+C+/Alog n] , where C' > 2 is a constant, with probability at least 1 —1/n>.

k
Proof. In the following, we use Stirling’s approximation k! = 27k (%) to approximate the
factorial. We set A\ = ¢’ logn, where ¢’ > c.

)\)\—&-C\/)\logn
Pr[X = A+ Cy/Alogn] =~

A

o
A+Cy/Alogn

V2r (A + Cy/ A logn) (”C 2 1°g")
/\)\+C\/)\logn

&
()\_’_C\/W))\-&-C\/Alogn

:eC\/)\logn 1

V! Cy/Alogn
Cy/Alogn Vo

i <1+ < \/lggn>

-

<e)\+C Alogn

(i) eC«/)\logn 1

C+/Alogn
eC Alogn 1+CV10g”
VA
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1 (b) (1>C2logn 1 1
= ~ —_ = — < —

VAN C2?logn
1+C logn | CVlegn
)

For Equations (a) and (b), we assume that ¢/ > C2.
Note that the number of clusters is upper bounded by n by definition. Using union bound,
we can show:

Pr[X > A+ Cy/Alogn] <n-Pr[X =X+ Cy/Alogn] < i?)
n

Analogously, we can prove the other side:

1
PriX < A —C+/Alogn] < 3
This concludes the proof of the lemma. |

» Lemma 6. Let A < c¢-logn. Then, the cluster sizes can be upper bounded by C - logn,
where C > 2c > 2, with probability at least 1 — 1/n>.

Proof.
A\Clogn clogn \“'8"  ,c\Clogn /1\“lEm
Pr[X =Clogn] = ————— e * < - (7) 2 L
r| C'logn| (Clogn)Cloen® = (Clogn) el < <2) <—

Note that for the last inequality, we assume that C' > 4. As in the proof of Lemma 5, we can
use the union bound together with the fact that there can be at most n clusters to prove the
Lemma statement:

1
Pr[X > Clogn| <n-Pr[X = Clogn] < —. <
n
» Lemma 7. Let )\ be a constant. Then, the cluster sizes can be upper bounded by logign

with probability at least 1 — 1/n3.

Proof. .
O logn
logn )\ loglogn
_ _ -
Pr[X—Clo oen | = o Tozn €
g g C logn loglogn
loglogn
’
Next, we reformulate the numerator \¢198™ = 2¢ 1087 for some constant ¢/ = C'log A and
receive
log n )
)\Clog igog n — nlogiog n — nO(l).

For the denominator, we can write

C log n

1 Toglogn 7

o8 > ne
loglogn

log n
log n

o257 1 1
for ¢/ = CToglogn 198n €188 Phyg
b

o(1)
Pr[X:C logn ] n 1

1 <
loglogn ne n4

for a sufficiently large value of n.
As before, we apply the union bound together with the fact that there can be at most n
clusters to show the theorem statement:

Pr[XzCIOgn} <n~Pr[X:C

logn 1
loglogn

—_— < —. <
loglogn n3
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Using the above bounds, we can now prove Theorem 4:

Proof of Theorem 4. As in the proof of Lemma 1, we consider the clusters as supernodes
and let J denote the |J|-neighborhood of the destination cluster I,,. We first show that it
takes O(p - log(A) + ¢ - log(y)) steps in expectation for the greedy routing starting in u to
reach a node in J/2, i.e. inside the |J|/2-neighborhood of I,,.

Node u can connect to at least |J| clusters in J/2. The probability for w from cluster I,
to have a direct link to a cluster in J/2 is at least

1
2p - log(|1x]) 4 2q - log(y) + ¢

|J‘ 'dl_l(IuvIw)

where T, is the farthest cluster at distance 3|.J|/2. That is,

/]
2p - log(|1u]) +2q - log(y) + ¢
1
3(p - log(|1u]) + ¢ - log(y) +¢)

/]

cd7 (I, L) >
7 B D) > Tl + ¢ - loa(y) + @) 3171

(1)

Let Y; be a random variable denoting the number of steps for a node u to reach a cluster
in J/2. Note that Y; depends on the cluster size of the nodes that are visited on the path from
u to v. To upper bound the expected number of steps, we do a case distinction depending
on the size of A:

Case X > clogn. We can bound the term in Equation (1) w.r.t. the average cluster size
using Jensen’s inequality for concave functions:

T

1
Iwm>ﬂ<llc_apbym)+mbdw+w>

< (1 ! T
N 3(p 10 (7 e Hrl) +q-log(y) +¢) )

Here, the clusters I}, represent the clusters of the nodes visited within r steps. In the following,

(2)

we will focus on bounding the average %Zke[r] |T]. In the case A > clogn, the cluster sizes

are concentrated in [)\ — C1v/Alogn, A+ C1/Alog n] (see Lemma 5). Due to r < n and the
union bound, the probability that this sum contains a cluster outside of the interval is less

than 1/n2. Thus, with probability st least 1 — 1/n? we have

% Z [Tr] < A+ Ciy/Alogn

ke[r]

1 T
3(p-log(A + C1v/Alogn) + q - log(y) + c’)) ’

and also Pr[Y; > r] < (1 -

From here on, we can now apply

n

E[Y)] =) PrYi > jl.

Jj=1

This is because, among all n clusters, w.h.p., there will be no cluster outside of the concen-
tration bounds.
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Let the random variable Y = Y7 + Y2 + ... 4 Yjog,, denote the number of rounds to reach
the destination cluster. Then,

E[Y] <log(y) - 3(p - log(A + C1y/Alogn) + ¢ - log(y) + ).

Case A < c-logn. We will derive the upper bound on the expected number of rounds

analogously to the previous case. The average cluster size of the visited clusters is upper
bounded by

1
- Z || < Cylogn

kelr]

with probability 1/n%. By plugging in this value into Equation (2), we get

1 T
(1 ~ 3(p-log(Calogn) + ¢ -log(y) + d)) '

For the expected number of rounds holds

PrlY; > 7] <

E[Y] < log(y) - 3(p - log(C2logn) + ¢ - log(y) + ).

Case A\ = const. In this case, the average cluster size of the visited clusters is upper

bounded by
logn
r Z [l < logign
kG[T

with probability 1/n2. Plugging in this value into Equation (2) results in

1
Prly; >r] <

_<1_ (plog(cgloglogn)+qlog(y)+c’)> '

And finally, the expected value is

I
E[Y] <log(y)-3(p-log Cgiogn +q-log(y) +¢
loglogn

with high probability. |

The expected number of steps when routing within a cluster can be computed for
each cluster separately, i.e., the expected number of steps within a cluster of size x is
O(log(z) - (p - log(x) + ¢ - log(y))). Since the expected cluster size under the Poisson
distribution is A, we have

» Lemma 8 (Routing within a cluster under Poisson distribution). Routing within a cluster
takes O(log(X\) - (p - log(X) + q - log(y))) steps in expectation.

In total, the expected number of steps for greedy routing is

» Theorem 9 (Routing with Poisson-distributed cluster sizes). Assume that the cluster sizes x
follow the Poisson distribution Pois(k,X). Then, greedy routing from a source to a destination
takes
O(log(A\y) - (p - log(A + C1+/Alogn) + q - log(y))) steps in expectation if A > clogn,
O(log(clogn - y) - (p-log(Caylogn) + q - log(y))) steps in expectation if A < ¢ -logn,
O(log(y) - (p - log(Cs log’ign) +q-log(y))) steps in expectation if A = const,
where C1,Co,C3 and c are large constants.
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3.3 Cluster sizes following the power law distribution

In this section, we consider the case where clusters are distributed according to the power
law distribution. Other than in the previous section, this distribution allows one to have few
large clusters, while most of the clusters have a constant size. We will therefore divide the
clusters into intervals containing similar cluster sizes and analyze the intervals separately. A
similar approach of analyzing connected components by grouping their sizes has been used
in [9] on random graphs. The analysis in this section therefore differs from the previous two
sections.

» Lemma 10 (Routing between clusters under power law distribution). Assume that the
cluster sizes follow the Power Law distribution PowerLaw(a), i.e., f(z;a) = (o — 1)a™®
for a € (2,4] and a discrete random variable x. Then, routing between the clusters takes
O(log(y) - (4p - loglog(n) + q - log(y))) steps in expectation.

Proof. Let X denote the size of a cluster. We can calculate the probability that this cluster
exceeds a certain size s as
— 1 * 1 1 1 1
Pr[X>S]:ZszS/ —dx = < —-

k=s+1

Note that this bound is not sufficient to upper bound the number of large clusters.

We therefore divide the n possible cluster sizes into intervals [2!C, 2¢+1C], where C is a
large constant. The probability that the size of a cluster I lies in the interval [2¢C,2¢1(]
can be upper bounded by

1

Pr[|I| € [2'C,2"'(C]] < oyt (3)

Let r denote the number of clusters traversed by the greedy routing. We can assume
that these r clusters are chosen uniformly at random with the probabilities chosen as in
Equation (3). The average number of clusters in an interval [2°C,271C] is upper bounded
by Gy

Assume first that 7 > ¢/ log® n. In this case, we can apply the Chernoff bound to show that
the cluster sizes of the intervals containing small clusters, where ¢! < logn, are concentrated
around n/(c'™!). Let Z be the random variable denoting the number of clusters of size

2iC, 21+1C7):

r

dlog’n
2iC '

C’L

Pr|z>5 <=

|ci§c'}<Pr[Z>5
n

‘ Ci < C/:| < 674logn <

For larger i, we can upper bound the number of clusters in an interval by

/ 1
Pr {Z >c’ (logn+ %)} <e¢losn < vl

Finally, we upper bound the number of clusters for any interval in the case where r < ¢ log® n:

T 1
Pr [Z>c" (10 n4 —— )} < =

gn+ 2iC' /1~ nt
In order to calculate the expected number of hops from a start to the destination, we will
consider the above cases separately. First observe that in the case r > ¢/ log? n, where i is
large, there are at most logn intervals with cluster sizes from size logn up to size n, each of

which has at most logn clusters with high probability (probability larger than (1 — -)).
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Recall that the probability that the greedy routing needs more than r hops can be upper
bounded as

r 1
PrlY; > r] < ,:Q; (1 ~ 3(p-log(|Ix|) + q - log(y) +C')>

< (1 ! r
- 3(p - log(; Xpep Inl) +a-log(y) +¢) )

We will now upper bound % Eke[r] |I,| for r > ¢ log? n. We therefore split the sum into

(4)

intervals of size up to logn and into all larger intervals. Observe that there are at most
log n —loglog n intervals that each contain less than logn clusters of size logn to n. It would
take less than log® n steps to traverse them in the worst case.

On the other hand, the number of clusters in each small interval is concentrated around
= . This can be used to calculate the actual average cluster size.

The average cluster size of the traversed clusters is upper bounded by

loglogn
1 1 ,
- E |I| < — E 2’C-L+log3n§C~loglogn+log3n<210g3n
" kel (i ¢

with probability 1 — %7 as we can sample up to r < n clusters in total.

For r < clog2 n, we assume that each cluster has a size in the order of n, and use the
same upper bound as used for clusters of sizes loglogn to n. Note that there are up to
r < log?® n such clusters, and therefore the expected number of hops to traverse these clusters
is upper bounded by log?n - lognlogn < log® n. Then we can calculate the expectation as
follows:

c log2 n

ElY;] = Z Pry; > j] + Z PrY; > j] < 3(p-log(log*n) + ¢ - log(y) + )
j=1

j=clog?n
+3(p - log(2log® n) + ¢ - log(y) + ¢’) < 6(4p - loglog(n) + 2¢ - log(y) + ).

In the final step, we again use Y to denote the number of rounds to reach the destination
cluster. Since we halve the cluster distance until we end up in the destination cluster, we
have Y =Y + Y5 + ... 4+ Yiogy. Then,

E[Y] < log(y) - 6(4p - loglog(n) + 2q - log(y) + ). <

Note that in the proof of Lemma 10, we accounted for the number of steps needed to
traverse large clusters in the analysis. To calculate the expected number of steps for greedy
routing, we only need to add the number of steps needed to traverse clusters of size up to
clog?n. Thus, we have

» Theorem 11 (Routing with power law-distributed cluster sizes). Assume that the cluster
sizes follow the Power Law distribution PowerLaw(a) for a € (2,4]. Then, greedy routing
takes O(log(2ylogn) - (4p - loglog(n) + ¢ - log(y))) steps in expectation.

4 Extension to grid structures with equal cluster sizes

In this section, we assume that the clusters are connected in a grid as described in Section 2.
The probability of communicating within a cluster or between clusters remains as in Section 2.
As in Section 3, we start by presenting the demand-aware probability distribution according
to which the augmenting edges are chosen.
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Distribution of augmented edges

We assume that the clusters are placed at nodes of a /7 x /y-dimensional square grid. The
distance dj(-,-) between any two clusters on the grid is defined in terms of their lattice
distance, i.e., the sum of the horizontal and the vertical grid distances between the two
clusters.

The long-range edges inside the clusters are added as described in the case of cycles in
Section 3. The long-range edges to different clusters are added inversely proportional to the
square of the cluster distance, i.e., proportional to 1/d%(-,-).

As in the case of cycles, we start by calculating the normalization factor for adding a link
to another node or cluster. Note that the sum of probabilities within a cluster remains the
same. Since the clusters are arranged in a grid, each cluster has four neighboring clusters
at a cluster distance of 1, eight neighboring clusters at a cluster distance of 2, etc. We can
upper bound the sum of probabilities by

Ry
Y 2q-d 20,05 < 7z < 4log(6y'"?).
Ii,Ij;Ii;éIj =1

When considering links added inside and between the clusters, we get

Sooped ww)+ Y. 2 d (I, 1) < 2p + 2plog(x) + 8qlog(6) + dqlog(y).
v wWE I ;v#Aw I, 1551, #1;

Thus, the normalization factor is lower bounded by 1/(2p + 24q + 2plog(z) + 4qlog(y)).

4.1 Analysis on clusters of the same size

In the following, we only analyze the case of routing between the clusters of the same size x.

The analysis of routing inside a cluster remains as in the previous section.

» Lemma 12 (Routing between the clusters on grids). Routing between clusters of the same
size that are arranged in a grid structure takes O(log(y) - 4(2plog(z) + 4qlog(y) + ¢)) steps
in expectation for a large constant c.

Proof. To prove this statement, we will follow the demand-oblivious analysis on grids by
Kleinberg [24]. Let I, be the destination. We divide the analysis into phases j, where a
phase is defined as the expected number of steps to half the cluster hop distance to I,,. As
earlier, we are going to consider clusters as supernodes. We define a ball B;(I,) containing
all clusters at a c_luste_r distance of at most 27 from I, in the grid. Note that there are at
least Z?J:lz = W > 22371 such clusters in B;(1,).

The probability that any node in a cluster outside B;(I,) has a long-range edge to a
cluster in B;(I,) is lower bounded by

92j-1 1
> .
(2p + 24q + 2plog(x) + 4qlog(y)) - d*(1;, I;) ~ 8(2plog(x) + 4qlog(y) + c)

From here on, the analysis continues as in the case of cycles. Let X; denote the number
of steps to reach B;(I,). The expected value of X; is

8(2plog(x) + 4qlog(y) + c).

Let X denote the number of rounds to reach I,,. In every phase, the distance to the
destination cluster is halved and thus X = Xj,4( ) + ... + X2 + X1. Then

E[X] < log(y) - 4(2plog(x) + 4qlog(y) + ¢). <
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The routing within clusters can be computed similarly to Section 3.1, with an adapted
normalization factor. By summing up the expected number of steps between and within the
clusters, we receive the following result:

» Theorem 13 (Demand-aware routing on grids). Greedy routing on a grid consisting of
y clusters, each containing xr nodes, together with demand-aware augmented edges takes
O(log(zy) - 4(2plog(z) + 4qlog(y) + ¢)) steps in expectation.

Also in this case, clusters of different size following the Poisson or the power law distri-
bution can be considered. The main difference in the analysis between the case of cycles
and grids lies in the first step where the long-range edges are added to the graph. Observe
that the rest of the analysis as well as the normalization factor chosen by the nodes almost
does not change. The same analysis can therefore be performed with Poisson and power law
distributed cluster sized also on grids, resulting in similar bounds on the expected number of
steps.

5 Empirical evaluation

We simulate our model on a cycle as described in Section 2. Our goal is to evaluate the
expected routing distance (ERD) E[G (u,v)|D] = >uvev Gp(u,v) - D(u,v), where G(-, )
denotes the greedy distance and D is the augmented demand matrix, on instances derived
from real-world datacenter traffic traces. Additionally we provide further evaluation on
simulated artificial instances in Appendix A. Since our model is randomized, in our simulations
we perform 100 runs and report on the averages.

We additionally compare to a “demand oblivious” model similar to that of Kleinberg [24]
which we will simply refer to as the “oblivious” model. For each vertex belonging to a cluster,
we add exactly one edge to one of the other vertices belonging to any cluster with probability
proportional to the inverse of the shortest path distance on the demand graph D. In contrast
to this, we will refer to the model in our paper as the “demand-aware” model.

5.1 Real-world instances

We base our analysis on real-world high performance computing (HPC) cluster traffic traces
from Avin et al. [5]. The data comprises communication requests between pairs of nodes
including timestamps. We count for each pair of nodes the number of communication requests
in the trace and store the resulting counts in a matrix, disregarding the directionality of the
request. Finally, the resulting matrix is normalized so that its entries sum to one. We use
this as the demand matrix.

These traffic traces only contain information for nodes that participate in the communica-
tion. The original data was recorded on the HPC Hopper, which is NERC’s Cray XEG6 system,
comprising a total of 153,216 nodes [31] (here CPU cores). Our traces contain 1024 nodes.
Note that the traffic was measured on a message passing interface (MPI) not on physical
NICs. The nodes in the trace are therefore CPU cores, which could be (partially) collocated
on the same physical servers. Nonetheless, most nodes of the HPC did not participate in the
communication in our traces.

Since we do not know the physical mapping of these nodes onto servers, to obtain clusters
of nodes from these instances we try to identify groups of frequently communicating nodes.
We model this as a CORRELATION CLUSTERING problem, wherein for each pair of nodes a
weight between 0 (the nodes are very dissimilar) and 1 (the nodes are very similar) is assigned.
The goal of CORRELATION CLUSTERING is to cluster similar nodes, and place dissimilar
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Figure 1 Visualization of the demand mat- Figure 2 Impact of the fraction of non-

rix for the “hpc nekbone” trace after clustering. communication nodes on the expected routing
Bright colors indicate frequent communication distance for the real-world traffic traces. SP de-
and dark indicate less communication. Black notes a variant that uses shortest path routing
lines are drawn to separate clusters. instead of greedy routing.

nodes in different clusters!. To solve these instances we use the VOTE/BOEM heuristic
proposed by Elsner and Schudy [14] due to its ease of use and good quality of solutions.
An example visualization of the clustered demand matrices can be seen in Figure 1. In the
following we present the evaluation of the expected routing distance in the HPC clusters. An
extended analysis of the inter- and intracluster communication is presented in Appendix A.2.

Expected Routing Distance

Since only a fraction of the nodes of the HPC took part in the communication, we analyze how
the routing distance changes with the total number of nodes. This is summarized in Figure 2.
The results are quite similar to those of the artificial instances, and the demand-aware model
achieves better results than the oblivious one when using greedy routing. Note that the
within cluster communication probability p varies for each node, and the cluster sizes =
are not fixed, unlike in the simulations on artificial data. The theoretical bound from our
analysis would be a straight line that is factor 3 larger than the other results, because it
assumes the very worst case where we communicate between the two furthest nodes.

6 Conclusion

This paper presented a demand-aware analysis of small-world networks. Motivated by
the structure of real-world high performance computing cluster traffic traces, we analyzed
sparse demand matrices with closely communicating clusters. We proposed a demand-aware
randomized edge augmentation technique based on [24] and showed that a demand-aware
edge augmentation outperforms the demand-oblivious strategy. Our empirical evaluations
support using demand-aware edge augmentation and show that the local greedy routing
technique proposed in [24] is a good alternative to the global shortest paths routing technique
on real-world datasets.

1 Note that some preprocessing was necessary to obtain CORRELATION CLUSTERING instances from our
demand matrices. Looking at the data we saw many clusters, with many in-cluster edges missing.
To increase the clustering coefficient we applied the following preprocessing: for each vertex v and
neighbour u: add the weight of the edge u, v divided by degree of v to v, w where w is a neighbour of u
but not of v.
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A  Further empirical evaluation

A.1 Artificial instances

We construct artificial instances parameterized by the values p, g, x,y,n where ¢ = 1 — p.
More specifically we create a demand matrix D for the n nodes, in which only z -y nodes have
some demand to each other. The remaining nodes do not participate in the communication,
and have a demand of 0 to all other nodes. The demand matrix is constructed in such a
way that a node communicates with its own cluster with probability p, and among the z — 1
other nodes in the cluster the probability is divided uniformly. With probability ¢, a node
communicates outside its own cluster, and the probability is divided uniformly among the
(y — 1) -  possible nodes. Finally, we embed y clusters of  nodes each onto a cycle with n
nodes, such that the spacing between the clusters differs by at most 1.

We perform experiments, to analyze the impact of the various instance parameters on
the expected routing distance. Since the number of parameters is quite high, we fix all but
one parameter and vary the remaining parameter. See Figure 3 for the results.
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Figure 3 Simulation results on artificial data. Different instance parameters are varied and their
impact on the routing cost is depicted. The two routing strategies: greedy and shortest path (SP)
are compared.

From Figure 3a it is apparent, that the routing distance does not change at all. As desired
and expected (by Theorem 3) our model has no dependence on the number of nodes that
do not participate in the communication. The greedy and shortest path routing strategies
appear quite close for the demand-aware regime, with the shortest path routing resulting in
roughly 70% smaller distances.

In Figure 3b we analyze the dependence of the expected routing distance on the probability
p that the communication of a node falls within its own cluster. For the oblivious setting,
this appears to be a linear dependence. Instances with small values of p, indicating that the
nodes in the clusters mostly communicate outside their own clusters, exhibit smaller routing
distances in the demand-aware model than in the oblivious one. This is due to the fact that
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Figure 4 Histogram of the cluster sizes x and within cluster communication probabilities p on
the traffic traces.

the demand-aware model is more likely to augment the graph with shortcut edges to more
distant clusters than the oblivious model. For large p both models perform similarly, as most
augmenting edges will be added within a cluster or to nodes close to the current cluster.

A.2 Parameter analysis of real-world instances

Based on the computed clustering we compute the probability p that a node communicates
within its own cluster, the cluster sizes  and the number of clusters y. This is summarized
in Figure 4. The within cluster communication probability p appears somewhat uniformly
distributed, and the cluster sizes x are usually at most 20 with few larger ones. Some traces
contain up to 150 clusters, but the median is around 30 clusters per trace.
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