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In various contexts of networking research, end-host path selection has recently regained momentum as a

design principle. While such path selection has the potential to increase performance and security of networks,

there is a prominent concern that it could also lead to network instability (i.e., flow-volume oscillation) if

paths are selected in a greedy, load-adaptive fashion. However, the extent and the impact vectors of instability

caused by path selection are rarely concretized or quantified, which is essential to discuss the merits and

drawbacks of end-host path selection.

In this work, we investigate the effect of end-host path selection on various metrics of networks both

qualitatively and quantitatively. To achieve general and fundamental insights, we leverage the recently

introduced axiomatic perspective on congestion control and adapt it to accommodate joint algorithms for

path selection and congestion control, i.e., multi-path congestion-control protocols. Using this approach, we
identify equilibria of the multi-path congestion-control dynamics and analytically characterize these equilibria

with respect to important metrics of interest in networks (the “axioms”) such as efficiency, fairness, and loss

avoidance. Moreover, we analyze how these axiomatic ratings for a general network change compared to a

scenario without path selection, thereby obtaining an interpretable and quantititative formalization of the

performance impact of end-host path-selection. Finally, we show that there is a fundamental trade-off in

multi-path congestion-control protocol design between efficiency, stability, and loss avoidance on one side

and fairness and responsiveness on the other side.

1 INTRODUCTION
Path selection performed by end-points is a promising approach to improve efficiency, security, and

robustness of communication networks in their various forms: To name a few examples, solutions

based on end-point path selection have been proposed for routing on multiple optimality crite-

ria [36], multi-tenant data centers [34], mobile ad-hoc networks [16], LEO satellite networks [13],

intra-domain forwarding [9], and inter-domain forwarding [4]. However, proposals based on end-

host path selection often encounter a stability concern: researchers have identified the problem

that uncoordinated path-selection decisions by end-points may lead to persistent oscillation, i.e., an
alternating grow-and-shrink pattern of traffic volumes on links [11, 35]. The risk of oscillation still

represents an obstacle to deployment of path-aware networks [7] and gives rise to schemes that

try to avoid oscillation [8, 11, 17, 24, 33]. While there is a rich literature presenting solutions for

oscillation suppression, relatively little is known about how exactly and by how much instability

from path selection deteriorates network performance. In other words, the solution to the oscillation

problem is much clearer than both the impact vectors and the magnitude of the problem.

In this work, we therefore aim at qualifying and quantifying the effects of oscillatory path

selection on various metrics of a network. To tackle this challenge, we must take into account that

end-points in real path-aware networks employ algorithms which jointly perform path selection

and congestion control (CC), i.e., multi-path congestion-control (MPCC) algorithms. In this work,

we will focus on MPCC algorithms that are inspired by greedy, myopic path-selection behavior

and thus simultaneously produce and react to oscillation. Furthermore, we require an analytical

approach that (i) captures the congestion-window fluctuations that represent the oscillation, and

(ii) is general enough to deliver fundamental insights into the nature of CC-assisted end-host path

selection. Alas, fluid models [15, 17, 18, 25, 39] are well suited to represent equilibria in terms of

the rough traffic distribution on a network; these models, however, either completely disregard
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congestion-control dynamics (such as the classic Wardrop model [39]) or fail to capture the small-

scale dynamics of congestion-window fluctuations (as noted by Peng et al., who themselves operate

with a fluid model [25]). More applied approaches, as employed in the design of multi-path TCP

(MPTCP) [19, 27, 40], can capture oscillatory phenomena (e.g., the ‘flappiness’ of protocols [19]),

but these approaches rely on ad-hoc reasoning from stylized network examples and experimental

validation, which reduces their viability as generic analytic tools.

We argue that a so-called axiomatic approach recently initiated by Zarchy et al. [41] offers both

the right analytical resolution and the required generality for the question at hand. This approach

is axiomatic in a sense borrowed from economics and game theory, where properties with obvious

desirability (e.g., the acyclicity of preferences [5] or the fairness of a bargaining outcome [23]) are

formulated as axioms. Zarchy et al. apply this approach to congestion control by capturing desirable

properties of CC protocols such as efficiency, fairness, and stability in axioms. The approach allows

to analytically rate protocols with respect to these axioms and highlight the fundamental trade-offs

between them. In our work, we further extend Zarchy et al.’s model to a multi-path context with

the goal of characterizing fundamental properties of joint algorithms for path selection and CC.

1.1 Contribution
Our paper uses a theoretical model to investigate how network performance is affected by the

instability due to greedy end-point path selection. In contrast to earlier theoretical models, we

develop a model that is able to capture both path-selection dynamics and congestion-window

fluctuations in §2. Within this model, we identify and formalize different classes of dynamic

equilibria (in §3 and §4) to which the flow dynamics can be expected to converge exponentially

fast. These equilibria are essential for the analytical rating of MPCC protocols: In §5, we rate

these dynamic equilibria with respect to a number of performance metrics (the axioms), which are

inspired by the recently developed axiomatic approach to CC [41], but extended to accommodate

path selection. This equilibrium formalization allows to derive the following insights in §6:

• No trade-off between efficiency, convergence and loss avoidance: Through appropriate
protocol tuning, the metrics efficiency, loss avoidance, and convergence can be simultaneously

optimized. Hence, there is no trade-off between these properties in theory.

• Trade-off with fairness and responsiveness: There is, however, a fundamental trade-off

between the above metrics and the fairness and the responsiveness of a MPCC protocol. In

particular, higher responsiveness makes a protocol less efficient, but more fair.

• Effects of introducing end-host path selection: By contrasting the axiomatic perfor-

mance ratings for a general network with and without path selection, we obtain a multifac-

eted formalization of the performance impact of introducing end-host path selection. This

formalization allows to interpret and quantify how unstable path selection affects network

performance depending on network parameters. The insights gained from this approach

show that there are both benefits and drawbacks of end-host path selection.

2 MODEL AND ASSUMPTIONS
2.1 Discrete Model
We leverage the analytical model of congestion control proposed by Zarchy et al. [41] and extend it

to a multi-path context with path selection as illustrated in Fig. 1. In summary, 𝑁 agents (denoted

by set 𝐴 = [𝑁 ] := {0, ..., 𝑁 − 1}) compete for bandwidth on the bottleneck links of 𝑃 parallel

paths from set Π. Each agent 𝑖 ∈ 𝐴 maintains a congestion window with size cwnd𝑖 , which evolves

over time 𝑡 . At each moment 𝑡 ∈ N0 in discrete time, any path 𝜋 ∈ Π accommodates a set 𝐴𝜋 (𝑡)
of agents that use path 𝜋 at moment 𝑡 , and carries load 𝑓𝜋 (𝑡) =

∑
𝑖∈𝐴𝜋 (𝑡 ) cwnd𝑖 (𝑡). Moreover, in
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Table 1. Notation used in our model in alphabetic order.

Symbol Description

𝐴 = [𝑁 ] Set of agents in network

𝐴𝜋 (𝑡) Set of agents using path 𝜋 at time 𝑡

𝑎𝜋 (𝑡) Number of agents using path 𝜋 at time 𝑡

𝛼 (𝜏) Additive increase given continuity time 𝜏

𝛽 Multiplicative-decrease parameter

𝐶 Total bottleneck capacity of network

𝐶𝜋 Bottleneck capacity of path 𝜋

cwnd𝑖 (𝑡) Congestion-window size of agent 𝑖 at time 𝑡

𝑓 (𝑡) Combined congestion-window size of all agents at time 𝑡

𝑓𝜋 (𝑡) Combined congestion-window size of all agents using path 𝜋 at time 𝑡

𝑀𝜋 (𝑡) Set of agents who migrate away from path 𝜋 at time 𝑡

𝑚 Responsiveness (probability of switching to more attractive path in each time step)

𝑁 Number of agents in the network

𝑃 Number of paths in the network

Π Set of paths in the network

𝜋𝑖 (𝑡) Path used by agent 𝑖 at time 𝑡

𝜋min (𝑡) Path with lowest utilization at time 𝑡

𝑟 Reset softness (multiplicative decrease of congestion-window size on path switch)

rank(𝜋, 𝑡) Rank of path 𝜋 at time 𝑡 (number of paths with higher utilization than 𝜋 at time 𝑡 )

𝜏 Continuity time (time since last loss or path switch)

𝜏𝑖 (𝑡) Continuity time of agent 𝑖 at time 𝑡

𝑧 (𝑎𝜋 (𝑡), 𝑁 ) Scaling factor for extrapolating on-migration flow volume from path flow

Time 𝒕Agent
set 𝑨,
|𝑨| = 𝑵

0

1

2

...

𝑁

Path 𝝅
𝐴𝜋 (𝑡) = { 1

,
𝑁 , ... }

cwnd1 (𝑡) cwnd
𝑁
(𝑡) ...

𝑓𝜋 (𝑡)

Path 𝝅 ′

𝐴𝜋 ′ (𝑡) = { 0 , ... }

cwnd0 (𝑡) ...

𝑓𝜋 ′ (𝑡)

...

Path 𝝅 ′′

𝐴𝜋 ′′ (𝑡) = { 2 , ... }

cwnd2 (𝑡) ...

𝑓𝜋 ′′ (𝑡)

Time 𝒕 + 1

Path 𝝅
𝐴𝜋 (𝑡 + 1) = { 𝑁 , ... }

cwnd
𝑁
(𝑡) ...

𝑓𝜋 (𝑡 + 1)

...

Path 𝝅 ′

𝐴𝜋 ′ (𝑡 + 1) = { 0 , ... }

cwnd0 (𝑡) ...

𝑓𝜋 ′ (𝑡 + 1)

cwnd0 (𝑡 + 1)
Path 𝝅 ′′

𝐴𝜋 ′′ (𝑡 + 1) = { 1
,

2 , ... }

cwnd1 (𝑡 + 1)

cwnd1 (𝑡 + 1)
= 𝑟 · cwnd1 (𝑡)

cwnd2 (𝑡) ...

𝑓𝜋 ′′ (𝑡 + 1)

Path
set 𝚷,

|𝚷| = 𝑷

...

Fig. 1. Illustration of discrete model (Notation: 𝑁 = 𝑁 − 1). The dotted arrow visualizes path migration by
agent 1 from path 𝜋 to path 𝜋 ′′.
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each time step 𝑡 , every agent 𝑖 takes two actions. First, agent 𝑖 performs congestion control, i.e.,
adapts its congestion-window size cwnd𝑖 (𝑡) according to a chosen CC protocol 𝐶𝐶𝑖 (𝑡, cwnd𝑖 (𝑡)),
resulting in congestion-window size cwnd𝑖 (𝑡 + 1). Second, agent 𝑖 performs path selection, i.e.,
determines the path 𝜋 such that 𝑖 ∈ 𝐴𝜋 (𝑡) and cwnd𝑖 (𝑡) is included in 𝑓𝜋 (𝑡), according to a given

path-selection strategy. In Fig. 1 as well as in our following analysis, agents implement probabilistic

greedy path selection, i.e., switch to the path carrying the lowest load in the last time step with

a given probability𝑚. Finally, in order to investigate different behaviors for congestion-window

adaptation upon path switches, we introduce a reset-softness parameter 𝑟 ∈ [0, 1] that determines

the extent of congestion-window reduction for path-switching agents (e.g., agent 1 in Fig. 1).

The agents are further constrained by path capacities𝐶𝜋 , 𝜋 ∈ Π, where𝐶𝜋 is the amount of data

in maximum segment size (MSS) that can be transmitted on path 𝜋 during one round-trip time

(RTT). If the capacity𝐶𝜋 of path 𝜋 is exceeded by the flow 𝑓𝜋 (𝑡), the agents𝐴𝜋 (𝑡) experience packet
loss and take this loss into account in their congestion-control protocol.

1
For example, the TCP

Reno protocol, with a multiplicative decrease of 0.5 as a reaction to loss and an additive increase

of 1 otherwise, is modelled as follows for an agent 𝑖 using path 𝜋 at time 𝑡 :

TCPReno(𝑡, cwnd𝑖 (𝑡)) =
{
cwnd𝑖 (𝑡) + 1 if 𝑓𝜋 (𝑡) ≤ 𝐶𝜋

0.5 · cwnd𝑖 (𝑡) otherwise

(1)

2.2 Scenario of Interest and Assumptions
Since the goal of this work is to characterize the worst-case effects of oscillatory path selection, our

analysis throughout the paper will focus on a network scenario that maximizes the severity of load

oscillation. This scenario has the following properties, which henceforth serve as assumptions:

Greedy load-adaptive path selection. Oscillation is caused by greedy, myopic path selection

behavior [33], which dynamically determines the number 𝑎𝜋 (𝑡) = |𝐴𝜋 (𝑡) | of agents on path 𝜋 . In

any time step 𝑡 , agents seek out the path 𝜋min (𝑡) with the lowest bottleneck utilization 𝑓𝜋 (𝑡)/𝐶𝜋

and hence the lowest latency (assuming roughly equal propagation delay of all paths as stated

below) and lowest loss rate. Since monitoring the state of alternative paths and switching paths

consume resources, agents may not consider a path change in every time step. Instead, the path-

selection behavior is regulated by a path-migration probability𝑚 ∈ (0, 1], denoting the probability

with which an agent switches to a more attractive path in any time step. Alternatively,𝑚 can be

interpreted as a measure for the responsiveness of agents.
Sequential multi-path usage. The intensity of oscillations grows with the size of shifted flow

volume per time unit. In order to maximize oscillation, we therefore assume that a path-switching

agent completely stops using its previously used path and exclusively sends on the newly selected

path. This coarse-granular migration behavior produces sequential instead of concurrent usage

of multiple paths. This mode of sequential multi-path usage approximates the actual behavior of

real-world algorithms such as MPTCP, which tends to use only the most attractive path for data

transmission and sends a negligible amount of probing traffic over the alternative paths [17, 19, 40].

Moreover, the average utility improvement per user that is possible by concurrently using multiple

paths instead of a single selected path vanishes for a high number of agents [38]. Sequential

multi-path usage implies that

∑
𝜋 ∈Π 𝑎𝜋 (𝑡) = 𝑁 ∀𝑡 .

Disjoint and similar paths. We investigate a network consisting of paths that are parallel,

disjoint and equal in terms of latency 𝐷𝜋 and bottleneck capacity 𝐶𝜋 = 𝐶/𝑃 , where 𝐶 is the

bottleneck capacity of the complete network. Such a network, while being a simplification of

1
We note that this loss modelling is a simplification in three respects. First, loss may already occur when 𝑓𝜋 (𝑡 ) > 𝑠𝜋 ,

namely if all agents send out all traffic 𝑓 (𝑡 ) in a burst that exceeds the buffer size 𝑠𝜋 . Second, even if 𝑓𝜋 (𝑡 ) > 𝐶𝜋 , the loss

may not be perceived by all agents. Third, CC algorithms may react differently depending on the number of recent losses.
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general networks, is likely to bring out the worst-case effects of myopic, greedy path selection,

which are the subject of this paper. In particular, load oscillations are strongest if the actions of

the sending agents are strongly correlated because they react to the same (potentially misleading)

feedback signals (i.e., path loss and latency) simultaneously [33]. If agents sharing a link react to

different feedback signals or at different times, e.g., because they are using different paths with

different round-trip latencies, their actions are less strongly correlated and the flow dynamics are

likely to oscillate less. The feedback synchronization by equal path RTTs also ensures that the

discrete time steps of the model have consistent duration across all paths.

2.3 Stochastic Dynamics
In summary, a multi-path congestion-control protocol MPCC (CC,𝑚, 𝑟 ) is a combination of a CC

protocol CC (𝑡), a responsiveness parameter𝑚, and a reset-softness parameter 𝑟 . In a network with

path selection, the MPCC dynamics can thus be represented by a pair of functions (𝑎𝜋 (𝑡), 𝑓𝜋 (𝑡))
for any path 𝜋 ∈ Π. Since the path-selection behavior is probabilistic (regulated by responsiveness

parameter𝑚), the MPCC dynamics are not uniquely determined by initial conditions, but need to

be modeled as a stochastic process. In particular, the MPCC dynamics under universal adoption of

MPCC (CC,𝑚, 𝑟 ), are given by

𝑎𝜋 (𝑡 + 1) =
{
𝑎𝜋 (𝑡) − |𝑀𝜋 (𝑡) | if 𝜋 ≠ 𝜋min (𝑡)
𝑎𝜋 (𝑡) +

∑
�̃�≠𝜋 |𝑀�̃� (𝑡) | otherwise

(2a)

𝑓𝜋 (𝑡 + 1) =
{
𝑓𝜋 (𝑡) −

∑
𝑖∈𝑀𝜋 (𝑡 ) cwnd𝑖 (𝑡) +

∑
𝑖∈𝐴𝜋 (𝑡 )\𝑀𝜋 (𝑡 ) Δcwnd𝑖 (𝑡) if 𝜋 ≠ 𝜋min (𝑡)

𝑓𝜋 (𝑡) +
∑

�̃�≠𝜋

∑
𝑗 ∈𝑀�̃� (𝑡 ) 𝑟 · cwnd 𝑗 (𝑡) +

∑
𝑖∈𝐴𝜋 (𝑡 ) Δcwnd𝑖 (𝑡) otherwise,

(2b)

where𝑀𝜋 (𝑡) is a random subset of𝐴𝜋 (𝑡), which contains the agents who leave path 𝜋 at time 𝑡 , and

Δcwnd𝑖 (𝑡) = cwnd𝑖 (𝑡 + 1) − cwnd𝑖 (𝑡). Intuitively, the flow on a more congested path 𝜋 is reduced

by the congestion windows of all agents𝑀𝜋 that leave the path, and increased by the congestion-

window growth of the remaining agents 𝐴𝜋 (𝑡) \𝑀𝜋 (𝑡). In contrast, the flow on the least congested

path 𝜋 is increased by the reset congestion-window sizes 𝑟 · cwnd 𝑗 (𝑡) of the agents 𝑗 ∈ 𝑀�̃� who

migrate to path 𝜋 and the congestion-window growth of the previously present agents 𝐴𝜋 (𝑡).

2.4 Expected Dynamics
While the formulations in Eq. (2) capture the evolutionary dynamics of an MPCC system, their

discrete and probabilistic nature hinders analytic treatment. However, as we investigate large-scale

systems with a high number of agents, the law of large numbers allows that the probabilistic

elements in Eq. (2) can be well approximated by their expected values and traffic randomness can

be greatly ignored. For the remainder of this paper, we therefore consider the expected MPCC

dynamics, where the recursion on the random variables

(
𝑎𝜋 (𝑡), 𝑓𝜋 (𝑡)

)
is approximated with a

recursion on the expectations

(
𝑎𝜋 (𝑡), ˆ𝑓𝜋 (𝑡)

)
(where we write 𝑥 := E[𝑥] for any function 𝑥). The

accuracy of this approximation will be validated with simulations in Appendix B.

Concerning the agent dynamics in Eq. (2a), we note that E[|𝑀𝜋 (𝑡) |] =𝑚 ·𝑎𝜋 (𝑡) for any path 𝜋 ≠

𝜋min (𝑡). Moreover, the expected volume of flow associated with the agents in𝑀𝜋 in Eq. (2b) is a

proportional share of the expected total flow
ˆ𝑓𝜋 (𝑡) on path 𝜋 : E[∑𝑖∈𝑀𝜋 (𝑡 ) cwnd𝑖 (𝑡)] =𝑚 · ˆ𝑓𝜋 (𝑡). By

the same argument, it holds that E[∑�̃�≠𝜋

∑
𝑗 ∈𝑀�̃� (𝑡 ) 𝑟 · cwnd 𝑗 (𝑡)] =𝑚 ·𝑟 ·∑�̃�≠𝜋

ˆ𝑓�̃� (𝑡) for 𝜋 = 𝜋min (𝑡).
However, in order to make the second case of Eq. (2b) independent of flows 𝑓�̃� on alternative paths,

we additionally make the following approximation:

∑
�̃�≠𝜋

ˆ𝑓�̃� (𝑡) ≈
(
𝑁 − 𝑎𝜋 (𝑡)

)
/𝑎𝜋 (𝑡) · ˆ𝑓𝜋 (𝑡) =

𝑧 (𝑎𝜋 (𝑡), 𝑁 ) · ˆ𝑓𝜋 (𝑡), where 𝑧 (𝑎𝜋 (𝑡), 𝑁 ) is henceforth referred to as the extrapolation factor. In this

approximation, the flow on path 𝜋 is scaled proportionally to the number of agents 𝑁 − 𝑎𝜋 (𝑡) on

5
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other paths. This approximation can be justified on the grounds that in a steady state, imbalances

in path load are likely to stem from imbalances in the number of agents between paths, not from

imbalances in the average congestion-window size between paths.

Finally, in order to arrive at the expected flow dynamics
ˆ𝑓𝜋 (𝑡), the expected combined congestion-

window change E[∑𝑘∈𝐴𝜋 (𝑡 ) Δcwnd𝑘 (𝑡)] (or for 𝐴𝜋 (𝑡 + 1), respectively) must be formalized. Of

course, this change depends on the CC protocols employed by the agents. In order to maximize

the generality of our analysis, we rely on the following generic form of a loss-based CC protocol

employed by each agent 𝑖 , where 𝜋𝑖 (𝑡) denotes the path that agent 𝑖 uses at time 𝑡 :

CC𝑖 (𝑡, cwnd𝑖 (𝑡)) =
{
cwnd𝑖 (𝑡) + 𝛼

(
𝜏𝑖 (𝑡)

)
if 𝑓𝜋𝑖 (𝑡 ) (𝑡) ≤ 𝐶𝜋𝑖 (𝑡 )

𝛽 · cwnd𝑖 (𝑡) otherwise

(3)

Here, 𝜏𝑖 (𝑡) is the so-called continuity time of agent 𝑖 , i.e., the number of time steps in which

agent 𝑖 has already been on its current path without experiencing packet loss. This continuity

time is the argument to a function 𝛼 , which determines the additive increase to the congestion

window in absence of loss. This formulation allows to mimic the window-growth behavior in

classic TCP Reno [22], in the widely deployed TCP CUBIC [14], in the slow-start phase of many

TCP protocols [37], or in more theoretical MIMD protocols [2]. Finally, 𝛽 ∈ [0, 1] is a parameter

that determines the multiplicative decrease of the congestion-window size in the case of packet

loss, which is the predominant practice in CC protocols.

Based on the probability distribution for the continuity time 𝜏𝑖 (𝑡) of any agent 𝑖 ∈ 𝐴𝜋 (𝑡) at time 𝑡

from Appendix A, we can calculate the average congestion-window increase per agent conditioned

on the path 𝜋 used by the agent at time 𝑡 : 𝛼𝜋 (𝑡) =
∑∞

𝜏=0 P [𝜏𝑖 (𝑡) = 𝜏 | 𝑖 ∈ 𝐴𝜋 (𝑡)] ·𝛼 (𝜏). This average
congestion-window increase then allows to obtain the aggregate additive increase in absence of

loss. In contrast, loss reduces the expected flow volume
ˆ𝑓𝜋 (𝑡) through multiplicative decrease 𝛽 ,

complementing the effects of out-migration (for 𝜋 ≠ 𝜋min (𝑡)) or in-migration (for 𝜋min (𝑡)). Under
universal adoption of a protocol MPCC (CC,𝑚, 𝑟 ), the expected dynamics therefore are:

𝑎𝜋 (𝑡 + 1) =
{
(1 −𝑚) · 𝑎𝜋 (𝑡) if 𝜋 ≠ 𝜋min (𝑡)
(1 −𝑚) · 𝑎𝜋 (𝑡) +𝑚 · 𝑁 otherwise

(4a)

ˆ𝑓𝜋 (𝑡 + 1) =


(1 −𝑚) · ˆ𝑓𝜋 (𝑡) + 𝛼𝜋 (𝑡) · (1 −𝑚) · 𝑎𝜋 (𝑡) if 𝜋 ≠ 𝜋min (𝑡) ∧ ˆ𝑓𝜋 (𝑡) ≤ 𝐶𝜋(
1 +𝑚 · 𝑟 · 𝑧 (𝑎𝜋 (𝑡), 𝑁 )

)
· ˆ𝑓𝜋 (𝑡) + 𝛼𝜋 (𝑡) · 𝑎𝜋 (𝑡) if 𝜋 = 𝜋min (𝑡) ∧ ˆ𝑓𝜋 (𝑡) ≤ 𝐶𝜋

𝛽 · (1 −𝑚) · ˆ𝑓𝜋 (𝑡) if 𝜋 ≠ 𝜋min (𝑡) ∧ ˆ𝑓𝜋 (𝑡) > 𝐶𝜋(
𝛽 +𝑚 · 𝑟 · 𝑧 (𝑎𝜋 (𝑡), 𝑁 )

)
· ˆ𝑓𝜋 (𝑡) if 𝜋 = 𝜋min (𝑡) ∧ ˆ𝑓𝜋 (𝑡) > 𝐶𝜋

(4b)

2.5 Limitations
While our model presents a tractable approach to analyze oscillatory MPCC dynamics, our in-

vestigation and the resulting insights have clear limitations worth addressing in future research.

In particular, as our network model is an extension of the network model by Zarchy et al. [41],

our work inherits some limitations noted by Zarchy et al., most importantly the assumption of

synchronized feedback, the focus on a specific type of network, and the disregard for queuing

dynamics. However, it is noteworthy that our work addressed the previously identified challenge

concerning randomized protocols through the concept of expected dynamics. In general, the com-

prehensiveness of our analysis would benefit from relaxing the worst-case conditions elicited

in Section 2.2, most prominently the assumption of disjoint and similar paths, and from introducing

latency-based and model-based CC protocols.
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3 LOSSLESS EQUILIBRIA
In order to rate MPCC protocols, we focus on the equilibria that these protocols induce, i.e., stable
load patterns to which the MPCC dynamics from Eq. (4) eventually converge. In this section, we

characterize one class of equilibria that are attained before the capacity limit of any bottleneck

link is exceeded, i.e., these equilibria are lossless. Equilibria without this lossless property, i.e., lossy
equilibria, are presented in Section 4. All of these equilibria are dynamic equilibria, i.e., periodic
patterns of the number of agents and the load on the different paths. Note that the insights regarding

equlibria only apply to the theoretical construct of expected dynamics in an exact sense, and only

approximately apply to actual MPCC dynamics.

3.1 Structure of Lossless Equilibria
In order to characterize lossless equilibria, we need to investigate whether the expected MPCC

dynamics tend to exhibit a certain pattern in the case where capacity limits are disregarded.

Unfortunately, even this simplified discrete dynamical system (determined by Eq. (4) without the

two last cases of Eq. (4b)) is analytically intractable due to the presence of case distinctions in

the evolution functions [12]. Instead, we use a hybrid approach, similar to previous work [1]: By

performing simulations as in Fig. 10, we arrive at the following two observations about MPCC

dynamics with greedy, myopic agents sharing parallel and similar paths (cf. Section 2.2), which

serve as a basis for further analytical investigation:

In-migration is utilization-maximizing:Whenever path 𝜋 with minimal utilization within

the expected dynamics, i.e., 𝑢𝜋 (𝑡) = ˆ𝑓𝜋 (𝑡)/(𝐶/𝑃), experiences in-migration according to the second

case of Eq. (4b), this path tends to become the most utilized path in the next time step.
2

Out-migration is order-preserving: If two paths 𝜋 and �̃� with 𝑢𝜋 (𝑡) > 𝑢�̃� (𝑡) experience
out-migration according to the first case of Eq. (4b), it tends to hold that 𝑢𝜋 (𝑡 + 1) > 𝑢�̃� (𝑡 + 1).
If the expected dynamics consistently conform to these two observations, they exhibit the

following pattern which uniquely determines the least utilized path in every time step:

Definition 1. MPCC dynamics exhibit 𝑷-step oscillation if there exists a time 𝑡0 ≥ 0 such that

∀𝑇 ≥ 0. rank(𝜋, 𝑡0) = 𝑝 =⇒ rank(𝜋, 𝑡0 +𝑇 ) = (𝑝 +𝑇 ) mod 𝑃, (5)

where rank(𝜋, 𝑡) ranks all paths 𝜋 ∈ Π in descending order according to their utilization at time 𝑡 :

rank(𝜋, 𝑡) = 𝑝 ⇐⇒ |{�̃� | 𝑢�̃� (𝑡) > 𝑢𝜋 (𝑡)}| = 𝑝. (6)

In 𝑃-step oscillation, the assignment of the rank to paths changes in a round-robin fashion, i.e.,

in any time step 𝑡 , every path 𝜋 rises by one rank, except the path with rank 𝑃 − 1 (i.e., with the

lowest expected utilization), which obtains rank 0 at time 𝑡 + 1. After 𝑃 time steps, a path reaches

its original place in the ranking order, i.e., rank(𝜋, 𝑡) = rank(𝜋, 𝑡 + 𝑃) for all 𝑡 ≥ 𝑡0. We present an

argument for the prevalence of 𝑃-step oscillation in Section 3.3.

3.2 Lossless Agent Equilibrium
As this 𝑃-step oscillation uniquely determines the least congested path in any time step 𝑡 ≥ 𝑡0,

this pattern also determines the agent-migration dynamics. Starting from an agent distribution

{𝑎𝜋 (𝑡0)}𝜋 ∈Π at time 𝑡0, all the paths 𝜋 with rank(𝜋, 𝑡0) ≠ 𝑃 − 1 will experience an outflow of

agents (according to case 1 in Eq. (4a)) and only the path with rank 𝑃 − 1 experiences an inflow of

agents (according to case 2 in Eq. (4a)). In a single round of 𝑃-step oscillation with start time 𝑡0, the

path 𝜋 (0)
with rank(𝜋 (0) , 𝑡0) = 0 will thus first experience agent outflow for 𝑃 − 1 times and then

2
This observation suggests that myopic, greedy load-adaptive path selection is not a Nash equilibrium strategy, which has

also been demonstrated by recent research [33].
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Fig. 3. Convergence to lossless flow equilibrium for
𝑃 = 3,𝑚 = 0.1, and 𝑟 = 0.5 .

once experience agent inflow. Hence, the following difference equation characterizes the discrete

dynamical system for a granularity of 𝑃 time steps:

𝑎𝜋 (0) (𝑡0 + 𝑃) = (1 −𝑚)𝑃 · 𝑎𝜋 (0) (𝑡0) +𝑚 · 𝑁, (7)

To find an equilibrium of the dynamic system for the agent dynamics on 𝜋 (0)
, we identify a fixed

point of the difference equation in Eq. (7), i.e., we solve

𝑎 (0) = (1 −𝑚)𝑃 · 𝑎 (0) +𝑚 · 𝑁 ⇐⇒ 𝑎 (0) =
𝑚 · 𝑁

1 − (1 −𝑚)𝑃
, (8)

where 𝑎 (0) is the equilibrium value for any 𝑎𝜋 (𝑡) with rank(𝜋, 𝑡0) = 0, which generalizes as follows:

Insight 1. Convergence to Unique Dynamic Agent Equilibrium. Under 𝑃-step oscillation,
the expected agent dynamics {𝑎𝜋 (𝑡)}𝜋 ∈Π of an MPCC system asymptotically converge to a unique
dynamic equilibrium, i.e., a cyclic series of states. This dynamic equilibrium of the agent dynamics
consists of 𝑃 states in each of which the rank-𝑝 path accommodates the corresponding equilibrium
amount of agents 𝑎 (𝑝) , i.e.,

𝑎𝜋 (𝑡) = 𝑎 (rank(𝜋,𝑡 )) , where 𝑎 (𝑝) =
(1 −𝑚)𝑝 ·𝑚 · 𝑁
1 − (1 −𝑚)𝑃

. (9)

This convergence can be shown by finding a trajectory function:

Definition 2. A trajectory function 𝑥
(𝑝)
𝜋 (𝑡) is an explicit interpolation function that yields the

correct value of path-specific dynamics 𝑥𝜋 (𝑡) at all moments where path 𝜋 has rank 𝑝 :

∀𝑘 ∈ N≥0. 𝑥
(𝑝)
𝜋 (𝑡𝜋𝑝 + 𝑘 · 𝑃) = 𝑥𝜋 (𝑡𝜋𝑝 + 𝑘 · 𝑃), (10)

where 𝑡𝜋𝑝 = min{𝑡 | 𝑡 ≥ 𝑡0 ∧ rank(𝜋, 𝑡) = 𝑝} and 𝑡0 is the start time of 𝑃-step oscillation.

For the agent dynamics 𝑎𝜋 (𝑡), such a trajectory function is given by

𝑎
(𝑝)
𝜋 (𝑡) =

(
𝑎𝜋 (𝑡𝜋𝑝 ) − 𝑎 (𝑝)

)
· (1 −𝑚)𝑡−𝑡𝜋𝑝 + 𝑎 (𝑝) . (11)

As lim𝑡→∞ 𝑎
(𝑝)
𝜋 (𝑡) = 𝑎 (𝑝) , the trajectory functions converge to the equilibrium found above exponen-

tially fast. Figure 2 visualizes the asymptotic convergence to the dynamic equilibrium {𝑎 (𝑝) }𝑝∈[𝑃 ]
(highlighted in blue) along the trajectory functions.
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3.3 Lossless Flow Equilibrium
After identifying the agent equilibrium in Section 3.2, we identify the equilibria of the MPCC flow

dynamics { ˆ𝑓𝜋 (𝑡)}𝜋 ∈Π in this section. We first consider hypothetical equilibria, which are equilibria

of the flow dynamics under the assumption that the capacity of each path is never exceeded. In a

second step, we will show under which conditions these hypothetical equilibria are actual equilibria.

3.3.1 Hypothetical Flow Equilibria. To find the hypothetical equilibria of the flow dynamics, we

can simplify the flow dynamics from Eq. (4b) by disregarding the capacity limit 𝐶/𝑃 . In addition,

we insert the equilibrium agent levels 𝑎 (𝑝) from Section 3.2 and the expected additive increase 𝛼 (𝑝)

derived in Appendix A to arrive at the following formulation:

ˆ𝑓𝜋 (𝑡 + 1) =
{
(1 −𝑚) ·

(
ˆ𝑓𝜋 (𝑡) + 𝛼 (rank(𝜋,𝑡 )) · 𝑎 (rank(𝜋,𝑡 ))

)
if rank(𝜋, 𝑡) ≠ 𝑃 − 1(

1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)
)
· ˆ𝑓𝜋 (𝑡) + 𝛼 (𝑃−1) · 𝑎 (𝑃−1) if rank(𝜋, 𝑡) = 𝑃 − 1,

(12)

where the extrapolation factor 𝑧 is only dependent on𝑚 and 𝑃 given the agent equilibrium, i.e.,

𝑧 (𝑚, 𝑃) = 𝑁 /𝑎 (𝑃−1) − 1 = (1 − (1 −𝑚)𝑃−1)/(𝑚 · (1 −𝑚)𝑃−1).
Similar to Eq. (7), we set up a first-order difference equation for the dynamics for the path that

has rank 𝑝 at time 𝑡0 (where the 𝑃-step oscillation starts) and find a fixed point that is attained

every 𝑃 time steps, for example for ranks 0 and 𝑃 − 1:

ˆ𝑓 (0) =

(
(1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)) · (∑𝑃−2

𝑝=0 𝛼
(𝑝) ) + 𝛼 (𝑃−1) ) · 𝑎 (𝑃−1)

1 − (1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)) · (1 −𝑚)𝑃−1
, (13a)

ˆ𝑓 (𝑃−1) =

( ∑𝑃−2
𝑝=0 𝛼

(𝑝) + 𝛼 (𝑃−1) · (1 −𝑚)𝑃−1
)
· 𝑎 (𝑃−1)

1 − (1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)) · (1 −𝑚)𝑃−1
. (13b)

The fixed point for a general rank 𝑝 can be derived analogously and expressed by a similar (albeit

quite complicated) term
ˆ𝑓 (𝑝)

shown in Eq. (40) in Appendix C. These fixed points { ˆ𝑓 (𝑝) }𝑝∈[𝑃 ]
constitute the hypothetical equilibrium, i.e., if a rank-𝑝 path carries flow volume

ˆ𝑓 (𝑝)
, the path will

carry this flow volume again 𝑃 time steps later, where it is again the rank-𝑝 path.

Insight 2. Hypothetical Dynamic Flow Equilibrium. If capacity limits of links are disregarded,
the dynamic equilibrium of the flow dynamics { ˆ𝑓𝜋 (𝑡)}𝜋 ∈Π consists of 𝑃 states in each of which the
rank-𝑝 path accommodates flow volume ˆ𝑓 (𝑝) .

In order for such an equilibrium to be valid, it must be consistent with 𝑃-step oscillation, i.e., it

must hold that
ˆ𝑓 (𝑝) > ˆ𝑓 (𝑝+1)

for all 𝑝 ∈ [𝑃 − 1]. Interestingly, if a certain parameter combination is

associated with an invalid equilibrium, it follows that 𝑃-step oscillation is fundamentally impossible

for that parameter combination. However, we show in Appendix C that only a small part of the

parameter space, containing rather extreme parameters, is inconsistent with 𝑃-step oscillation.

Similarly as in Section 3.2, convergence to this equilibrium can be proven using a trajectory

function (cf. Definition 2). The following trajectory function yields the correct flow volume in all

subsequent time steps where path 𝜋 has rank 𝑝 again:

ˆ𝑓
(𝑝)
𝜋 (𝑡) =

(
ˆ𝑓𝜋 (𝑡𝜋𝑝 ) − ˆ𝑓 (𝑝) ) · ((1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)) · (1 −𝑚)𝑃−1

) 𝑡−𝑡𝜋𝑝
𝑃 + ˆ𝑓 (𝑝) . (14)

The limit of this trajectory function for 𝑡 → ∞ is the equilibrium value
ˆ𝑓 (𝑝)

, which establishes

convergence;
3
this is illustrated in Fig. 3.

3
Note that

ˆ𝑓 (0)
from Eq. (13a) is undefined for 𝑟 = 1, as the flow dynamics do not converge to a fixed point in that case.

Given 𝑟 = 1, the trajectory function for rank 0 can be expressed with the following linear function, which has no limit:

ˆ𝑓
(0)
𝜋 (𝑡 ) =

[
(1 −𝑚)1−𝑃 ·

(∑︁𝑃−2
𝑝=0

𝛼 (𝑝 )
)
+ 𝛼 (𝑃−1)

]
· 𝑎 (𝑃−1) · 𝑃−1 · (𝑡 − 𝑡𝜋𝑝 ) + ˆ𝑓𝜋 (𝑡𝜋0) . (15)
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3.3.2 Actual Flow Equilibrium. Intuitively, this hypothetical equilibrium given by { ˆ𝑓 (𝑝) }𝑝∈[𝑃 ] is
an actual equilibrium of the MPCC dynamics if the convergence is not disturbed by the capacity

limit𝐶/𝑃 on any path 𝜋 , i.e., if the trajectory functions for all ranks consistently remain below𝐶/𝑃 .
We therefore require an upper bound on all trajectory functions { ˆ𝑓 (𝑝)

𝜋 (𝑡)}𝑝∈[𝑃 ] . Thanks to the

structure of 𝑃-step oscillation, it holds that ˆ𝑓 (𝑝) > ˆ𝑓 (𝑝+1) ∀𝑝 ∈ [𝑃−1]. Therefore, in the hypothetical
equilibrium,

ˆ𝑓 (0)
represents an upper bound on the flow dynamics. We speak of flow dynamics

with consistent trajectories if such an ordering not only holds on the equilibrium values
ˆ𝑓 (𝑝)

, but

also on the trajectory functions
ˆ𝑓
(𝑝)
𝜋 (𝑡) for all paths 𝜋 :

Definition 3. Flow dynamics { ˆ𝑓𝜋 (𝑡)}𝑡 ≥0 have consistent trajectories at time point 𝑡 ′ if on every
path 𝜋 ∈ Π, the rank-specific trajectory functions { ˆ𝑓 (𝑝)

𝜋 (𝑡)}𝑝∈[𝑃 ] satisfy the following condition:

∀𝑝 ∈ [𝑃 − 1], 𝑡 ≥ 𝑡 ′. ˆ𝑓
(𝑝)
𝜋 (𝑡) > ˆ𝑓

(𝑝+1)
𝜋 (𝑡) (16)

As trajectories are always eventually consistent, the trajectory function
ˆ𝑓
(0)
𝜋 (𝑡) for rank 0 is

therefore an upper bound on all trajectory functions { ˆ𝑓 (𝑝)
𝜋 (𝑡)}𝑝∈[𝑃 ] and by consequence also an

upper bound on the flow dynamics { ˆ𝑓𝜋 }𝑡 ≥0 for any path 𝜋 . As ˆ𝑓
(0)
𝜋 (𝑡) is monotonic, its function

values will not exceed 𝐶/𝑃 if
ˆ𝑓𝜋 (𝑡𝜋𝑝 ) ≤ 𝐶/𝑃 and

ˆ𝑓 (0) ≤ 𝐶/𝑃 . Due to the introduction of capacity

limits, it is necessary to alter the definition of 𝑡𝜋𝑝 to be the first point in time after oscillation began

(at 𝑡0) where rank(𝜋, 𝑡𝜋𝑝 ) = 𝑝 (as before) and additionally
ˆ𝑓𝜋 (𝑡𝜋𝑝 ) ≤ 𝐶/𝑃 .4 Therefore, we arrive at

the following insight:

Insight 3. Dynamic Lossless Flow Equilibrium. The hypothetical equilibrium (disregarding
capacity limitations) from Insight 2 is an actual, lossless equilibrium (taking capacity limits into
account) for the flow dynamics { ˆ𝑓𝜋 (𝑡)}𝜋 ∈Π if and only if ˆ𝑓 (0) ≤ 𝐶/𝑃 , i.e., the maximum flow-
equilibrium level does not exceed the bottleneck capacity of any path.

4 LOSSY EQUILIBRIA
In this section, we characterize lossy equilibria, i.e., dynamic equilibria where

ˆ𝑓 (0) > 𝐶/𝑃 and the

flow dynamics therefore periodically exceed bottleneck capacities.

4.1 Structure of Lossy Equilibria
In order to identify the typical structure of lossy equilibria, we again rely on simulations similar

to Section 3.1. Based on these simulations, we can distinguish two types of lossy equilibria, illus-

trated in Figs. 4 and 5. Note that both of these lossy-equilibrium types are characterized by flow

volumes { ˆ𝑓 (𝑝)∗}𝑝∈[𝑃 ] , each carried by the path with rank 𝑝 in the state that is designated as the

initial state of the lossy equilibrium (𝑡 = 0 in the figures) and is periodically revisited every 𝐿 time

steps. Moreover, the boundary points, i.e., the largest and smallest flow volume arising in a lossy

equilibrium, are denoted by
ˆ𝑓 ∗+ and ˆ𝑓 ∗−, respectively.

The main distinguishing property of type-1 lossy equilibria (cf. Fig. 4) is that these lossy equilibria

are consistent with 𝑃-step oscillation despite the occasional multiplicative decrease 𝛽 on rank-0

paths. In contrast, type-2 lossy equilibria (cf. Fig. 5) temporarily deviate from 𝑃-step oscillation

whenever there is packet loss on a path. In that case, the rank-0 path with loss directly becomes

the rank-(𝑃 − 1) path in the subsequent time step. However, even in type-2 lossy equilibria, 𝑃-step

oscillation eventually resumes, e.g., at 𝑡 = 2 in Fig. 5. Type-1 equilibria typically appear for a

relatively high migration rate𝑚, whereas type-2 equilibria tend to appear for lower migration rates.

4
We assume that such a 𝑡𝜋𝑝 always exists as any reasonable CC’s reaction to loss reduces

ˆ𝑓𝜋 (𝑡 ) below𝐶/𝑃 eventually.
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Fig. 4. Type-1 lossy equilibrium for 𝑃 = 3,𝑚 = 0.45,
and 𝑟 = 0.9 (One period is highlighted in light-blue).
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Fig. 5. Type-2 lossy equilibrium for 𝑃 = 3,𝑚 = 0.1,
and 𝑟 = 1 (One period is highlighted in light-blue).

4.2 Flow Equilibria
While the lossy equilibria cannot be characterized as simply as the lossless equilibria in Section 3.3,

it is feasible to determine the flow-volume bounds for the presented types of lossy equilibria.

Regarding the upper bound, the central question is how high the upper boundary point
ˆ𝑓 ∗+ can

become. Both for type-1 and type-2 lossy equilibria, we note that
ˆ𝑓 ∗+ is reached after one round of

𝑃-step oscillation starting from a flow volume below the capacity limit. Hence, an upper bound

on
ˆ𝑓 ∗+ can be represented as follows:

ˆ𝑓 ∗+ ≤ ˆ𝑓
(0)
𝜋 (𝑡𝜋0 + 𝑃) where ˆ𝑓

(𝑝)
𝜋 (𝑡𝜋0) = 𝐶/𝑃 . (17)

The trajectory function from Eq. (14) (or from Eq. (15) for 𝑟 = 1) is used to calculate the effects of

one round of 𝑃-step oscillation on flow volume 𝐶/𝑃 , which is the highest flow volume from which

ordinary 𝑃-step oscillation can proceed. Note that this trajectory function is only usable if the

agent dynamics are in equilibrium according to Section 3.2. Type-1 lossy equilibria preserve 𝑃-step

oscillation and thus also the corresponding agent equilibria. For type-2 lossy equilibria, however,

𝑃-step oscillation is occasionally disturbed, which can result in agent dynamics out of equilibrium.

However, multiple rounds of 𝑃-step oscillation precede the moment of reaching
ˆ𝑓 ∗+ and the

convergence to the agent equilibrium is exponential. Hence, we observe that the agent dynamics

are close to the agent equilibrium and the trajectory function can therefore be used to obtain an

approximate upper bound for type-2 lossy equilibria.

Regarding the lower bound, we now investigate how low the lower boundary point
ˆ𝑓 ∗− can

become. In type-1 lossy equilibria,
ˆ𝑓 ∗− is reached after 𝑃 − 1 time steps with agent outflow on an

overloaded rank-0 path. Combined with the multiplicative decrease 𝛽 in the first of these 𝑃 − 1

time steps, we can thus formulate a lower bound on
ˆ𝑓 ∗− for type-1 lossy equilibria:

ˆ𝑓 ∗− > 𝛽 · (1 −𝑚)𝑃−1 ·𝐶𝜋 (18)

given a rank-0 path that is only infinitesimally overloaded and 𝛼 (𝜏) > 0, ∀𝜏 ∈ N>0. For type-2 lossy

equilibria, this lower bound is too pessimistic, as the combination of multiplicative decrease and

agent out-migration directly transforms the overloaded rank-0 path into the least utilized path

and there are no further consecutive time steps with agent out-migration on this path. Hence,

𝛽 · (1 −𝑚) ·𝐶𝜋 suffices as a lower bound for type-2 lossy equilibria. For a validation of these lower

bounds by simulations, consult Fig. 14 in Appendix D.
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5 AXIOMS
In this section, we use an axiomatic approach inspired by Zarchy et al. [41] to derive insights

regarding the effects of oscillatory path selection. We adapt a number of their axioms, which were

formulated for a single-path context, to a multi-path context in Section 5.1. In Section 5.2, we

evaluate the equilibria from Sections 3 and 4 with respect to these axioms.

5.1 List of Axioms
In our axiomatic approach to multi-path congestion control, axioms correspond to desirable prop-

erties that MPCC protocols should possess. However, as these properties refer to general and vague

concepts (e.g., efficiency or fairness), the conditions for possessing these properties are usually not

well-defined. Therefore, the axioms here are formalized as metrics for rating an MPCC protocol

with respect to a certain property, instead of binary indicators of whether the protocol possesses

the given property. Concretely, we consider the following axioms in this work:

Axiom 1. Efficiency. An MPCC protocol is 𝝐-efficient if under universal adoption of this protocol,
the bottleneck utilization of every path 𝜋 with capacity 𝐶/𝑃 is never lower than a share 𝜖 after some
time 𝑡 ′:

∃𝑡 ′. ∀𝑡 ≥ 𝑡 ′, 𝜋 ∈ Π.
𝑃 · ˆ𝑓𝜋 (𝑡)

𝐶
≥ 𝜖 (19)

Larger values of 𝜖 are better, and we consider an 𝜖-efficient protocol optimal if 𝜖 ≥ (𝐶 − 𝑠)/𝐶 , where 𝑠
is the buffer size.5

Axiom 2. Loss avoidance. An MPCC protocol is 𝝀-loss-avoiding if under universal adoption, the
loss rate on any path 𝜋 with capacity 𝐶/𝑃 never exceeds 𝜆 after some time 𝑡 ′:

∃𝑡 ′. ∀𝑡 > 𝑡 ′, 𝜋 ∈ Π.
ˆ𝑓𝜋 (𝑡)
𝐶/𝑃 − 1 ≤ 𝜆 (20)

Thus, smaller values of 𝜆 are better, and a 0-loss-avoiding protocol is optimal.

Axiom 3. Convergence. An MPCC protocol is 𝜸-convergent if under universal adoption, the flow
volume ˆ𝑓𝜋 (𝑡) on every path 𝜋 lies consistently within a range [𝛾 · ˆ𝑓 +𝜋 ,

ˆ𝑓 +𝜋 ] below a path-specific
maximum level ˆ𝑓 +𝜋 after some time 𝑡 ′:

∃𝑡 ′ > 0, 𝑓 +𝜋 . ∀𝑡 > 𝑡 ′, 𝜋 ∈ Π. 𝛾 · ˆ𝑓 +𝜋 ≤ ˆ𝑓𝜋 (𝑡) ≤ ˆ𝑓 +𝜋 (21)

Thus, larger values of 𝛾 are better, and a 1-convergent protocol is optimal.

Axiom 4. Fairness. An MPCC protocol is 𝜼-fair if under universal adoption, the variance of
congestion-window sizes of all agents 𝑖 ∈ 𝐴 in the network never exceeds 𝜂 after some time 𝑡 ′:6

∃𝑡 ′ > 0. ∀𝑡 > 𝑡 ′. Var

𝑖∈𝐴

[
cwnd𝑖 (𝑡)

]
≤ 𝜂 (22)

Thus, smaller values of 𝜂 are better, and a 0-fair protocol is optimal.

For any axiom metric 𝜇, we write 𝜇 (MPCC) for the most desirable value of metric 𝜇 that the

protocol MPCC can be rated with.

5
In terms of latency, (𝐶 − 𝑠)/𝐶 , i.e., empty buffers, would even be preferable to higher values of 𝜖 . This latency effect could

be captured by an additional axiom, which we do not introduce in this work.

6
Zarchy et al. [41] formalize fairness with the ratio of the smallest to the largest congestion-window size in the steady state.

Given path selection, this ratio is always potentially 0, e.g., if an agent migrates in every time step.
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5.2 Axiomatic Characterization of Equilibria
The axioms in Section 5.1 refer to characteristics which are eventually attained and then persistently

preserved by the flow dynamics. Hence, a natural way to axiomatically rate an MPCC protocol is

to evaluate the equilibria (i.e., stable states) of this protocol (cf. Sections 3 and 4).

Efficiency (Axiom 1). We distinguish lossless and lossy flow equilibria. If there is a lossless

equilibrium (
ˆ𝑓 (0) ≤ 𝐶/𝑃 ), the minimal flow volume ever carried by any path 𝜋 is the equilibrium

value for rank 𝑃 − 1, i.e.,
ˆ𝑓 (𝑃−1)

.
7
The network-wide efficiency level is therefore 𝜖 = 𝑃 · ˆ𝑓 (𝑃−1)/𝐶 .

In contrast, for lossy equilibria, the efficiency level is the lower bound on the lower boundary

point
ˆ𝑓 ∗− according to Section 4.2. Depending on the lossy-equilibrium type, this lower bound is

given by 𝛽 · (1 −𝑚)𝑃−1 or 𝛽 · (1 −𝑚), respectively. Since the lower bound is never higher for type

1 than for type 2, we consider 𝛽 · (1 −𝑚)𝑃−1 to be the minimum flow volume for lossy equilibria.

While this lower bound is too pessimistic for lossy equilibria of type 2, these type-2 lossy equilibria

mostly appear for low values of𝑚, where the difference between the two bounds is small.

𝜖
(
MPCC (𝛼, 𝛽,𝑚, 𝑟 )

)
≥
{
𝑃 · ˆ𝑓 (𝑃−1)/𝐶 if

ˆ𝑓 (0) ≤ 𝐶/𝑃
𝛽 · (1 −𝑚)𝑃−1 otherwise

(23)

Loss avoidance (Axiom 2). If all paths are in lossless equilibrium (
ˆ𝑓 (0) ≤ 𝐶/𝑃 ), it is clear that the

maximum loss rate in the whole network is 0. If the network is in lossy equilibrium, the maximum

loss rate is determined by the upper boundary point
ˆ𝑓 ∗+ (cf. Section 4.2). As shown in Eq. (17),

this boundary point is maximal at
ˆ𝑓
(0)
𝜋 (𝑡𝜋0 + 𝑃), where ˆ𝑓

(0)
𝜋 is the rank-0 trajectory function for an

arbitrary path 𝜋 and is anchored at
ˆ𝑓
(0)
𝜋 (𝑡𝜋0) = 𝐶/𝑃 . For 𝑟 ≠ 1 and 𝑟 = 1, this trajectory function is

given by Eq. (14) and Eq. (15), respectively. In summary, the maximum loss rate is

𝜆
(
MPCC (𝛼, 𝛽,𝑚, 𝑟 )

)
≤


0 if

ˆ𝑓 (0) ≤ 𝐶/𝑃
𝑞(𝑚, 𝑟, 𝑃) · (1 −𝑚)𝑃−1 − 1+(

𝑞(𝑚, 𝑟, 𝑃) ·∑𝑃−2
𝑝=0 𝛼

(𝑝) + 𝛼 (𝑃−1) ) · 𝑎 (𝑃−1)/(𝐶/𝑃) if
ˆ𝑓 (0) > 𝐶/𝑃
∧ 𝑟 ≠ 1(

(1 −𝑚)1−𝑃 ·∑𝑃−2
𝑝=0 𝛼

(𝑝) + 𝛼 (𝑃−1) ) · 𝑎 (𝑃−1)/(𝐶/𝑃) otherwise,

(24)

where we use the abbreviation 𝑞(𝑚, 𝑟, 𝑃) := (1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)).

Convergence (Axiom 3). If the network is in a lossless equilibrium (
ˆ𝑓 (0) ≤ 𝐶/𝑃 ), the convergence

behavior of the flow dynamics can be derived from the boundaries
ˆ𝑓 (0)

and
ˆ𝑓 (𝑃−1)

of the hypothetical

flow equilibrium. Given a lossy equilibrium, we can build on the range between the upper boundary

point
ˆ𝑓 ∗+ and the lower boundary point

ˆ𝑓 ∗−, for which we have derived an upper and a lower

bound, respectively. From these ranges, the derivation of the convergence indicator 𝛾 and the

maximum level
ˆ𝑓 +𝜋 is straightforward:

𝛾
(
MPCC (𝛼, 𝛽,𝑚, 𝑟 )

)
≥
{

ˆ𝑓 (𝑃−1)/ ˆ𝑓 (0)
if

ˆ𝑓 (0) ≤ 𝐶/𝑃
𝛽 · (1 −𝑚)𝑃−1/

(
𝜆(MPCC (𝛼, 𝛽,𝑚, 𝑟 )) + 1

)
otherwise

(25)

7
To be precise, the asymptotic convergence to

ˆ𝑓 (𝑃−1)
permits that

ˆ𝑓𝜋 (𝑡 ) for rank(𝜋, 𝑡 ) = 𝑃 − 1 is consistently below
ˆ𝑓 (𝑃−1)

.

However, since this shortfall is infinitesimal and flow volumes converge exponentially to their equilibrium value, we treat

the equilibrium as completely reached instead of only asymptotically approached.
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Fig. 6. Computation of variance in congestion-
window size according to the losslessMarkov process
in Eq. (27).

𝜏𝑖 (𝑡 + 1) = 𝜏𝑖 (𝑡) + 1

cwnd𝑖 (𝑡 + 1) = cwnd𝑖 (𝑡) + 𝛼 (𝜏𝑖 (𝑡))

Increase

𝜏𝑖 (𝑡 + 1) = 0

cwnd𝑖 (𝑡 + 1) = 𝑟 · cwnd𝑖 (𝑡)

Migrate

𝜏𝑖 (𝑡 + 1) = 0

cwnd𝑖 (𝑡 + 1) = 𝛽 · cwnd𝑖 (𝑡)

Decrease

𝑝𝐼→𝑀𝑝ℓ ·𝑚

𝑝ℓ ·𝑚𝑚

𝑝𝐼→𝐼

𝑚

𝑝𝐼→𝐷

𝑚

Fig. 7. Markov process for congestion-window size
given lossy equilibria (Notation: 𝑝 = 1−𝑝). Moreover,
𝑝𝐼→𝐼 = if 𝜏𝑖 (𝑡) mod 𝑃 ≠ (𝑃 − 1) then 𝑝ℓ ·𝑚 else 𝑝ℓ ,
𝑝𝐼→𝑀 = if 𝜏𝑖 (𝑡) mod 𝑃 ≠ (𝑃 − 1) then𝑚 else 0 and
𝑝𝐼→𝐷 = if 𝜏𝑖 (𝑡) mod 𝑃 ≠ (𝑃 − 1) then 𝑝ℓ ·𝑚 else 𝑝ℓ .

Fairness (Axiom 4). We consider the variance of congestion-window sizes in the equilibrium as a

metric for the fairness of an MPCC algorithm:

Var

𝑖∈𝐴

[
cwnd𝑖 (𝑡)

]
= E

𝑖∈𝐴

[
cwnd𝑖 (𝑡)2

]
− E

𝑖∈𝐴

[
cwnd𝑖 (𝑡)

]
2

(26)

As the congestion-window evolution of a single agent is a probabilistic process where any state

transition only depends on the current state, we approximate cwnd𝑖 (𝑡) for the case of lossless

equilibria by means of the following Markov process with two state variables:

if 𝜏𝑖 (𝑡) ≠ 𝑃 − 1: 𝜏𝑖 (𝑡 + 1), cwnd𝑖 (𝑡 + 1) =
{
0, 𝑟 · cwnd𝑖 (𝑡) prob.𝑚

𝜏𝑖 (𝑡) + 1, cwnd𝑖 (𝑡) + 𝛼 (𝜏𝑖 (𝑡)) prob. 1 −𝑚

else: 𝜏𝑖 (𝑡 + 1), cwnd𝑖 (𝑡 + 1) = 𝜏𝑖 (𝑡) + 1, cwnd𝑖 (𝑡) + 𝛼 (𝜏𝑖 (𝑡))
(27)

where the initial state is given by 𝜏𝑖 (0) = cwnd𝑖 (0) = 0.

Computationally tractable computation of the congestion-window size variance can be done by

averaging many simulation samples of the Markov process from Eq. (27), which has only linear

complexity in 𝑡 and yields the expectation of the congestion-window size by the central limit

theorem. Fig. 6 illustrates that the variance of cwnd𝑖 (𝑡) has a limit for 𝑡 → ∞.

Regarding lossy equilibria, the Markov process from Eq. (27) must be adapted as shown in Fig. 7.

In particular, we assume that every path encounters loss with probability 𝑝ℓ in any time step, except

if the path has experienced loss in the previous time step (as there are no consecutive loss events

on the same path in the lossy equilibria in Section 4). If the agent is using a lossy path, but does not

leave the path, the congestion-window size is multiplicatively decreased as shown in transition

Decrease in Fig. 7. Like for lossless equilibria, a simulation-based approach enables to efficiently

compute the variance in congestion-window size (cf. Fig. 15 in the appendix). This figure suggests

that the variance limit for lossy equilibria is decreasing in loss probability 𝑝ℓ . Moreover, since the

lossy Markov process in Fig. 7 is equivalent to the lossless Markov process in Eq. (27) for 𝑝ℓ = 0,

the variance of the lossless Markov process represents an upper bound on the variance of the lossy

Markov process. Therefore, we henceforth exclusively rely on the lossless Markov process.
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6 AXIOM-BASED INSIGHTS
In this section, we derive fundamental insights into the nature of end-host path selection on the

basis of the axioms presented in the previous section. First, we investigate in Section 6.1 how the

performance characteristics of a network change if end-host path selection is introduced. Second,

we show in Section 6.2 that there are fundamental trade-offs when applying end-host path selection.

6.1 Performance Effects of Introducing End-Host Path Selection
6.1.1 Evaluation Method. In order to analyze how end-host path selection affects the performance

characteristics of a network, we use a comparative approach: First, we characterize the performance

of a network without end-host path selection based on the axioms from Section 5.1 (henceforth:

Scenario (I)). Afterwards, we compare the axiomatic ratings of the network without path selection

to the axiomatic characterization of the MPCC equilibria (cf. Section 5.2) that arise in the same

network given end-host path selection (henceforth: Scenario (II)).

We base the comparison on a network with 𝑁 agents and a total bottleneck capacity𝐶 distributed

over 𝑃 paths with equal bottleneck capacity 𝐶/𝑃 . All agents adopt the same CC protocol CC𝑖 (𝛼, 𝛽)
(cf. Eq. (3)) in Scenario (I), whereas they employ a multi-path version MPCC𝑖 (𝛼, 𝛽,𝑚, 𝑟 ) of this CC
protocol in Scenario (II). Moreover, while the agent distribution on paths is dynamically determined

in Scenario (II), the agent distribution in Scenario (I) is static: To identify the worst-case effects of

end-host path selection, let this static agent distribution be optimal, i.e., 𝑎𝜋 = 𝑁 /𝑃 .
In the following, we rate the CC protocol 𝐶𝐶𝑖 (𝛼, 𝛽) for Scenario (I) with respect to the axioms

and perform a comparison with Scenario (II). Moreover, we both quantify and interpret the changes

in the axiom metrics that are due to the introduction of end-host path selection. These changes are

also visualized in Figs. 8 and 9: For any𝑚 and every equilibrium class (lossless or lossy), the possible

range of the metric change is shown for two different additive-increase functions and an example

network. We distinguish a constant additive-increase function 𝛼1 (𝜏) = 1 and an additive-increase

function 𝛼S in the style of TCP Slow Start: 𝛼S (𝜏) = 2
𝜏
if 𝜏 < 5 and 𝛼S (𝜏) = 1 otherwise. The

range associated with each value of𝑚 is [min𝑟 ∈𝑅 (𝑚) Δ(𝑚, 𝑟 ), max𝑟 ∈𝑅 (𝑚) Δ(𝑚, 𝑟 )], where Δ is the

difference metric as a function of𝑚 and 𝑟 and 𝑅(𝑚) contains all values of 𝑟 that produce a valid
equilibrium of the given class (lossless or lossy) in the example network given𝑚.

6.1.2 Efficiency (Axiom 1). Given that the employed protocol 𝐶𝐶𝑖 (𝛼, 𝛽) eventually exhausts the

capacity of any path, the efficiency level is given by the lowest possible flow volume that results

from loss. This lower bound is determined by the multiplicative decrease 𝛽 applied to a flow volume

that is infinitesimally above the capacity limit:

∀𝜋 ∈ Π. 𝜖
(
CC𝑖 (𝛼, 𝛽)

)
=
𝛽 ·𝐶/𝑃
𝐶/𝑃 = 𝛽 (28)

We now compare this efficiency level to the MPCC efficiency levels from Eq. (23) and analyze

the efficiency change Δ𝜖 = 𝜖
(
MPCC (𝛼, 𝛽,𝑚, 𝑟 )

)
− 𝜖

(
CC (𝛼, 𝛽)

)
that is due to the introduction of

end-host path selection. For a visualization of this efficiency change, consider Fig. 8a.

If the efficiency level of the MPCC dynamics is determined by a lossless equilibrium, then Δ𝜖

is given by 𝑃 · ˆ𝑓 (𝑃−1)/𝐶 − 𝛽 . As ˆ𝑓 (𝑃−1)
is a decreasing function of the migration rate𝑚 and an

increasing function of the reset softness 𝑟 , end-host path selection is more likely to negatively

affect 𝜖 for high migration rates and hard resets on path switch:

Insight 4. Efficiency Effects of PathMigration and Resets in Lossless Equilibria. The more
likely agents are to migrate away from a path at any single point in time, the further the bottleneck-link
utilization can drop, and if agents start out with a small congestion window every time they switch to
a new path, utilization (and therefore efficiency) are relatively low.
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Fig. 8. Effects of end-host path selection for an example network with 𝑃 = 3, 𝛽 = 0.7, 𝑁 = 1000, and
𝐶/𝑃 = 12000.

Nonetheless, it is possible that the introduction of end-host path selection leads to a higher level

of efficiency. The computations for the example network, visualized in Fig. 8a, show that for low

values of𝑚 and high values of 𝑟 , introducing end-host path selection can increase efficiency.

In contrast, if the MPCC efficiency level is determined by a lossy equilibrium, then Δ𝜖 is given by

𝛽 · (1 −𝑚)𝑃−1 − 𝛽 , which is bound to be negative. This fact allows the interpretation that end-host

path selection strictly lowers the efficiency in case of loss, as emigration from a path reinforces

the utilization plunge created by the CC loss reaction, i.e., the multiplicative decrease 𝛽 . As Fig. 8a

shows, such less efficient lossy equilibria are bound to exist for low values of𝑚, for which there is

no value of 𝑟 such that a a lossless equilibrium can arise. This insight points to a subtle relationship

between migration rates and efficiency:

Insight 5. Inefficient Equilibria due to Low Migration. While lowering the migration rate
can increase the efficiency of end-host path selection, very low migration rates necessarily lead to
inefficient (lossy) equilibria, which make end-host path selection detrimental to efficiency compared to
a scenario without path selection.

6.1.3 Loss avoidance (Axiom 2). In Scenario I, the worst-case loss rate occurs if flow 𝑓𝜋 on path 𝜋

is exactly at the capacity limit 𝐶𝜋 , and there is an additional increase by all agents on the path:

∀𝜋 ∈ Π. 𝜆
(
CC𝑖 (𝛼, 𝛽)

)
=
𝛼max · 𝑎𝜋

𝐶𝜋

=
𝛼max · 𝑁

𝐶
, (29)

where 𝛼max = max𝜏 ∈N≥0 𝛼 (𝜏) to represent the maximum possible loss.

In case of lossless equilibria of the MPCC dynamics, it is clear that Δ𝜆 (defined analogously to Δ𝜖)
is negative, i.e., the loss rate can be reduced (to 0). This improvement in Δ𝜆 is shown in Fig. 8b for

all values of𝑚 for which there is a value of 𝑟 such that a lossless equilibrium arises.

If a lossy equilibrium is present, the effects of end-host path selection are more ambivalent. In

that case, the maximum loss rate in the path-aware network is proportional to
ˆ𝑓 (0)

: the larger the

hypothetical limit value
ˆ𝑓 (0)

of the trajectory function, the stronger the increase of the trajectory

function at level 𝐶𝜋 and thus the higher the loss rate. As
ˆ𝑓 (0)

is proportional to 𝑟 and effectively

infinite for 𝑟 = 1, the highest loss rate for every value of𝑚 is achieved for 𝑟 = 1, which yields the

following intuitive insight:

Insight 6. Loss Effects of Soft Resets. If agents only perform soft resets of the congestion-window
size when switching paths, this can result in high loss on the newly selected patt.
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In contrast, if𝑚 and 𝑟 are such that the equilibrium is only marginally lossy, i.e.,
ˆ𝑓 (0)

is only

infinitesimally larger than𝐶𝜋 , then the maximum loss rate in a lossy equilibrium is arbitrarily close

to 0 (similar to a lossless equilibrium). However, a value of 𝑟 that achieves ˆ𝑓 (0) ≈ 𝐶𝜋 may not exist

given a (low) value of𝑚, in which case the reduction of the loss rate to 0 is not possible. Therefore,

we arrive at a counter-intuitive insight that mirrors Insight 5:

Insight 7. Loss Effects of Low Migration. Loss is not minimized by minimizing the migration
rate𝑚, as low migration rates may prohibit the emergence of completely lossless equilibria.

Furthermore, Fig. 8b allows another non-obvious insight:

Insight 8. Loss Effects of Path Selection with Variable Additive-Increase Functions. The
benefits of end-host path selection in terms of loss are particularly large if additive-increase functions
with high inherent variability (such as 𝛼S in Fig. 8) are used by the agents.

In that case, end-host path selection may reduce loss because it leads to de-synchronization of the

continuity time 𝜏 between agents: If all agents tend to have the same continuity time 𝜏 , there is a

chance that many agents have continuity time 𝜏max with 𝛼 (𝜏max) = 𝛼max
at the same time, resulting

in high loss. In contrast, agent migration due to path selection causes more heterogeneity in 𝜏 and

therefore leads to an averaging of 𝛼 (𝜏), which reduces the aggregate additive increase and therefore

the maximum possible loss. While this observation may first seem like an unfair comparison of a

maximum to an average, the averaging of additive increases is exactly the fundamental feature of

path selection that reduces the possible maximum of aggregate additive increase compared to a

scenario without path selection.

6.1.4 Convergence (Axiom 3). The convergence level 𝛾 is determined by the minimum and the

maximum possible flow volume, as derived above:

𝛾
(
CC𝑖 (𝛼, 𝛽)

)
=

𝛽 ·𝐶
𝐶 + 𝛼max · 𝑁 (30)

In the case of lossless equilibria, end-host path selection can increase stability if

ˆ𝑓 (𝑃−1)

ˆ𝑓 (0)
=

∑𝑃−2
𝑝=0 𝛼

(𝑝) + 𝛼 (𝑃−1) · (1 −𝑚)𝑃−1(
1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)

)
·∑𝑃−2

𝑝=0 𝛼
(𝑝) + 𝛼 (𝑃−1)

> 𝛾
(
CC𝑖 (𝛼, 𝛽)

)
, (31)

which is unsurprisingly true for a low migration rate𝑚 and hard resets 𝑟 ≈ 0. However, analogously

to efficiency and loss, convergence surprisingly suffers from very low migration rates𝑚, as this

causes lossy equilibria, which are inferior to lossless equilibria in terms of convergence (cf. Fig. 9a).

The convergence in these lossy equilibria benefits from low migration rates and hard resets,

without the exception for very low migration rates that exists for lossless equilibria. While such

lossy equilibria might be inferior to lossless equilibria in terms of convergence, lossy equilibria

of end-host path selection might still be preferable to no end-host path selection at all, as Fig. 9a

suggests for the lossy equilibria for 𝛼S. Similar to Insight 8, the reason for this improvement is

the de-synchronization of the continuity time brought about by agent migration, which reduces

the variance of the aggregate additive increase and thus the flow-volume fluctuations. Contrary

to the widespread belief that end-host path selection necessarily hurts stability (in the sense of

the convergence axiom), our analysis thus shows that network stability can in fact benefit from

end-host path selection.

6.1.5 Fairness (Axiom 4). Given simultaneous sending start and no path selection, perfect synchro-

nization implies that all agents always have exactly the same congestion-window size, i.e., 𝜂 = 0.

Moreover, Zarchy et al. show that even if some agents start sending after others, CC protocols
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Fig. 9. Illustration of effects of end-host path selection on the basis of the same example network as in Fig. 8.

generally tend to come close to perfect fairness [41]. To find the worst-case effects of end-host path

selection, we thus assume perfect fairness in the scenario without path selection:

𝜂
(
CC𝑖 (𝛼, 𝛽)

)
= 0 (32)

Hence, the fairness change Δ𝜂 due to end-host path selection is equal to the fairness level 𝜂 of

the MPCC dynamics, which has been computed as a function of the migration rate𝑚 in Fig. 9b

for two different additive-increase functions. In Fig. 9b, the lowest values for 𝜂, i.e., the highest

fairness, is achieved for very high migration rates𝑚 ≈ 1, which leads to the following insight:

Insight 9. Fairness Effects of Path Migration. In a system with end-host path-selection, a very
high migration rate𝑚 leads to optimal fairness.

This phenomenon can be intuitively explained as follows: If the migration rate is high, any

agent is likely to reset its congestion-window size in any time step, which results in a compact

distribution of the congestion-window size. Under a low migration rate, some agents may reach

a high congestion-window size due to uninterrupted growth, while a few agents per time step

perform a reset, which leads to a high variance of the congestion-window size distribution.

The effects of the reset softness 𝑟 on 𝜂 are more nuanced. As Fig. 9b shows, the fairness metric 𝜂

is generally higher for lossy equilibria, which appear for high reset softness, than for lossless

equilibria, i.e., lossless equilibria are fairer. However, as mentioned in Section 5.2, the fairness

metric for lossy equilibria is computed for infinitesimal loss probability 𝑝ℓ ; for any higher 𝑝ℓ , 𝜂 is

lower, which complicates a comparison to lossless equilibria. Also, for a low migration rate𝑚, lossy

equilibria with a high reset softness are associated with lower 𝜂 than lossless equilibria. The reason

behind this phenomenon is that soft resets reduce the difference in congestion-window size between

the agents that have not migrated in a long time (and therefore have a large congestion-window)

and the agents that have just recently migrated and reset their congestion-window size.

Finally, while end-host path selection seems to reduce fairness as captured by 𝜂, we note that 𝜂

only represents the fairness at any single point in time. However, under low migration rates, there

may still be very high inter-temporal fairness. If the migration probability is low, any agent has a

high probability to uninterruptedly grow its congestion window for a long time. If the congestion-

window sizes of any agent were averaged over a certain time span, the distribution of such average

congestion-window sizes would have low variance. We leave this more complex fairness analysis

as an interesting task for future work.
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6.2 Fundamental Trade-Offs
In Sections 5.2 and 6.1, the dependency of the MPCC dynamics on the migration rate (or responsive-

ness)𝑚 and the reset softness 𝑟 has been qualified and quantified. These characterizations allow to

observe the following trade-off in the design of systems with end-host path selection:

Insight 10. Trade-Off Regarding Migration Rate. Efficiency 𝜖 and convergence 𝛾 are more
favorable under low migration rates, whereas fairness 𝜂 and responsiveness𝑚 are more favorable
under high migration rates, implying a fundamental trade-off between these axioms.

However, we note that this trade-off is only valid within equilibrium classes, e.g., for comparing

lossless equilibria among each other, but not across equilibrium classes: Lowering the migration

rate below a certain (low) level restricts the set of possible equilibria to lossy equilibria, which are

worse in terms of efficiency and convergence than lossless equilibria (cf. Insight 5).

Regarding loss avoidance, the effect of migration rates depends on the remaining network

parameters. If resets are hard (𝑟 ≈ 0), higher migration rates are associated with lower loss rate (as

higher migration rates make lossless equilibria more likely, which are optimal in terms of loss). In

contrast, if resets are soft (𝑟 ≈ 1), lossless equilibria are impossible and the effects of the migration

rate on the loss rate are unclear in general, because the migration rate non-monotonically affects

the aggregate additive increase (cf. the curve for maximal Δ𝜆 given 𝛼S and lossy equilibria in Fig. 8b).
However, this unpredictable effect vanishes for constant additive-increase functions (such as 𝛼1
from Section 6.1). For constant-increase functions, a higher migration rate leads to a higher loss
rate given soft resets. This finding underlines the relevance of congestion-window adaptation on

path switch: Depending on the reset softness, higher migration rates may increase or reduce loss.

Despite this subtle relationship of migration rates and the axiomatic metrics, we can identify

parameters𝑚 and 𝑟 that are optimal with respect to all the metrics efficiency, loss, and convergence

simultaneously. These parameters are given by the lowest𝑚 such that a lossless equilibrium is

still possible given a complete reset 𝑟 = 0. These parameters yield a lossless equilibrium with high

efficiency and convergence (cf. Insight 10).

Insight 11. No Trade-Off between Efficiency, Loss Avoidance and Convergence. Since there
exist protocol parameters that are optimal with respect to efficiency, loss avoidance, and convergence
simultaneously, there exists no fundamental trade-off between these metrics.

Unfortunately, determining these optimal parameters requires knowledge about specific and

variable properties of the target network, i.e., the number of agents |𝐴| and the path-bottleneck

capacities 𝐶𝜋 in the network, making it unattainable in most practical settings.

Finally, when determining the reset softness 𝑟 , a further trade-off arises:

Insight 12. Trade-Off Regarding Reset Softness. There is a fundamental trade-off between
convergence 𝛾 and loss 𝜆, both of which are more favorable under low reset softness (hard resets), and
efficiency 𝜖 , which is more favorable under high reset softness (soft resets).

7 RELATEDWORK
Traditionally, the effects of end-host path selection have been theoretically studied in the literature

on selfish routing. In this line of research, the classicWardropmodel [39] is used to characterize stable

traffic distributions (equilibria) that result from uncoordinated path selection by self-interested

agents. These equilibria have been thoroughly investigated with respect to their existence [28,

30], their efficiency (typically termed Price of Anarchy [20, 26, 29, 31]), and their convergence

properties [10, 11, 32]. However, the Wardrop model cannot represent congestion-control dynamics

appropriately, which we consider important for characterizing the impact of end-host path selection

on network performance.
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In research about multi-path congestion control, there has been widespread use of fluid models

which can better represent congestion-control dynamics [15, 17, 18, 25]. However, also these models

focus on representing equilibria in terms of approximate traffic distributions on networks and

do not capture stability-relevant small-scale dynamics such as congestion-window fluctuations.

More applied approaches rely on reasoning from network examples and experimental validation

and have been used in the design of MPTCP algorithms such as LIA [27, 40] and OLIA [19].

These approaches are rather suited for the design of concrete protocols than for the elicitation

of fundamental properties of end-host path selection. Moreover, MPTCP research typically only

investigates the effects of path selection by scrutinizing friendliness concerns between single-path

and multi-path TCP users in the same network, not by looking at the impact that the introduction

of end-host path selection has on aggregate performance based on various metrics.

In contrast, the axiomatic approach used in this paper allows to qualify and quantify the perfor-

mance impact of path selection on a fundamental level while taking congestion-control dynamics

into account. Thanks to this power, the axiomatic perspective has been applied to various topics

beyond game theory: In computer science, for example, research on congestion control [41], routing

protocols [21], and recommendation systems [3] have benefited from axiom-based approaches.

The effects of end-host path selection have also been characterized by Wang et al. [38], whose

‘cost of not splitting in routing’ captures the difference in network utility between a scenario where

end-hosts select a single path and a scenario where multiple paths can be selected. However, this

work differs from ours in investigating static rate allocations instead of dynamic rate evolution, in

evaluating a single metric (utility) instead of multiple axioms, and in contrasting different modes of

end-host path selection instead of contrasting path selection with path pre-determination.

8 CONCLUSION
Motivated by a stability concern about end-host path selection, we qualify and quantify the

performance impact of such path-selection-induced instability in this work. More precisely, we

analyze a general network in which end-hosts employ greedy load-adaptive path selection and

characterize the resulting traffic pattern with respect to five metrics of interest (“axioms”): efficiency,

loss avoidance, convergence, fairness and responsiveness. Through this analysis, we show how

the performance impact of end-host path selection depends on the path-migration behavior, the

underlying congestion-control protocol, and the structure of the network. Among the dependencies

that we present and explain, there are both intuitive, well-known dependencies (e.g., high migration

rates decrease efficiency) and non-intuitive, more complex dependencies (e.g., very low migration

rates increase loss). Moreover, we show that there are fundamental limitations such that no multi-

path congestion-control protocol can optimize all metrics simultaneously.

We understand our work as a first step, which allows many avenues for follow-up research. For

example, it would be interesting to extend the model for additional congestion-control behaviors

(e.g., latency-based protocols or model-based protocols such as BBR [6]), additional path-switching

behaviors (e.g., based on a path-switching probability proportional to the load difference between

paths) and more general networks. However, while our insights admittedly stem from a simplified

model, we believe that the illustrated dependencies and the axiomatic reasoning in general can

inform the discussion about the merits and perils of end-host path selection.
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A ANALYSIS OF THE CONTINUITY-TIME DISTRIBUTION
The agent dynamics involved in 𝑃-step oscillation (Definition 1) allow to estimate how long the

agents on a path have already been using that path without a packet loss, i.e., allow to characterize

the distribution of the continuity time introduced above. For the following analysis, we introduce

the notation 𝜃 (𝜋, 𝑡), which shall denote the time since the most recent loss event on path 𝜋 at

time 𝑡 .

We now derive a probability distribution P
[
𝜏𝑖 (𝑡) = 𝜏

]
, giving the probability that agent 𝑖 on

path 𝜋𝑖 (𝑡) has continuity time 𝜏 ∈ N at time 𝑡 . This distribution will later be used to determine the

expected congestion-window increase 𝛼𝜋 (𝑡) in Eq. (4b). We consider an arbitrary agent 𝑖 ∈ 𝐴 at an

arbitrary time 𝑡 , residing on path 𝜋𝑖 (𝑡). Clearly, agent 𝑖 must have continuity time 𝜏𝑖 (𝑡) = 0 right

after a loss event, i.e., whenever 𝜃 (𝜋𝑖 (𝑡), 𝑡) = 0, irrespective of the rank of 𝜋𝑖 (𝑡):
∀𝑡 s.t. 𝜃

(
𝜋𝑖 (𝑡), 𝑡

)
= 0, 𝑝 ∈ [𝑃] . P

[
𝜏𝑖 (𝑡) = 0

��
rank

(
𝜋𝑖 (𝑡), 𝑡

)
= 𝑝

]
= 1 (33)

However, in the subsequent time steps, where 𝜃
(
𝜋𝑖 (𝑡), 𝑡

)
> 0, the continuity-time distribu-

tion of agent 𝑖 on path 𝜋𝑖 (𝑡) depends on the rank of that path. If rank(𝜋𝑖 (𝑡), 𝑡) = 0 or, equiva-

lently, rank(𝜋𝑖 (𝑡 − 1), 𝑡 − 1

)
= 𝑃 − 1, all the 𝑎 (𝑃−1) agents that were on path 𝜋 in the last time

step 𝑡 − 1 have remained on the path and have increased their continuity time by 1, but their relative
share is reduced by on-migration from other paths:

∀𝑡 s.t. 𝜃
(
𝜋𝑖 (𝑡), 𝑡

)
> 0, 𝜏 > 0.

P
[
𝜏𝑖 (𝑡) = 𝜏

��
rank

(
𝜋𝑖 (𝑡), 𝑡

)
= 0

]
= P

[
𝜏𝑖
(
𝑡 − 1

)
= 𝜏 − 1

��
rank

(
𝜋𝑖 (𝑡 − 1), 𝑡 − 1

)
= 𝑃 − 1

]
· 𝑎 (𝑃−1)/𝑎 (0)

= P
[
𝜏𝑖
(
𝑡 − 1

)
= 𝜏 − 1

��
rank

(
𝜋𝑖 (𝑡 − 1), 𝑡 − 1

)
= 𝑃 − 1

]
· (1 −𝑚)𝑃−1

(34)

All the𝑚 · (𝑁 − 𝑎 (𝑃−1) ) agents that migrated from the other paths have continuity time 0:

∀𝑡 s.t. 𝜃
(
𝜋𝑖 (𝑡), 𝑡

)
> 0. P

[
𝜏𝑖 (𝑡) = 0

��
rank

(
𝜋𝑖 (𝑡), 𝑡

)
= 0

]
=
𝑚 · (𝑁 − 𝑎 (𝑃−1) )

𝑎 (0)
= 1−(1−𝑚)𝑃−1. (35)

If path 𝜋𝑖 (𝑡) has rank(𝜋𝑖 (𝑡), 𝑡) ≠ 0, the continuity-time distribution has been shifted up by 1 in the

last time step, but is otherwise unaffected:

∀𝑡 s.t. 𝜃
(
𝜋𝑖 (𝑡), 𝑡

)
> 0, 𝑝 ∈ [𝑃] \ {0}, 𝜏 > 0.

P
[
𝜏𝑖 (𝑡) = 𝜏 | rank

(
𝜋𝑖 (𝑡), 𝑡

)
= 𝑝

]
= P

[
𝜏𝑖 (𝑡 − 1) = 𝜏 − 1 | rank

(
𝜋𝑖 (𝑡 − 1), 𝑡 − 1

)
= 𝑝 − 1

] (36)

These recursive characterizations of the probability distribution are equivalent to the following

explicit definition of the continuity-time distribution, which is visualized in Fig. 12:

Insight 13. At time 𝑡 , the probability that an agent 𝑖 on a path 𝜋𝑖 (𝑡) with rank 𝑝 and time since
last loss 𝜃

(
𝜋𝑖 (𝑡), 𝑡

)
has continuity time 𝜏 is

P
(
𝜏 ; 𝑡, 𝑝

)
:= P

[
𝜏𝑖 (𝑡) = 𝜏 | rank

(
𝜋𝑖 (𝑡), 𝑡

)
= 𝑝

]
=


(1 −𝑚) ⌈

𝜏−𝑝
𝑃 ⌉ (𝑃−1) if 𝜏 = 𝜃

(
𝜋𝑖 (𝑡), 𝑡

)
(1 − (1 −𝑚)𝑃−1) · (1 −𝑚) ⌊ 𝜏

𝑃 ⌋ (𝑃−1) if 𝜏 < 𝜃
(
𝜋𝑖 (𝑡), 𝑡

)
∧ 𝜏 mod 𝑃 = 𝑝

0 otherwise

(37)

On a path 𝜋 with rank 𝑝 at time 𝑡 , the expected additive increase 𝛼𝜋 (𝑡) at time 𝑡 is therefore:

𝛼𝜋 (𝑡) = (1 −𝑚)
⌈
𝜃−𝑝
𝑃

⌉
(𝑃−1) · 𝛼 (𝜃 ) +

⌈(𝜃−𝑝)/𝑃 ⌉−1∑︁
𝑘=0

(1 − (1 −𝑚)𝑃−1) · (1 −𝑚)𝑘 (𝑃−1) · 𝛼 (𝑃𝑘 + 𝑝) (38)
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Fig. 10. Simulated MPCC dynamics {(𝑎𝜋 (𝑡), 𝑓𝜋 (𝑡))}𝜋 ∈Π (gray dashed) and expected MPCC dynamics
{(𝑎𝜋 (𝑡), ˆ𝑓𝜋 (𝑡))}𝜋 ∈Π (in color) for 𝑃 = 3, 𝑁 = 1000, 𝛼 (𝜏) = 1, 𝛽 = 0.7, and 𝐶𝜋 = 12 000 for every 𝜋 ∈ Π.

where 𝜃 = 𝜃 (𝜋, 𝑡).
For increasing time since the last loss (𝜃 → ∞), the expected average additive increase on

a path with rank 𝑝 converges to the following quantity, which can be easily computed for any

additive-increase function 𝛼 :

𝛼 (𝑝) =
∞∑︁
𝑘=0

(1 − (1 −𝑚)𝑃−1) · (1 −𝑚)𝑘 (𝑃−1) · 𝛼 (𝑃𝑘 + 𝑝) (39)

B APPROXIMATION ACCURACY
The expected MPCC dynamics in Eq. (4) are an approximation of the actual probabilistic MPCC

dynamics in Eq. (2), which are unsuitable for analytic investigation. In order to demonstrate the

accuracy of this approximation, we present a comparison between the actual dynamics and the

expected dynamics for a selection of parameters in Fig. 10. In each sub-figure, the actual MPCC

dynamics from Eqs. (2a) and (2b) are simulated and shown with light gray lines, and the expected

dynamics are computed and drawnwith colored lines (agent dynamics in dotted lines, flow dynamics

in dashed lines).

In Fig. 10(a) and Fig. 10(b) (i.e., 𝑟 ≠ 1), the expected dynamics are compared with results from 5

simulation runs of the actual dynamics. The expected dynamics appropriately capture the structure

of both the agent dynamics and the flow dynamics, in particular the curvature, the convergence

behavior and the reaction to loss (e.g., at 𝑡 = 35 in Fig. 10(b)). As the actual dynamics are realizations

of a random variable, their values deviate from the expectation; however, the variance is modest.

In Fig. 10(c) (i.e, 𝑟 = 1), the actual flow dynamics look more different from the expected flow

dynamics than for 𝑟 ≠ 1. This difference is due to loss events at different points in time, which

can even result in case of low variance, but make the dynamics look quite different. However, the

pattern of recurring loss is well captured by the expected dynamics. In order to make this similarity

visible, only one simulation run of the actual dynamics is shown.

The analysis above is repeated for more paths and a non-constant additive-increase function

in Appendix B. In particular, we repeat this analysis for constant additive increase, but with 𝑃 = 5

(cf. Fig. 11a), as well as with an additive-increase function that mimics TCP slow-start behavior

(𝛼S (𝜏) = 2
𝜏
if 𝜏 < 5 else 1) for both 𝑃 = 3 (cf. Fig. 11b) and 𝑃 = 5 (cf. Fig. 11c).
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â0(t)/N
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(a) 𝑃 = 5, 𝛼1 (𝜏) = 1.
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Fig. 11. Comparison of model and simulations to demonstrate approximation accuracy.
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Fig. 13. Visualization of parameter sub-space that
is inconsistent with 𝑃-step oscillation for different
additive-increase functions 𝛼1 (𝜏) = 1 and 𝛼S (𝜏) =

(2𝜏 if 𝜏 < 5 else 1).

C LOGICAL CONSISTENCY OF P-STEP OSCILLATION
In Section 3.3, we have shown that given 𝑃-step oscillation and without capacity limits, the flow

dynamics exponentially converge to a dynamic equilibrium where the rank-𝑝 path carries flow

volume
ˆ𝑓 (𝑝)

in every time step. The general rank-𝑝 equilibrium flow volume is given by the

following term:

ˆ𝑓 (𝑝) =

∑𝑝−1
𝑝′=0 (1 −𝑚)𝑝−𝑝′𝛼 (𝑝′) · 𝑎 (𝑝′) + (1 −𝑚)𝑝 · 𝛼 (𝑃−1) · 𝑎 (𝑃−1)

1 −
(
1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)

)
· (1 −𝑚)𝑃−1

+
(1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)

)
·∑𝑃−2

𝑝′=𝑝 (1 −𝑚)𝑃−1+𝑝−𝑝′ · 𝛼 (𝑝′) · 𝑎 (𝑝′)

1 −
(
1 +𝑚 · 𝑟 · 𝑧 (𝑚, 𝑃)

)
· (1 −𝑚)𝑃−1

(40)

Interestingly, analyzing the equilibrium flow volumes { ˆ𝑓 (𝑝) }𝑝∈[𝑃 ] allows to draw conclusions

about the occurrence of 𝑃-step oscillation for a certain parameter combination, which works by

logical contraposition: If 𝑃-step oscillation occurs for a certain parameter combination, then 𝑃-step

oscillation produces the equilibrium flow volumes { ˆ𝑓 (𝑝) }𝑝∈[𝑃 ] . However, if the equilibrium flow

volumes are themselves inconsistent with 𝑃-step oscillation, i.e., if ˆ𝑓 (𝑝) < ˆ𝑓 (𝑝+1)
for some 𝑝 ∈ [𝑃−1],

then the equilibrium cannot exist and there is a contradiction. This contradiction suggests that 𝑃-step

oscillation is fundamentally impossible for the given parameter combination, as 𝑃-step oscillation

would have produced the equilibrium flow volumes if it had occurred.
8

Based on this reasoning, we can find a parameter sub-space for which 𝑃-step oscillation is

impossible. More precisely, given any parameter combination, we can compute the equilibrium

flow volumes { ˆ𝑓 (𝑝) }𝑝∈[𝑃 ] and check if
ˆ𝑓 (𝑝) < ˆ𝑓 (𝑝+1)

for any 𝑝 ∈ [𝑃 − 1]. As Eq. (40) shows,
the parameter space for the equilibrium flow volumes consists of the migration rate𝑚, the reset

softness 𝑟 , the number of paths 𝑃 , the additive-increase function 𝛼 (𝜏), and the number of agents 𝑁

(appearing in 𝑎 (𝑝) ). Luckily, as 𝑁 is a linear coefficient of
ˆ𝑓 (𝑝)

and 𝑁 > 0, 𝑁 can be eliminated in

the inequality
ˆ𝑓 (𝑝) < ˆ𝑓 (𝑝+1)

. We performed such an exploration of the parameter space with a focus

8
Note that the inverse is not true: The absence of a contradiction does not mean that 𝑃-step oscillation necessarily occurs

for a given parameter combination.
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on𝑚 and 𝑟 , yielding the results in in Fig. 13. These results indicate that for the two analyzed additive-

increase functions, 𝑃-step oscillation is never logically inconsistent for 2 paths and only rarely

logically inconsistent for higher number of paths. While not a definitive proof for the prevalence

of 𝑃-step oscillation, these results suggest that the notion of 𝑃-step oscillation is a sound concept

for most parameter combinations.

D ADDITIONAL FIGURES
This appendix section contains additional figures that illustrate concepts presented in the main body

of the paper. Fig. 14 presents a simulation-based validation of the lower bounds on the flow volume

in lossy equilibria, derived in Section 4.2. Fig. 15 presents the variance in congestion-window

size given a lossy equilibrium, computed from simulation of the lossy Markov process in Fig. 7

in Section 5.2.
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Fig. 14. Simulation-based validation of lower bounds
on efficiency 𝜖 for lossy equilibria as derived in Sec-
tion 4.2. Simulation parameters of interest in-
clude 𝐶𝜋 = 12000, 𝑁 = 1000, and 𝛼 (𝜏) = 1.
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