
OBST: A Self-Adjusting Peer-to-Peer Overlay
Based on Multiple BSTs
Chen Avin1, Michael Borokhovich1, Stefan Schmid2

1 Ben Gurion University, Beersheva, Israel; 2 TU Berlin & T-Labs, Berlin, Germany
{avin,borokhovich}@cse.bgu.ac.il; stefan@net.t-labs.tu-berlin.de

Abstract—The design of scalable and robust overlay
topologies has been a main research subject since the very
origins of peer-to-peer (p2p) computing. Today, the corre-
sponding optimization tradeoffs are fairly well-understood,
at least in the static case and from a worst-case perspective.

This paper revisits the peer-to-peer topology design prob-
lem from a self-organization perspective. We initiate the
study of topologies which are optimized to serve the commu-
nication demand, or even self-adjusting as demand changes.
The appeal of this new paradigm lies in the opportunity
to be able to go beyond the lower bounds and limitations
imposed by a static, communication-oblivious, topology. For
example, the goal of having short routing paths (in terms of
hop count) does no longer conflict with the requirement of
having low peer degrees.

We propose a simple overlay topology OBST(k) which
is composed of k (rooted and directed) Binary Search
Trees (BSTs), where k is a parameter. We first prove some
fundamental bounds on what can and cannot be achieved op-
timizing a topology towards a static communication pattern
(a static OBST(k)). In particular, we show that the number
of BSTs that constitute the overlay can have a large impact
on the routing costs, and that a single additional BST may
reduce the amortized communication costs from Ω(logn)
to O(1), where n is the number of peers. Subsequently,
we discuss a natural self-adjusting extension of OBST(k),
in which frequently communicating partners are “splayed
together”.

I. INTRODUCTION

Classic literature on the design of peer-to-peer (p2p)
topologies typically considers the optimization of static
properties in the worst case, e.g., the maximal peer degree
or the network diameter. An appealing alternative is to
optimize the amortized performance of a p2p system (or
more generally, a distributed data structure) based on the
communication or usage patterns, either statically (based
on known traffic statistics) or dynamically, exploiting
temporal localities for self-adjustments.

One of the main metrics to evaluate the performance
of a self-adjusting network is the amortized cost: the
worst-case communication cost over time and per re-
quest. Splay trees are the most prominent example of
the self-adjustment concept in the context of classic data
structures: in their seminal work, Sleator and Tarjan [13]
proposed self-adjusting binary search trees where popular
items or nodes are moved closer to the root (where the
lookups originate), exploiting potential non-uniformity in
the access patterns.

Our Contributions. This paper initiates the study of
how to extend the splay tree concepts [5], [13] to multiple
trees, in order to design self-adjusting p2p overlays.
Concretely, we propose a distributed variant of the splay
tree to build the OBST overlay: in this overlay, frequently
communicating partners are located (in the static case) or
moved (in the dynamic case) topologically close(r), with-
out sacrificing local routing benefits: While in a standard
binary search tree (BST) a request always originates at the
root (we will refer to this problem as the lookup problem),
in the distributed BST variant, any pair of nodes in the
network can communicate; we will refer to the distributed
variant as the routing problem.

The reasons for focusing on BSTs are based on their
simplicity and powerful properties: they naturally support
local, greedy routing, they are easily self-adjusted, they
support join-leave operations in a straight-forward manner,
and they require low peer degrees. The main drawback
is obviously the weak robustness imposed by the tree
structure, and we address this by using multiple trees.

The proposed OBST(k) overlay consists of set of k
distributed BSTs. (See Figure 1 for an example of a
OBST(2).) We first study how the communication cost
in a static OBST(k) depends on the number k of BSTs,
and give an upper bound which shows that the overlay
strictly improves with larger k. In fact, we will show that
in some situations, changing from k to k + 1 BSTs can
make a critical difference in the routing cost. Interestingly,
such a drastic effect is not possible on the classical lookup
operations in a BST. This demonstrates that the problem
of optimizing routing on a BST has some key differences
from the lookup problem that was, and still is, extensively
researched.

After studying the static case, we also describe a
dynamic and self-adjusting variant of OBST which is in-
spired by classic splay trees: communication partners are
topologically “splayed together”. These splay operations
are completely local and hence efficient.

II. MODEL AND DEFINITIONS

We describe the p2p overlay network as a graph H =
(V,E) where V = {v1, . . . , vn} is the set of peers and
E represents their connections. For simplicity, we will
refer by vi both to the corresponding peer as well as the

7 15

10

17

20

12

9

5

2

4

1

7 15

10

17

20

12

9

5

2

4

1

7 15

10

17

20

12

9

5

2

4

1

BST 1

BST 2

Fig. 1: Example of OBST(2) consisting of two BSTs. Top
left: BST 1 (e.g., rooted at peer v7). Top right: BST 2
(e.g., rooted at peer v10). Bottom: combined BSTs.

peer’s (unique) identifier; sometimes, we will simply write
i instead of vi. Moreover, we will focus on bidirected
overlays, i.e., we will ensure that if a peer v1 ∈ V is
connected to another peer v2 ∈ V , denoted by (v1, v2),
then also v2 is connected to v1 (i.e., (v2, v1)). Sometimes
we will refer to the two bidirected edges (v1, v2) and
(v2, v1) simply by {v1, v2}.

We will assume that peers communicate according to a
certain pattern. This pattern may be static in the sense
that it follows a certain probability distribution; or it
may be dynamic and change arbitrarily over time. Static
communication patterns may conveniently be represented
as a weighted directed graph G = (V,E): any peer pair
(v1, v2) communicating with a non-zero probability is
connected in the graph G.

We will sometimes refer to the sequence of communi-
cation events between peers as communication requests σ.
In the static case, we want the overlay H be as similar as
possible to the communication pattern G (implied by σ), in
the sense that an edge e ∈ E(G) is represented by a short
route inH; this can be seen as a graph embedding problem
of G (the “guest graph”) into H (the “host graph”). In the
dynamic setting, the topology H can be adapted over time
depending on σ. These topological transformations should
be local, in the sense that only a few peers and links in
a small subgraph are affected.

Our proposed topology OBST(k) can be described by a
simple graph H which consists of a set of k binary search
trees (BST), for some k > 0.

Definition 1 (OBST(k)). Consider a set {T1, . . . , Tk} of
k BSTs. OBST(k) is an overlay over the peer set V =
{1, . . . , n} where connections are given by the BST edges,

i.e., E =
⋃k
i=1E(Ti).

Our topological transformations to adapt the OBST(k)
are rotations over individual BSTs: minimal and local
transformations that preserve a BST. Informally, a rotation
in a sorted binary search tree changes the local order
of three connected nodes, while keeping subtrees intact.
Note that it is possible to transform any binary search tree
into any other binary search tree by a sequence of local
transformations (e.g., by induction over the subtree roots).

Let σ = (σ0, σ1 . . .) be a sequence of m requests.
Each request σt = (u, v) is a pair of a source peer
and a destination peer. Let A be an algorithm that given
the request σt and the graph Ht at time t, transforms
the current graph (via local transformations) to Ht+1 at
time t + 1. We will use STAT to refer to an any static
(i.e., non-adjusting) “algorithm” which does not change
the communication network over time; however, STAT is
initially allowed to choose an overlay which reflects the
statistical communication pattern.

The cost of the network transformations at time t
are denoted by ρ(A,Ht, σt) and capture the number of
rotations performed to change Ht to Ht+1; when A is
clear from the context, we will simply write ρt. We denote
with dH(·) the distance function between nodes in H, i.e.,
for two nodes v, u ∈ V we define dH(u, v) to be the
number of edges of a shortest path between u and v in
H. (The subscript H is optional if clear from the context.)
Note that for a BST T , the shortest path between u and
v is unique and can be found and routed locally via a
greedy algorithms.

For a given sequence of communication requests, the
cost for an algorithm is given by the number of transfor-
mations and the distance of the communication requests.
Formally, we will make use of the following standard
definitions (see also [5]).

Definition 2 (Average and Amortized Cost). For an al-
gorithm A and given an initial network H0 with node dis-
tance function d(·) and a sequence σ = (σ0, σ1 . . . σm−1)
of communication requests over time, we define the (aver-
age) cost of A as: Cost(A,H0, σ) = 1

m

∑m
t=0(dHt

(σt)+1
+ρt) The amortized cost of A is defined as the worst
possible cost of A, i.e., maxH0,σ Cost(A,H0, σ).

One may consider two different routing models on
OBST. In the first model, two peers will always com-
municate along a single BST: one which minimizes the
hop length; the best BST may be found, e.g., via a probe
message along the trees: the first response is taken. In the
second model, we allow routes to cross different BSTs,
and take the globally shortest path; this can be achieved,
e.g., by using a standard routing protocol (e.g., distance
vector) in the background. In the following, if not stated
differently, we will focus on the first model, which is more
conservative in the sense that it yields higher costs.

III. BACKGROUND ON BSTS AND SPLAY TREES

The following facts are useful in the remainder of this
paper. Theorem 1 bounds the lookup cost in an optimal
binary search tree under a given lookup sequence σ: a
sequence of requests all originating from the root of the
tree.

Theorem 1 ([12]). Given σ, for any (optimal) BST T , the
amortized cost is at least

Cost(STAT, T, σ) ≥ 1

log 3
H(Ŷ) (1)

where Ŷ (σ) is the empirical measure of the frequency
distribution of σ and H(Ŷ) is its empirical entropy.

Knuth [10] fist gave an algorithm to find an optimal
BST, and Mehlhorn [12] proved that a simple greedy
algorithm is near optimal with an explicit bound:

Theorem 2 ([12]). Given σ, there is a BST, Tbal that
can be computed using a balancing argument and has an
amortized cost of at most

Cost(STAT, Tbal, σ) ≤ 2 +
H(Ŷ)

1− log(
√

5− 1)
(2)

where Ŷ (σ) is the empirical measure of the frequency
distribution of σ and H(Ŷ) is its empirical entropy.

Sleator and Tarjan were able to show that splay trees, a
self-adjusting BST based on an algorithm ST, yields the
same amortized cost as an optimal binary search tree.

Theorem 3 (Static Optimality Theorem [13] - rephrased).
Let σ be a sequence of lookup requests where each item
is requested at least once, then for any initial tree T
Cost(ST, T, σ) = O(H(Ŷ)) where H(Ŷ) is the empirical
entropy of σ.

In [5], Avin et al. proposed a single dynamic splay BST
for routing, and a double splay algorithm DS. For the
single tree case and any initial tree T the authors proved
the following lower bound for a static solution STAT:

Cost(STAT, T, σ) = Ω(H(Ŷ |X̂) +H(X̂|Ŷ))

and the following upper bound for DS:

Cost(DS, T, σ) = O(H(X̂) +H(Ŷ))

where X̂ and Ŷ are the empirical measures of the fre-
quency distribution of the sources and destinations from
σ, respectively and H is the entropy function.

It is easy to see that BSTs support simple and local
routing. [5]

Claim 1. BSTs support local routing.

IV. STATIC OBST(k) OPTIMIZATION FOR P2P
We will first study static overlay networks which are

optimized towards a request distribution given before-
hand. The number of BSTs k is given together with the
sequence of communication requests σ = (σ0, σ1, . . .).
The goal is to find the optimal OBST(k) to minimize
Cost(STAT,OBST(k), σ).

In [5] it is was proved that for any σ, the optimal
OBST(1) can be found in polynomial time. Here we first
provide a new upper bound for the optimal OBST(k) and
show how it can improve with k.

For communication requests σ let xi(σ) (or for short
xi) be the frequency of vi being a source in σ; similarly let
yi be the frequency of vi being a destination, and let fij
denote the frequency of the request (vi, vj) in σ. Define
zi = (xi + yi)/2 and note that by definition

∑n
1 zi = 1.

Let Ẑ be a random variable (r.v.) with a probability
distribution defined by the z′is. For any k-partition of
the requests in σ into disjoint sets S1, S2, . . . , Sk, let
α1, α2, . . . , αk be the frequency measure of the partition,
i.e., αi =

∑
(i,j)∈Si

fij .
First we can prove a new bound on the optimal static

OBST(1):

Theorem 4. Given σ, there exists a OBST(1) such that:

Cost(STAT,OBST(1), σ) ≤ 4 +
2H(Ẑ)

1− log(
√

5− 1)

where H(Ẑ) is the entropy of Ẑ as defined earlier.

Consider now the OBST(k) overlay which consists of k
BSTs. Assume again a non-optimal strategy: we partition
σ into k disjoint sets of requests S1, S2, . . . , Sk, and each
request is routed on its unique BST. In each tree we use
the previous method, and the messages are routed from
the source to the root and from the root to the destination.

We can now prove an upper bound on OBST(k) that
improves with k.

Theorem 5. Given σ, there exists a OBST(k) such that:

Cost(STAT,OBST(k), σ) ≤ 4 +
2H(Ẑ)− 2H(α1, α2, . . . , αk)

1− log(
√
5− 1)

where H(Ẑ) is the entropy of Ẑ as defined earlier.

Note that this approach can yield a cost reduction of
up to log k, when the αi values are equal. The problem
of equally partition σ into k sets in order to maximize
H(α1, α2, . . . , αk) is NP-complete, since even the parti-
tion problem (i.e., k = 2) and in particular the balanced
partition problem (with k = 2) are NP-complete [9].
Interestingly, for those cases, k = 2, a pseudo-polynomial
time dynamic programming algorithm exists.

The bound in Theorem 5 is conservative in the sense
that sometimes, a single additional BST can reduce the
optimal communication cost of OBST(k) from worst
possible (e.g., Ω(log n)) to a constant cost in OBST(k+1).

Theorem 6. A single additional BST can reduce the
amortized costs from a best possible value of Ω(log n)
to O(1).

Essentially, it follows from the two BSTs T1 = (V,E1)
and T2 = (V,E2) shown in Figure 2: obviously, the two
BSTs can be perfectly embedded into OBST(2) consisting
of two BSTs as well. However, embedding the two trees
at low cost in one BST is impossible, since there is a large
cut in the identifier space.

1

n/2

2

n/2-1

...

...

n/4

n/2+1

n

n-1

...

...

3n/4

1

n

2

n-1

...

...

n/2

BST 1 BST 2

n/2+1

n/2+2

Fig. 2: A request sequence σ originating from these
specific trees can yield high amortized costs.

Interestingly, such a high benefit from one additional
BST is unique to the routing model and does not exist
for classic lookup data structures as demonstrated by the
following theorem.

Consider a sequence σ = (v0, v1, . . . , vm−1), vi ∈ V
of lookup requests, and |V | = n. Theorem 1 can be
generalized to k parallel lookup BSTs.

Theorem 7. Given σ, for any OBST(k):

Cost(STAT,OBST(k), σ) ≥ H(Ŷ)− log k

log 3
,

where Ŷ (σ) is the empirical frequency distribution of σ.

V. DYNAMIC SELF-ADJUSTING OBST(k) OVERLAY

Given our first insights on the performance of static
OBST(k) networks, let us now initiate the discussion of
self-adjusting variants: BSTs which adapt to the demand,
i.e., the sequence σ.

We initialize OBST(k) as follows: each BST connects
all peers V as a random and independent binary search
tree. When communication requests occur, BSTs start to
adapt. In the following, we will adjust the overlay at each
interaction (“communication event” or “request”) of two
peers. Of course, in practice, such frequent changes are
undesirable. While our protocol can easily be adapted such
that peers only initiate the topological rearrangements
after a certain number of interactions (within a certain
time period), in order to keep our model simple, we do
not consider these extensions here.

We propose a straight-forward splay method (inspired
from the classical splay trees) to change the OBST(k):
whenever a peer u communicates with a peer v, we
perform a distributed splay operation in one of the BSTs,

namely in the BST T in which the two communication
partners (u, v) are the topologically closest.

Concretely, upon a communication request (u, v), we
determine the BST T (in case multiple trees yield similar
cost, an arbitrary one is taken), as well as the least
common ancestor w of u and v in T : w := LCAT (u, v).
Subsequently, u and v are splayed to the root of the
subtree (henceforth denoted by T (w)) of T rooted at w
(a so-called double-splay operation [5]).

Algorithm 1 Dynamic OBST(k)

1: (* upon request (u, v) *)
2: find BST T ∈ OBST where u and v are closest;
3: w := LCAT (u, v);
4: T ′ := splay u to root of T (w);
5: splay v to the child of T ′(u);

Figure 3 gives an example: upon a communication
request between peers v5 and v12, the two peers are
splayed to their least common ancestor, peer v7, in BST
T1.

7 15

10

17

20

12

9

5

2

4

1

BST 1
(root 7)

BST 2
(root 10)

LCA(5,12)

Fig. 3: Example for splay operation in OBST(2) of Fig. 1.

Simulations: We conducted simulations to investi-
gate the behavior of a self-adjusting OBST(k). In Fig.
4 we can see how additional trees reduce the routing
cost. All the requests were generated by a random per-
fect matching on various guest graphs: FB – Facebook
(obtained from [14]), RND(16) – random OBST(16),
and BAD(2) – special worst case OBST(2) as illustrated
in Fig. 2. While we can see a steady improvement in
the FB guest graph, for the RND(16) guest graph the
self-adjusting OBST(16) achieves perfect convergence. In
Fig. 4 (c) we can see a convergence of self-adjusting
OBST(2) to the BAD(2), and an illustration of the case
where one additional BST can make a significant differ-
ence in routing cost (similar to the static case of Theorem
6).

VI. RELATED WORK

We are only aware of two papers on demand-optimized
or self-adjusting overlay networks: Leitao et al. [11]
study an overlay supporting gossip or epidemics on a
dynamic topology. In contrast to our work, their focus
is on unstructured networks (e.g., lookup or routing is
not supported), and there is no formal evaluation. The
paper closest to ours is [5]. Avin et al. initiate the study

 0

 10

 20

 30

 40

 10K 20K 30K 40K 50K 60K

A
V

G
 R

O
U

T
IN

G
 C

O
S

T

NUM OF NODES

FB, MATCH

k=1
k=2

k=16
k=32

(a)

 0

 2

 4

 6

 8

 10

 10K 20K 30K 40K 50K 60K

A
V

G
 R

O
U

T
IN

G
 C

O
S

T

NUM OF NODES

RND(16), MATCH

k=1
k=2

k=16
k=32

(b)

 0

 10

 20

 30

 40

 10K 20K 30K 40K 50K 60K

A
V

G
 R

O
U

T
IN

G
 C

O
S

T

NUM OF NODES

BAD(2), MATCH

k=1
k=2

(c)

Fig. 4: Average routing distance in OBST(k) as a function of the number of BSTs k and the network size n.

of self-adjusting splay BSTs and introduce the double-
splay algorithm. Although their work regards a distributed
scenario, it focuses on a single BST only. Our work builds
upon these results and investigates the benefits of having
multiple trees, which is also more realistic in the context
of p2p computing.

More generally, one may also regard geography [8] or
latency-aware [7] p2p systems as providing a certain de-
gree of self-adaptiveness. However, these systems are typ-
ically optimized towards more static criteria, and change
less frequently. This also holds for the p2p topologies
tailored towards the ISPs’ infrastructures [2].

Our work builds upon classic data structure literature,
and in particular on the splay tree concept [13]. Splay
trees are optimized BSTs which move more popular
items closer to the root in order to reduce the average
access time. Regarding the splay trees as a network, [13]
describes self-adjusting networks for lookup sequences,
i.e., where the source is a single (virtual) node that is
connected to the root. Splay trees have been studied
intensively for many years (e.g. [3], [13]), and the fa-
mous dynamic optimality conjecture continues to puzzle
researchers [6]: The conjecture claims that splay trees
perform as well as any other binary search tree algorithm.
Recently, the concurrent splay tree variant CBTrees [1]
has been proposed. Unlike splay trees, CBTrees perform
rotations infrequently and closer to the leaves; this im-
proves scalability in multicore settings.

VII. CONCLUSION

This paper initiated the study of p2p overlays which are
statically optimized for or adapt to specific communica-
tion patterns. We understand our algorithms and bounds
as a first step, and believe that they open interesting
directions for future research. For example, it would
be interesting to study the multi-splay overlay from the
perspective of online algorithms: While computing the
competitive ratio achieved by classic splay trees (for
lookup) arguably constitutes one of the most exciting
open questions in Theoretical Computer Science [6], our
work shows that the routing variant of the problem is

rather different in nature (e.g., results in much lower cost).
Another interesting research direction regards alternative
overlay topologies: while we have focused on a natural
BST approach, other graph classes such as the frequently
used hypercubic networks and skip graphs [4] may also
be made self-adjusting. Since these topologies also include
tree-like subgraphs, we believe that our results may serve
as a basis for these extensions accordingly.

REFERENCES

[1] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan.
Cbtree: a practical concurrent self-adjusting search tree. In Proc.
26th International Conference on Distributed Computing (DISC),
pages 1–15, 2012.

[2] V. Aggarwal, A. Feldmann, and C. Scheideler. Can isps and p2p
users cooperate for improved performance? SIGCOMM Comput.
Commun. Rev., 37(3):29–40, 2007.

[3] B. Allen and I. Munro. Self-organizing binary search trees. J.
ACM, 25:526–535, 1978.

[4] J. Aspnes and G. Shah. Skip graphs. ACM Transactions on
Algorithms (TALG), 3(4), 2007.

[5] C. Avin, B. Haeupler, Z. Lotker, C. Scheideler, and S. Schmid.
Locally self-adjusting tree networks. In Proc. 27th IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS),
2013.

[6] E. Demaine, D. Harmon, J. Iacono, and M. Patrascu. Dynamic
optimality–almost. In Proc. Annual Symposium on Foundations of
Computer Science (FOCS), volume 45, pages 484–490, 2004.

[7] P. Druschel and A. Rowstron. Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware), 2001.

[8] C. Gross, D. Stingl, B. Richerzhagen, A. Hemel, R. Steinmetz,
and D. Hausheer. Geodemlia: A robust peer-to-peer overlay
supporting location-based search. In Proc. 12th IEEE International
Conference on Peer-to-Peer Computing (P2P), pages 25–36, 2012.

[9] M. T. C. S. JIS. Computers and intractability a guide to the theory
of np-completeness. 1979.

[10] D. Knuth. Optimum binary search trees. Acta informatica, 1(1):14–
25, 1971.

[11] J. Leitao, J. Marques, J. Pereira, and L. Rodrigues. X-bot: A pro-
tocol for resilient optimization of unstructured overlay networks.
IEEE Transactions on Parallel and Distributed Systems, 99, 2012.

[12] K. Mehlhorn. Nearly optimal binary search trees. Acta Informatica,
5(4):287–295, 1975.

[13] D. Sleator and R. Tarjan. Self-adjusting binary search trees.
Journal of the ACM (JACM), 32(3):652–686, 1985.

[14] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On the
evolution of user interaction in facebook. In Proceedings of the
2nd ACM workshop on Online social networks, WOSN ’09, pages
37–42, New York, NY, USA, 2009. ACM.

	Introduction
	Model and Definitions
	Background on BSTs and Splay Trees
	Static Obst(k) Optimization for P2P
	Dynamic Self-Adjusting Obst(k) Overlay
	Related Work
	Conclusion
	References

