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Abstract13

Small-world networks are attractive for the efficient routing they provide, requiring only a low link14

density. They have hence also been considered for the design of distributed systems, such as peer-to-15

peer networks. However, existing small-world network designs are oblivious to the actual traffic they16

serve. In this paper, we initiate the study of demand-aware small-world networks. In particular, we17

extend the Kleinberg graph model, by allowing the nodes to choose the distribution of long-range18

links according to the traffic demand. We present a formal analysis of the weighted route lengths19

for the important case of clustered demands. We show both in theory and in simulations, using20

real-world traffic workloads, that demand-aware small-world graphs can significantly outperform21

their demand-oblivious counterparts.22
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1 Introduction30

Small-world networks have fascinated researchers for many decades. They are not only used31

to describe natural and social networks, but also to build distributed systems such as peer-32

to-peer systems [20, 26]. In his influential experiment, Milgram [30] uncovered that distances33

among two people are often surprisingly short, also known as the six-degrees-of-separation34

phenomenon. The latest since Kleinberg’s algorithmic explanation [24], showing that simple35

greedy strategies can lead to (poly-)logarithmic routes in augmented grids, such navigable36

networks have also inspired computer scientists to develop communication networks aiming37

to imitate the desirable properties of small-world networks, e.g., [10, 28].38

A popular approach to model and design small-world networks, first introduced by Watts39

and Strogatz [36], is to combine two networks: as the basis, we take a network that has a40

large cluster coefficient or a d-dimensional grid, and then we augment such a graph with41

random links, according to a certain distribution, typically a power law distribution. This42
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augmentation represents acquaintances that connect nodes to parts of the network that43

would otherwise be far away.44

In this paper, we revisit such small-world networks from a novel perspective and initiate45

the study of demand-aware small-world network designs. Our perspective is motivated46

by the observation that existing small-world network designs are optimized in a demand-47

oblivious manner, for the worst-case diameter or route lengths, in case of uniform all-to-all48

communication demands. However, in practice, communication demands typically come with49

much structure and are highly skewed [5], which may be exploited to provide even shorter50

routes. Demand-aware networks have recently also received much attention in the context of51

datacenter network designs, enabled by novel reconfigurable optical switches [22].52

We first consider a one-dimensional grid and assume that the demands are clustered and53

sparse, where a majority of the nodes does not communicate at all. Such demand graphs can54

be found in real-world datasets such as Facebook datacenters [15] and in high performance55

computing (HPC) cluster traffic traces [5] that we analyze in this work. We show a strategy56

to augment the one-dimensional grid network such that the expected distances between any57

pair of nodes in the demand-aware setting are improved over the demand-oblivious strategies.58

We also extend our theoretical analysis to the standard case of two-dimensional grids. In59

our experiments on synthetic and real-world data, we show that the demand-aware strategy60

considerably outperforms the existing demand-oblivious strategies.61

1.1 Contribution62

In this work, we initiate the study of demand-aware small-world network designs. We present63

a theoretical analysis of two main settings where the nodes are arranged along a cycle64

(one-dimensional grid) and along a two-dimensional grid. The demands are assumed to be65

sparse and clustered. The cluster sizes are analyzed for the case of Uniform, Poisson, and66

power law distributions. We show that adding edges to a network locally in a randomized but67

demand-aware manner outperforms the original demand-oblivious augmentation methods68

based on Watts and Strogatz [36] and Kleinberg [24].69

Our theoretical analysis is motivated by the empirical fact that the demands are clustered70

in datacenter networks and that many nodes do not participate in communication. Indeed,71

we perform an empirical analysis of the HPC cluster traffic traces [5] and show that the actual72

traces are well represented by the theoretical demand-aware small-world model in the one-73

dimensional grid case. We then run simulations of our algorithm on synthetically generated74

data as well as on the HPC cluster traffic traces. Also our empirical evaluations show75

that demand-aware strategies to augment the network outperform their demand-oblivious76

counterparts.77

1.2 Further Related Work78

Our paper combines two active areas of research: small-world networks and demand-aware79

network designs.80

The first algorithmic approach to capture the small-world phenomenon was introduced81

by Watts and Strogatz [36], who presented networks suited for decentralized search. This82

approach was later generalized by Kleinberg [24] who initiated the study on decentralized83

search algorithms of networks augmented with random edges. Navigability in networks84

has since then received a lot of attention in the literature [3, 7, 17, 18, 27]. Besides the85

original model, also other small-world models [12, 29] have been proposed, hyperbolic metric86
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spaces have been studied to model complex networks [32, 25, 8], and different routing87

methods [16, 34] have been investigated in the past.88

Demand-aware networks are motivated by their applications in datacenters, where re-89

configurable optical communication technologies have recently introduced unprecedented90

flexibility in network design. An optical circuit switch controls which edges in the network91

are active, as defined by a schedule. Commonly, at any given time the active edges form92

a matching and connectivity in the network is established over time. Prior work focuses93

on designing schedules for the optical circuit switch in a demand-aware manner to ensure94

efficient transmission of data [2, 4, 6, 11, 19, 21, 23, 35, 37, 38, 39]. Contrary to these works,95

where edges are added by some deterministic process, our work assumes that augmented96

edges are added only with some probability. For a review of the enabling technologies of97

dynamic datacenter networks, we refer to the recent survey by Hall et al. [22].98

1.3 Overview99

We start by presenting the formal model of demand-aware small-world networks in Section 2.100

We thereby differentiate between the case of directed cycles and grids. In Section 3 we101

present an algorithm that augments the original communicating network in a demand-aware102

manner and show that this strategy outperforms the demand-oblivious strategy presented103

by Kleinberg [24]. In Section 4, we extend this result to the case of grids. In Section 5, we104

present a practical evaluation of our demand-aware algorithms for synthetically generated and105

real-world demand matrices. We show that the analyzed sparse communication structures106

indeed appear in real-world datacenter networks. Finally, we conclude in Section 6.107

2 Model108

In this section, we present the demand-aware variant of the small-world network model109

originally introduced by Kleinberg [24]. Given a set of n nodes V , we assume that the nodes110

are communicating with respect to a predefined n × n-demand matrix D. This demand111

matrix represents the communication in a datacenter network and is therefore assumed to be112

sparse. We differentiate between two main communication patterns - communication on a113

cycle and communication in a grid.114

Communication on a cycle115

The demand graph for communication on a cycle is defined as follows: Communicating116

nodes are placed at the nodes of a large cycle in a one-to-one fashion. Subsets of up to x117

communicating nodes are placed at neighboring nodes along a cycle each forming a connected118

component, called cluster. We assume that there are y clusters that are disjoint from119

each other, that is, any pair of clusters along the cycle has at least one (possibly many)120

non-communicating node between them. We further assume that for any pair of neighboring121

clusters (i.e., clusters between which only non-cluster nodes lie) a direct link connects the122

two closest nodes. This ensures connectivity in the demand graph. Observe that x · y ≪ n123

as the demand graph is sparse.124

We now define the weights in the demand matrix D. In this matrix, any node u located125

inside a cluster communicates with probability p to nodes within its cluster. With probability126

q, u communicates to the nodes in other clusters. Here we have q = 1 − p. Observe that the127

demands to all other nodes outside of clusters as well as the demands between the nodes128

outside of the clusters are set to 0.129

OPODIS 2025
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Communication in a grid130

In addition to the one-dimensional case mentioned above, we consider the demand graph131

for communication in a grid. We view each node of the grid as a supernode that contains a132

cluster of communicating nodes. The y clusters are arranged in a √
y ×√

y-grid-like structure.133

Each cluster contains up to x nodes. The communicating nodes inside a cluster are arranged134

along a cycle, i.e., in a worst-case manner. To make sure that the clusters are connected as135

in a grid, we connect the designated “first” node in a cluster to the designated “last” node in136

the cluster on the top and to its left, while the last node in a cluster is connected to the first137

node of the cluster below and to its right.138

The demand matrix D for the communications between and inside the clusters is defined139

equivalently to the case of cycles.140

Decentralized algorithms141

The idea of small-world networks is to augment the original graph with edges such that the142

expected distance between any two nodes is minimized. Each communicating node in the143

network is allowed to add one directed (long-range) edge to another node in the network.144

This augmentation is performed by each node locally in a randomized fashion.145

The communication between the nodes works according to a decentralized search algorithm.146

In particular, we assume that the nodes use greedy routing to forward the messages: Assume147

that a node u wants to send a message m to node v. We assume that node u knows the148

location of the destination v, the location of its adjacent nodes, as well as the distances from149

its adjacent nodes to v. When using greedy routing, u will send its message to the adjacent150

node closest to the destination v. This process is repeated by every node that receives m151

until m reaches its destination.152

In this paper, the goal is to find a random distribution according to which the nodes add
a directed edge such that the weighted expected distance between all communicating nodes
is minimized. For simplicity, we assume that the entries of D are normalized in the analysis.
Let D̃ denote the demand graph augmented with random edges and let GD̃(u, v) denote
the greedy routing distance between the nodes u and v on the augmented graph D̃. We are
interested in minimizing the expected routing distance (ERD) between any two nodes in the
augmented network:

E[G(u, v)|D̃] =
∑

u,v∈V

GD̃(u, v) · D(u, v).

3 Demand-aware small-world phenomenon on a cycle153

In this section, we present how the demand matrix can be used in the randomized process of154

selecting augmenting edges. Observe that in the demand-oblivious version of small-world155

networks, the edges are added proportional to the inverse of the distance between two nodes.156

In a sparse demand matrix, however, many nodes may not be communicating at all and thus157

adding an edge in a demand-oblivious manner may only reduce the communication distance158

between non-communicating nodes and not the ERD, meaning that we “waste” augmenting159

edges.160

We start this section by presenting the distribution according to which augmenting edges161

are chosen locally and demand-aware. We then analyze different sparse demand matrices162

for communication in the cycle (see Section 2) and show that the presented demand-aware163

process of finding augmenting edges outperforms the demand-oblivious strategy.164
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Distribution of augmented edges165

Let D be the demand matrix as presented in Section 2. Here, we discuss how D̃ is constructed166

from D by adding long-range edges to the demand matrix. Let dx(·, ·) denote the distance167

along the line (the number of hops) between any two vertices that belong to the same cluster.168

To simplify the analysis, we assume that the nodes inside a cluster are also connected along169

a cycle. Let dI(Iu, Iv) denote the “cluster hop” distance between two clusters Iu and Iv170

computed by assuming that each cluster can be represented as a supernode, and that there171

is an edge between the two closest nodes of any two neighboring clusters. The “cluster hop”172

distance between node u ∈ Iu and v ∈ Iv, is defined as the cluster hop distance between the173

corresponding clusters.174

Then, each node adds an extra edge with the following probabilities: A node u in cluster175

Iu adds exactly one long-range edge. It adds this edge to a distinguished node identified as176

the first node in cluster Iv with probability proportional to q · d−1
I (Iu, Iv). If two nodes u177

and v are in the same cluster, an edge is added with probability proportional to p · d−1
x (u, v).178

To determine the actual probabilities used to add edges, we calculate the normalization179

factor:180 ∑
v,w∈I
v ̸=w

2p · d−1
x (v, w) +

∑
Ii,Ij

Ii ̸=Ij

2q · d−1
I (Ii, Ij) = 2p ·

x/2∑
i=1

(1
i

)
+ 2q ·

y/2∑
i=1

(1
i

)
181

≤ 2 + 2p + 2q + 2p · log(x/2) + 2q · log(y/2).182
183

Observe that u can only connect to one node, i.e., the normalization factor only considers
nodes within the same clusters, while every other cluster is viewed as a supernode. Therefore,
for two nodes u ∈ Iu and v ∈ Iv, the probability that u connects to v (that is, to cluster Iv)
is

1
2p · log(x) + 2q · log(y) + c

· d−1(u, v).

Here d(·, ·) represents the distance inside the same cluster or the cluster hop distance,184

depending on where the nodes u and v are located.185

3.1 Analysis on clusters of the same size186

We start by analyzing the demand-aware small-world network on a restricted case, where187

each cluster consists of exactly x nodes. This case is then generalized to cluster sizes188

drawn from the Poisson and power law distributions in Sections 3.2 and 3.3. This analysis189

considers the worst-case demand matrix D, where the two furthest nodes inside a cluster (two190

furthest clusters respectively) communicate with probability p (probability q respectively).191

The derived expected greedy routing distance in this section is thus an upper bound on192

E[G(u, v)|D̃].193

In the next steps, we will show that the expected number of steps to reach the destination194

is O
(

log(xy)(p log(x) + q log(y))
)
. We will perform the analysis in two steps: in the first195

part, we show that the expected cluster distance decreases exponentially until the destination196

cluster is reached. In the second part, we analyze the expected number of hops needed inside197

the destination cluster to reach the destination node. Note that the long-range edges are198

always added to the first node of a cluster thus making it possible to split the analysis. This199

analysis follows the analysis outline in [13, Chapter 20] for one-dimensional grids.200

▶ Lemma 1 (Routing between the clusters). Routing between the clusters takes O(log(y) · (p ·201

log(x) + q · log(y))) steps in expectation.202
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Proof. We start by considering clusters as supernodes and say that the routing starts in203

cluster Iu and terminates in cluster Iv. Let J denote the set of clusters in the |J |-neighborhood204

of Iv. Assume further that source cluster Iu is exactly |J | cluster hops away from cluster205

Iv. We first show that it takes O(p · log(x) + q · log(y)) rounds in expectation for the greedy206

routing from Iu to Iv to end up in J/2, i.e. inside the |J |/2-neighborhood of Iv.207

There are at least |J | clusters that any node in Iu can connect to in J/2. The probability
for a node u to have a direct link to a cluster in J/2 is at least

|J | · 1
2p · log(x) + 2q · log(y) + c

· d−1
I (Iu, Iw)

where Iw is the farthest cluster at distance 3|J |/2. That is,208

|J |
2p · log(x) + 2q · log(y) + c

· d−1
I (Iu, Iw) >

|J |
(p · log(x) + q · log(y) + c′) · 3|J |

209

= 1
3(p · log(x) + q · log(y) + c′) .210

211

Here, we lower bounded the probability assuming that the largest cluster hop distance is212

3|J |. Recall that this is possible since any node that draws its long-range edge to another213

cluster considers the cluster as a supernode. This view helps us to deal with the fact that we214

may iterate over nodes from the same cluster for many steps.215

Let Xi be a random variable denoting the number of rounds for the greedy routing to
reach a cluster in J/2. The probability that a node u does not reach a node in J/2 within r

rounds is

Pr[Xi > r] ≤

(
1 − 1

3(p · log(x) + q · log(y) + c′)

)r−1

.

Here we used the fact that all clusters have the same size and thus every node uses the same
probability distribution for its long-range edges. Next, we bound the expected value of Xi,
i.e. the expected time (number of steps) to half the distance to the destination cluster:

E[Xi] =
∞∑

j=1
Pr[Xi > j].

This results in E[Xi] = 3(p · log(x) + q · log(y) + c′).216

Let X denote the number of rounds to reach the destination cluster. Since we half the
cluster distance until we end up in the destination cluster, we have X = X1 +X2 + . . .+Xlog y.
Then,

E[X] ≤ log(y) · 3
(
p · log(x) + q · log(y) + c′). ◀

Similarly, we can derive the number of rounds that a node needs to route inside the217

cluster.218

▶ Lemma 2 (Routing within a cluster). Routing within a cluster takes O
(

log(x) · (p · log(x) +219

q · log(y))
)

steps in expectation.220

We omit the proof of this lemma as it is analogous to the analysis in [13], with the221

exception that the normalization factor from Lemma 1 is applied. By summing up the222

expected number of steps from Lemma 1 and 2.223

▶ Theorem 3 (Routing with equal cluster sizes). Greedy routing on a demand-aware cycle224

containing y clusters of size x each together with augmented edges takes O
(

log(xy)(p log(x) +225

q log(y))
)

steps in expectation.226
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Observe that this bound corresponds to the upper bound of [13] when the matrix is dense,227

like for example in the stochastic block model [1] where all nodes belong to some cluster.228

In that case log(x) + log(y) = log(xy) = log(n). When the demand matrix is sparse, i.e.,229

xy ≪ n, the average distances become much smaller than in the demand-oblivious model.230

3.2 Cluster sizes following the Poisson distribution231

So far, we assumed that all clusters have the same size x. In this section, we relax this
condition and assume that each cluster Ik, k ∈ [y], has a different size |Ik| > 1, and that the
cluster sizes are distributed according to the Poisson distribution. Under this assumption,
each node has to compute its own normalization factor, as the normalization factor depends
on the size of the cluster to which the node belongs:∑

v,w∈Ik

v ̸=w

2p · d−1
x (v, w) +

∑
Ii,Ij

Ii ̸=Ij

2q · d−1
I (Ii, Ij) = 2p + 2q + 2p · log(|Ik|) + 2q · log(y).

In the following, we restrict the distribution according to which the cluster sizes of y232

clusters are chosen and compute the number of cluster hops that are needed to reach the233

destination cluster.234

▶ Theorem 4 (Routing between clusters under Poisson distribution). Assume that the cluster235

sizes X follow the Poisson distribution Pois(k, λ), i.e., Pr(X = k) = λke−λ

k! . Routing between236

the clusters takes237

O(log(y) · (p · log(λ + C1
√

λ log n) + q · log(y))) steps in expectation if λ > c log n,238

O(log(y) · (p · log(C2 log n) + q · log(y))) steps in expectation if λ < c · log n,239

O(log(y) · (p · log(C3
log n

log log n ) + q · log(y))) steps in expectation if λ = const,240

where C1, C2, C3 and c are large constants.241

Before proving the theorem, we first show a concentration of the cluster sizes for each242

choice of λ and then proceed with the analysis as in Lemma 1. Similar tail bounds for243

Poisson distribution have been analyzed in the literature. In the following, we adapt the tail244

bounds from [33] to our approach.245

▶ Lemma 5. Let λ > c log n. Then, the cluster sizes are concentrated in the interval246 [
λ − C

√
λ log n, λ + C

√
λ log n

]
, where C ≥ 2 is a constant, with probability at least 1 − 1/n3.247

Proof. In the following, we use Stirling’s approximation k! ≈
√

2πk
(

k
e

)k to approximate the248

factorial. We set λ = c′ log n, where c′ > c.249

Pr[X = λ + C
√

λ log n] ≈ λλ+C
√

λ log n

√
2π(λ + C

√
λ log n)

(
λ+C

√
λ log n

e

)λ+C
√

λ log n
e−λ

250

< eλ+C
√

λ log n λλ+C
√

λ log n(
λ + C

√
λ log n

)λ+C
√

λ log n
e−λ

251

= eC
√

λ log n 1(
1 + C√

c′

)√
c′

C ·C
√

λ log n
(

1 + C
√

log n√
λ

)C
√

λ log n
252

(a)
= eC

√
λ log n 1

eC
√

λ log n

(
1 + C

√
log n√
λ

)C
√

λ log n
253
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= 1(
1 + C

√
log n√
λ

) √
λ

C
√

log n
C2 log n

(b)
≈
(

1
e

)C2 log n

= 1
nC2 <

1
n4254

255

For Equations (a) and (b), we assume that c′ ≫ C2.256

Note that the number of clusters is upper bounded by n by definition. Using union bound,
we can show:

Pr[X > λ + C
√

λ log n] < n · Pr[X = λ + C
√

λ log n] <
1
n3 .

Analogously, we can prove the other side:

Pr[X < λ − C
√

λ log n] <
1
n3 .

This concludes the proof of the lemma. ◀257

▶ Lemma 6. Let λ < c · log n. Then, the cluster sizes can be upper bounded by C · log n,258

where C > 2c ≥ 2, with probability at least 1 − 1/n3.259

Proof.

Pr[X = C log n] = λC log n

(C log n)C log n
e−λ ≤

(
c log n

C log n

)C log n

=
( c

C

)C log n

<

(
1
2

)C log n

<
1
n4

Note that for the last inequality, we assume that C > 4. As in the proof of Lemma 5, we can
use the union bound together with the fact that there can be at most n clusters to prove the
Lemma statement:

Pr[X ≥ C log n] < n · Pr[X = C log n] <
1
n3 . ◀

▶ Lemma 7. Let λ be a constant. Then, the cluster sizes can be upper bounded by log n
log log n260

with probability at least 1 − 1/n3.261

Proof.

Pr
[
X = C

log n

log log n

]
= λC log n

log log n(
C log n

log log n

)C log n
log log n

· e−λ

Next, we reformulate the numerator λC log n = 2c′ log n for some constant c′ = C log λ and
receive

λC log n
log log n = n

c′
log log n = no(1).

For the denominator, we can write(
C

log n

log log n

)C log n
log log n

> nc′′

for c′′ = C
log n

log log n ·logn C
log n

log log n . Thus,

Pr
[
X = C

log n

log log n

]
<

no(1)

nc′′ <
1
n4

for a sufficiently large value of n.262

As before, we apply the union bound together with the fact that there can be at most n

clusters to show the theorem statement:

Pr
[
X ≥ C

log n

log log n

]
< n · Pr

[
X = C

log n

log log n

]
<

1
n3 . ◀
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Using the above bounds, we can now prove Theorem 4:263

Proof of Theorem 4. As in the proof of Lemma 1, we consider the clusters as supernodes264

and let J denote the |J |-neighborhood of the destination cluster Iv. We first show that it265

takes O(p · log(λ) + q · log(y)) steps in expectation for the greedy routing starting in u to266

reach a node in J/2, i.e. inside the |J |/2-neighborhood of Iv.267

Node u can connect to at least |J | clusters in J/2. The probability for u from cluster Iu

to have a direct link to a cluster in J/2 is at least

|J | · 1
2p · log(|Ik|) + 2q · log(y) + c

· d−1
I (Iu, Iw)

where Iw is the farthest cluster at distance 3|J |/2. That is,268

|J |
2p · log(|Iu|) + 2q · log(y) + c

· d−1
I (Iu, Iw) >

|J |
(p · log(|Iu|) + q · log(y) + c′) · 3|J |

(1)269

= 1
3(p · log(|Iu|) + q · log(y) + c′) .270

271

Let Yi be a random variable denoting the number of steps for a node u to reach a cluster272

in J/2. Note that Yi depends on the cluster size of the nodes that are visited on the path from273

u to v. To upper bound the expected number of steps, we do a case distinction depending274

on the size of λ:275

Case λ > c log n. We can bound the term in Equation (1) w.r.t. the average cluster size276

using Jensen’s inequality for concave functions:277

Pr[Yi > r] ≤
r∏

k=1

(
1 − 1

3(p · log(|Ik|) + q · log(y) + c′)

)
278

≤

(
1 − 1

3(p · log
( 1

r

∑
k∈[r] |Ik|

)
+ q · log(y) + c′)

)r

. (2)279

280

Here, the clusters Ik represent the clusters of the nodes visited within r steps. In the following,
we will focus on bounding the average 1

r

∑
k∈[r] |Ik|. In the case λ > c log n, the cluster sizes

are concentrated in
[
λ − C1

√
λ log n, λ + C1

√
λ log n

]
(see Lemma 5). Due to r ≤ n and the

union bound, the probability that this sum contains a cluster outside of the interval is less
than 1/n2. Thus, with probability st least 1 − 1/n2 we have

1
r

∑
k∈[r]

|Ik| < λ + C1
√

λ log n

281

and also Pr[Yi > r] ≤

(
1 − 1

3(p · log(λ + C1
√

λ log n) + q · log(y) + c′)

)r

.282

283

From here on, we can now apply

E[Yi] =
n∑

j=1
Pr[Yi > j].

This is because, among all n clusters, w.h.p., there will be no cluster outside of the concen-284

tration bounds.285
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Let the random variable Y = Y1 + Y2 + . . . + Ylog y denote the number of rounds to reach
the destination cluster. Then,

E[Y ] ≤ log(y) · 3
(
p · log(λ + C1

√
λ log n) + q · log(y) + c′).

Case λ < c · log n. We will derive the upper bound on the expected number of rounds
analogously to the previous case. The average cluster size of the visited clusters is upper
bounded by

1
r

∑
k∈[r]

|Ik| < C2 log n

with probability 1/n2. By plugging in this value into Equation (2), we get

Pr[Yi > r] ≤

(
1 − 1

3(p · log(C2 log n) + q · log(y) + c′)

)r

.

For the expected number of rounds holds

E[Y ] ≤ log(y) · 3
(
p · log(C2 log n) + q · log(y) + c′).

Case λ = const. In this case, the average cluster size of the visited clusters is upper
bounded by

1
r

∑
k∈[r]

|Ik| < C3
log n

log log n

with probability 1/n2. Plugging in this value into Equation (2) results in

Pr[Yi > r] ≤

(
1 − 1

3
(

p log
(

C3
log n

log log n

)
+ q log(y) + c′

))r

.

And finally, the expected value is

E[Y ] ≤ log(y) · 3
(

p · log
(

C3
log n

log log n

)
+ q · log(y) + c′

)
with high probability. ◀286

The expected number of steps when routing within a cluster can be computed for287

each cluster separately, i.e., the expected number of steps within a cluster of size x is288

O
(

log(x) · (p · log(x) + q · log(y))
)
. Since the expected cluster size under the Poisson289

distribution is λ, we have290

▶ Lemma 8 (Routing within a cluster under Poisson distribution). Routing within a cluster291

takes O
(

log(λ) · (p · log(λ) + q · log(y))
)

steps in expectation.292

In total, the expected number of steps for greedy routing is293

▶ Theorem 9 (Routing with Poisson-distributed cluster sizes). Assume that the cluster sizes x294

follow the Poisson distribution Pois(k, λ). Then, greedy routing from a source to a destination295

takes296

O(log(λy) · (p · log(λ + C1
√

λ log n) + q · log(y))) steps in expectation if λ > c log n,297

O(log(c log n · y) · (p · log(C2 log n) + q · log(y))) steps in expectation if λ < c · log n,298

O(log(y) · (p · log(C3
log n

log log n ) + q · log(y))) steps in expectation if λ = const,299

where C1, C2, C3 and c are large constants.300
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3.3 Cluster sizes following the power law distribution301

In this section, we consider the case where clusters are distributed according to the power302

law distribution. Other than in the previous section, this distribution allows one to have few303

large clusters, while most of the clusters have a constant size. We will therefore divide the304

clusters into intervals containing similar cluster sizes and analyze the intervals separately. A305

similar approach of analyzing connected components by grouping their sizes has been used306

in [9] on random graphs. The analysis in this section therefore differs from the previous two307

sections.308

▶ Lemma 10 (Routing between clusters under power law distribution). Assume that the309

cluster sizes follow the Power Law distribution PowerLaw(α), i.e., f(x; α) = (α − 1)x−α
310

for α ∈ (2, 4] and a discrete random variable x. Then, routing between the clusters takes311

O(log(y) · (4p · log log(n) + q · log(y))) steps in expectation.312

Proof. Let X denote the size of a cluster. We can calculate the probability that this cluster
exceeds a certain size s as

Pr[X > s] =
∞∑

k=s+1

1
kα

≤
∫ ∞

s+1

1
xα

dx = 1
α − 1

1
(s + 1)α−1 <

1
sα−1 .

Note that this bound is not sufficient to upper bound the number of large clusters.313

We therefore divide the n possible cluster sizes into intervals [2iC, 2i+1C], where C is a314

large constant. The probability that the size of a cluster I lies in the interval [2iC, 2i+1C]315

can be upper bounded by316

Pr
[
|I| ∈ [2iC, 2i+1C]

]
<

1
(2iC)α−1 . (3)317

Let r denote the number of clusters traversed by the greedy routing. We can assume318

that these r clusters are chosen uniformly at random with the probabilities chosen as in319

Equation (3). The average number of clusters in an interval [2iC, 2i+1C] is upper bounded320

by r
(2iC)α−1 .321

Assume first that r > c′ log2 n. In this case, we can apply the Chernoff bound to show that
the cluster sizes of the intervals containing small clusters, where ci ≤ log n, are concentrated
around n/(ci+1). Let Z be the random variable denoting the number of clusters of size
[2iC, 2i+1C]:

Pr
[
Z > 5 r

2iC

∣∣ ci ≤ c′
]

< Pr
[
Z > 5c′ log2 n

ci

∣∣ ci ≤ c′
]

< e−4 log n ≤ 1
n4 .

For larger i, we can upper bound the number of clusters in an interval by

Pr
[
Z > c′′

(
log n + r

2iC

)]
< e−c′ log n ≤ 1

n4 .

Finally, we upper bound the number of clusters for any interval in the case where r ≤ c′ log2 n:

Pr
[
Z > c′′

(
log n + r

2iC

)]
≤ 1

n4 .

In order to calculate the expected number of hops from a start to the destination, we will322

consider the above cases separately. First observe that in the case r > c′ log2 n, where i is323

large, there are at most log n intervals with cluster sizes from size log n up to size n, each of324

which has at most log n clusters with high probability (probability larger than (1 − 1
n4 )).325
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Recall that the probability that the greedy routing needs more than r hops can be upper326

bounded as327

Pr[Yi > r] ≤
r∏

k=1

(
1 − 1

3(p · log(|Ik|) + q · log(y) + c′)

)
328

≤

(
1 − 1

3(p · log
( 1

r

∑
k∈[r] |Ik|

)
+ q · log(y) + c′)

)r

. (4)329

330

We will now upper bound 1
r

∑
k∈[r] |Ik| for r > c′ log2 n. We therefore split the sum into331

intervals of size up to log n and into all larger intervals. Observe that there are at most332

log n − log log n intervals that each contain less than log n clusters of size log n to n. It would333

take less than log3 n steps to traverse them in the worst case.334

On the other hand, the number of clusters in each small interval is concentrated around335

r
ci . This can be used to calculate the actual average cluster size.336

The average cluster size of the traversed clusters is upper bounded by

1
r

∑
k∈[r]

|Ik| <
1
r

log log n∑
i=1

2iC · r

ci
+ log3 n ≤ C · log log n + log3 n < 2 log3 n

with probability 1 − 1
n3 , as we can sample up to r ≤ n clusters in total.337

For r < c log2 n, we assume that each cluster has a size in the order of n, and use the338

same upper bound as used for clusters of sizes log log n to n. Note that there are up to339

r < log2 n such clusters, and therefore the expected number of hops to traverse these clusters340

is upper bounded by log2 n · log n log n < log3 n. Then we can calculate the expectation as341

follows:342

E[Yi] =
c log2 n∑

j=1
Pr[Yi > j] +

n∑
j=c log2 n

Pr[Yi > j] < 3
(
p · log(log4 n) + q · log(y) + c′)

343

+ 3
(
p · log(2 log3 n) + q · log(y) + c′) < 6

(
4p · log log(n) + 2q · log(y) + c′).344

345

In the final step, we again use Y to denote the number of rounds to reach the destination
cluster. Since we halve the cluster distance until we end up in the destination cluster, we
have Y = Y1 + Y2 + . . . + Ylog y. Then,

E[Y ] ≤ log(y) · 6
(
4p · log log(n) + 2q · log(y) + c′). ◀

Note that in the proof of Lemma 10, we accounted for the number of steps needed to346

traverse large clusters in the analysis. To calculate the expected number of steps for greedy347

routing, we only need to add the number of steps needed to traverse clusters of size up to348

c log2 n. Thus, we have349

▶ Theorem 11 (Routing with power law-distributed cluster sizes). Assume that the cluster350

sizes follow the Power Law distribution PowerLaw(α) for α ∈ (2, 4]. Then, greedy routing351

takes O(log(2y log n) · (4p · log log(n) + q · log(y))) steps in expectation.352

4 Extension to grid structures with equal cluster sizes353

In this section, we assume that the clusters are connected in a grid as described in Section 2.354

The probability of communicating within a cluster or between clusters remains as in Section 2.355

As in Section 3, we start by presenting the demand-aware probability distribution according356

to which the augmenting edges are chosen.357
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Distribution of augmented edges358

We assume that the clusters are placed at nodes of a √
y × √

y-dimensional square grid. The359

distance dI(·, ·) between any two clusters on the grid is defined in terms of their lattice360

distance, i.e., the sum of the horizontal and the vertical grid distances between the two361

clusters.362

The long-range edges inside the clusters are added as described in the case of cycles in363

Section 3. The long-range edges to different clusters are added inversely proportional to the364

square of the cluster distance, i.e., proportional to 1/d2
I(·, ·).365

As in the case of cycles, we start by calculating the normalization factor for adding a link
to another node or cluster. Note that the sum of probabilities within a cluster remains the
same. Since the clusters are arranged in a grid, each cluster has four neighboring clusters
at a cluster distance of 1, eight neighboring clusters at a cluster distance of 2, etc. We can
upper bound the sum of probabilities by

∑
Ii,Ij ;Ii ̸=Ij

2q · d−2
I (Ii, Ij) ≤

2√
y−2∑

ℓ=1

4ℓ

ℓ2 < 4 log(6y1/2).

When considering links added inside and between the clusters, we get∑
v,w∈Ik;v ̸=w

2p · d−1
x (v, w) +

∑
Ii,Ij ;Ii ̸=Ij

2q · d−2
I (Ii, Ij) ≤ 2p + 2p log(x) + 8q log(6) + 4q log(y).

Thus, the normalization factor is lower bounded by 1/(2p + 24q + 2p log(x) + 4q log(y)).366

4.1 Analysis on clusters of the same size367

In the following, we only analyze the case of routing between the clusters of the same size x.368

The analysis of routing inside a cluster remains as in the previous section.369

▶ Lemma 12 (Routing between the clusters on grids). Routing between clusters of the same370

size that are arranged in a grid structure takes O(log(y) · 4(2p log(x) + 4q log(y) + c)) steps371

in expectation for a large constant c.372

Proof. To prove this statement, we will follow the demand-oblivious analysis on grids by373

Kleinberg [24]. Let Iv be the destination. We divide the analysis into phases j, where a374

phase is defined as the expected number of steps to half the cluster hop distance to Iv. As375

earlier, we are going to consider clusters as supernodes. We define a ball Bj(Iv) containing376

all clusters at a cluster distance of at most 2j from Iv in the grid. Note that there are at377

least
∑2j

i=1 i = (2j+1)2j

2 > 22j−1 such clusters in Bj(Iv).378

The probability that any node in a cluster outside Bj(Iv) has a long-range edge to a
cluster in Bj(Iv) is lower bounded by

22j−1

(2p + 24q + 2p log(x) + 4q log(y)) · d2(Ii, Ij) >
1

8(2p log(x) + 4q log(y) + c) .

From here on, the analysis continues as in the case of cycles. Let Xj denote the number
of steps to reach Bj(Iv). The expected value of Xj is

8(2p log(x) + 4q log(y) + c).

Let X denote the number of rounds to reach Iv. In every phase, the distance to the
destination cluster is halved and thus X = Xlog(√

y) + . . . + X2 + X1. Then

E[X] < log(y) · 4(2p log(x) + 4q log(y) + c). ◀

OPODIS 2025



28:14 Demand-Aware Small-World Networks on Clustered Demands

The routing within clusters can be computed similarly to Section 3.1, with an adapted379

normalization factor. By summing up the expected number of steps between and within the380

clusters, we receive the following result:381

▶ Theorem 13 (Demand-aware routing on grids). Greedy routing on a grid consisting of382

y clusters, each containing x nodes, together with demand-aware augmented edges takes383

O(log(xy) · 4(2p log(x) + 4q log(y) + c)) steps in expectation.384

Also in this case, clusters of different size following the Poisson or the power law distri-385

bution can be considered. The main difference in the analysis between the case of cycles386

and grids lies in the first step where the long-range edges are added to the graph. Observe387

that the rest of the analysis as well as the normalization factor chosen by the nodes almost388

does not change. The same analysis can therefore be performed with Poisson and power law389

distributed cluster sized also on grids, resulting in similar bounds on the expected number of390

steps.391

5 Empirical evaluation392

We simulate our model on a cycle as described in Section 2. Our goal is to evaluate the393

expected routing distance (ERD) E[G(u, v)|D̃] =
∑

u,v∈V GD̃(u, v) · D(u, v), where G(·, ·)394

denotes the greedy distance and D̃ is the augmented demand matrix, on instances derived395

from real-world datacenter traffic traces. Additionally we provide further evaluation on396

simulated artificial instances in Appendix A. Since our model is randomized, in our simulations397

we perform 100 runs and report on the averages.398

We additionally compare to a “demand oblivious” model similar to that of Kleinberg [24]399

which we will simply refer to as the “oblivious” model. For each vertex belonging to a cluster,400

we add exactly one edge to one of the other vertices belonging to any cluster with probability401

proportional to the inverse of the shortest path distance on the demand graph D. In contrast402

to this, we will refer to the model in our paper as the “demand-aware” model.403

5.1 Real-world instances404

We base our analysis on real-world high performance computing (HPC) cluster traffic traces405

from Avin et al. [5]. The data comprises communication requests between pairs of nodes406

including timestamps. We count for each pair of nodes the number of communication requests407

in the trace and store the resulting counts in a matrix, disregarding the directionality of the408

request. Finally, the resulting matrix is normalized so that its entries sum to one. We use409

this as the demand matrix.410

These traffic traces only contain information for nodes that participate in the communica-411

tion. The original data was recorded on the HPC Hopper, which is NERC’s Cray XE6 system,412

comprising a total of 153,216 nodes [31] (here CPU cores). Our traces contain 1024 nodes.413

Note that the traffic was measured on a message passing interface (MPI) not on physical414

NICs. The nodes in the trace are therefore CPU cores, which could be (partially) collocated415

on the same physical servers. Nonetheless, most nodes of the HPC did not participate in the416

communication in our traces.417

Since we do not know the physical mapping of these nodes onto servers, to obtain clusters418

of nodes from these instances we try to identify groups of frequently communicating nodes.419

We model this as a Correlation Clustering problem, wherein for each pair of nodes a420

weight between 0 (the nodes are very dissimilar) and 1 (the nodes are very similar) is assigned.421

The goal of Correlation Clustering is to cluster similar nodes, and place dissimilar422
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Figure 1 Visualization of the demand mat-
rix for the “hpc nekbone” trace after clustering.
Bright colors indicate frequent communication
and dark indicate less communication. Black
lines are drawn to separate clusters.
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Figure 2 Impact of the fraction of non-
communication nodes on the expected routing
distance for the real-world traffic traces. SP de-
notes a variant that uses shortest path routing
instead of greedy routing.

nodes in different clusters1. To solve these instances we use the Vote/BOEM heuristic423

proposed by Elsner and Schudy [14] due to its ease of use and good quality of solutions.424

An example visualization of the clustered demand matrices can be seen in Figure 1. In the425

following we present the evaluation of the expected routing distance in the HPC clusters. An426

extended analysis of the inter- and intracluster communication is presented in Appendix A.2.427

Expected Routing Distance428

Since only a fraction of the nodes of the HPC took part in the communication, we analyze how429

the routing distance changes with the total number of nodes. This is summarized in Figure 2.430

The results are quite similar to those of the artificial instances, and the demand-aware model431

achieves better results than the oblivious one when using greedy routing. Note that the432

within cluster communication probability p varies for each node, and the cluster sizes x433

are not fixed, unlike in the simulations on artificial data. The theoretical bound from our434

analysis would be a straight line that is factor 3 larger than the other results, because it435

assumes the very worst case where we communicate between the two furthest nodes.436

6 Conclusion437

This paper presented a demand-aware analysis of small-world networks. Motivated by438

the structure of real-world high performance computing cluster traffic traces, we analyzed439

sparse demand matrices with closely communicating clusters. We proposed a demand-aware440

randomized edge augmentation technique based on [24] and showed that a demand-aware441

edge augmentation outperforms the demand-oblivious strategy. Our empirical evaluations442

support using demand-aware edge augmentation and show that the local greedy routing443

technique proposed in [24] is a good alternative to the global shortest paths routing technique444

on real-world datasets.445

1 Note that some preprocessing was necessary to obtain Correlation Clustering instances from our
demand matrices. Looking at the data we saw many clusters, with many in-cluster edges missing.
To increase the clustering coefficient we applied the following preprocessing: for each vertex v and
neighbour u: add the weight of the edge u, v divided by degree of u to v, w where w is a neighbour of u
but not of v.
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A Further empirical evaluation558

A.1 Artificial instances559

We construct artificial instances parameterized by the values p, q, x, y, n where q = 1 − p.560

More specifically we create a demand matrix D for the n nodes, in which only x ·y nodes have561

some demand to each other. The remaining nodes do not participate in the communication,562

and have a demand of 0 to all other nodes. The demand matrix is constructed in such a563

way that a node communicates with its own cluster with probability p, and among the x − 1564

other nodes in the cluster the probability is divided uniformly. With probability q, a node565

communicates outside its own cluster, and the probability is divided uniformly among the566

(y − 1) · x possible nodes. Finally, we embed y clusters of x nodes each onto a cycle with n567

nodes, such that the spacing between the clusters differs by at most 1.568

We perform experiments, to analyze the impact of the various instance parameters on569

the expected routing distance. Since the number of parameters is quite high, we fix all but570

one parameter and vary the remaining parameter. See Figure 3 for the results.571
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Figure 3 Simulation results on artificial data. Different instance parameters are varied and their
impact on the routing cost is depicted. The two routing strategies: greedy and shortest path (SP)
are compared.

From Figure 3a it is apparent, that the routing distance does not change at all. As desired572

and expected (by Theorem 3) our model has no dependence on the number of nodes that573

do not participate in the communication. The greedy and shortest path routing strategies574

appear quite close for the demand-aware regime, with the shortest path routing resulting in575

roughly 70% smaller distances.576

In Figure 3b we analyze the dependence of the expected routing distance on the probability577

p that the communication of a node falls within its own cluster. For the oblivious setting,578

this appears to be a linear dependence. Instances with small values of p, indicating that the579

nodes in the clusters mostly communicate outside their own clusters, exhibit smaller routing580

distances in the demand-aware model than in the oblivious one. This is due to the fact that581
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Figure 4 Histogram of the cluster sizes x and within cluster communication probabilities p on
the traffic traces.

the demand-aware model is more likely to augment the graph with shortcut edges to more582

distant clusters than the oblivious model. For large p both models perform similarly, as most583

augmenting edges will be added within a cluster or to nodes close to the current cluster.584

A.2 Parameter analysis of real-world instances585

Based on the computed clustering we compute the probability p that a node communicates586

within its own cluster, the cluster sizes x and the number of clusters y. This is summarized587

in Figure 4. The within cluster communication probability p appears somewhat uniformly588

distributed, and the cluster sizes x are usually at most 20 with few larger ones. Some traces589

contain up to 150 clusters, but the median is around 30 clusters per trace.590
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