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Abstract

Randomness beacons are services that periodically emit a random number, allowing
users to base decisions on the same random value without trusting anyone: ideally, the
randomness beacon does not only produce unpredictable values, but is also of low
computational complexity for the users, bias-resistant and publicly verifiable. Such
randomness beacons can serve as an important primitive for smart contracts in a variety
of contexts. This paper first presents a structured security analysis, based on which we
then design, implement, and evaluate a trustworthy and efficient randomness beacon.
Our approach does not require users to register or run any computationally intensive
operations. We then compare different implementation and deployment options on
distributed ledgers, and report on an Ethereum smart contract-based lottery using our
beacon.

1 Introduction 1

A randomness beacon is a service emitting unpredictable random values at regular 2

intervals, defined in 1983 by Michael O. Rabin who used it to add probabilistic security 3

in several protocols [1]. Randomness beacons can help a group of users to agree on some 4

random outcome, even though they do not trust each other. In particular, the main 5

purpose of the randomness beacon is not to produce “better” local random numbers 6

than, e.g., using /dev/urandom; it allows users to agree on the same random value. 7

Randomness beacons come with many applications, e.g., in cryptographic, security, and 8

distributed systems protocols. Example applications include generation of protocol 9

parameters and seeding elliptic curves [2, 3], privacy preserving messaging [4–6], 10

anonymous browsing [7–9], electronic voting and secure elections [9], gambling and 11

lottery services, or preventing selfish mining [10–12]. Randomness beacons are 12

considered a “tool of democracy” [2]. 13

Not surprisingly, there is an abundance of approaches for the design of 14

publicly-verifiable, bias-resistant and unpredictable randomness beacons. There are two 15

main strands of beacon research with different computational requirements on the users. 16

One type of beacons require a beacon operator which provides its users with random 17

values. In such approaches, the beacon operator bears the main computational burden. 18

In the second type of design, all participants are equal and share the computational 19

complexity more equally. Depending on the application and the computational 20
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constraints of the actors involved in a use case, one or the other of the two is more 21

appropriate. In this paper, we focus on the first case, with a powerful beacon operator 22

offering its service to light-weight users. 23

While in early versions of randomness beacons of the first type, the beacon operator 24

itself needed to be trusted (i.e., it is an unbiased third party), with obvious implications 25

for security, recent literature has sought to design beacons where the need to trust the 26

beacon operator is reduced or removed entirely. 27

In keeping with this trend, we design and implement a randomness beacon that 28

works under the most pessimistic assumption possible: everybody (in particular, this 29

includes the beacon operator) is secretly colluding against the user and is willing to 30

invest money and resources towards manipulating or biasing the randomness. 31

Specifically, we seek a design that minimizes the trust required by a user and also allows 32

each user to decide how much they want to trust the beacon such that, a user will know 33

that under self-chosen trust assumptions, the randomness has not been manipulated. 34

Randomness beacons are of particular interest in the context of distributed ledgers 35

and smart contracts, steering the interaction of mutually distrusting parties. In such 36

scenarios trustworthy randomness can speed up computations and break symmetries. 37

Although many potential implementations and practical solutions are discussed in the 38

literature on randomness beacons, very few actual implementations of public, 39

general-purpose beacons have been published or made available. We describe the design 40

and deployment options for our randomness beacon on a smart contract platform and 41

their implications. 42

In summary, this paper makes the following contributions. After a thorough 43

threat analysis, we design, implement and evaluate a practical, secure, and 44

trust-minimizing randomness beacon based on the transparent authority model which 45

relies on user input. The design captures the requirements derived through the 46

structured analysis of threats to a randomness beacon and builds upon the unicorn 47

protocol devised by Lenstra and Wesolowski [2], but can be employed more generally. It 48

allows users to send inputs and consume beacon values at any time and at low overhead 49

without a registration procedure. Our implementation relies on parallelized 50

computation, which minimizes the possibility of malicious operation while avoiding idle 51

periods. Furthermore and unlike other approaches of transparent authorities, the 52

beacon operator in our beacon design has no private information: all inputs are hashed 53

and are released to the public in batches before the computation. The beacon also offers 54

users to make subtle decisions on when to trust the output. Our beacon uses Merkle 55

trees as the data structure for inputs to reduce the computation proof size. Our 56

experiments with a first prototype demonstrate the scalability of our approach. 57

We further illustrate how this beacon can be deployed on distributed ledger 58

platforms. We compare different (partial) on- and off-chain deployment options and 59

discuss our experience and evaluation of Ethereum smart contracts for a lottery with 60

our beacon. 61

To ensure reproducibility of our results as well as to facilitate follow-up work, we 62

share our implementations on https://github.com/randomchain/randbeacon. 63

Bibliographic note. A preliminary version of this paper was presented at the 64

IEEE Blockchain conference 2019 [13]. We extend this work with a security taxonomy 65

and threat analysis, an extended evaluation and a more thorough survey of related work. 66

2 Basic Beacon Concepts and Related Work 67

Randomness beacons and related functionality have been studied intensively in the 68

literature already, see [10–12,14–20] for a list of but a few examples. 69
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The two main concepts of a random beacon concern its input and beacon operation. 70

The input describes what sources are used to calculate the beacon value, while the 71

beacon operation describes the design of the protocol, i.e. how to collect the input, 72

perform the computation and publish the output. 73

Input sources can be split into three categories. A beacon operator can use its 74

private source of data to produce randomness. This potentially allows users to consume 75

randomness of high quality at a high rate, but denies users access to inspect the process 76

and thus requires users to trust the beacon and its randomness. It does not align with 77

our stated security goals, since the beacon outputs cannot reliably be distinguished from 78

carefully crafted values that appear to be random. An example of this input source 79

model is the NIST randomness beacon, developed by the National Institute of Standards 80

and Technology (NIST), which observes quantum mechanical effects to produce what is 81

claimed to be high-quality randomness [14, 16]. As such, the users need to blindly trust 82

the beacon operator, i.e., NIST in this case [21–23]. Beacons based on publicly available 83

sources cover input from sources that are publicly available and which everyone can 84

agree on the value of, e.g., financial data [18], lottery numbers [17] or bitcoin block 85

hashes [15,19]. The users must trust the source to be sufficiently random, which may be 86

fine for the examples mentioned. Finally, beacons can also rely on user input in which a 87

user is allowed to directly provide input to the beacon. The idea is that a user provides 88

a value that they believe is sufficiently random. The beacon then performs an operation 89

on the set of user-supplied inputs, yielding an output that allows all users 90

1. to verify the inclusion of their input and 91

2. to verify the validity of the computation. 92

If these are satisfied, the user knows that a value they trust to be random has been part 93

of the random output generation. The computation performed by the beacon should 94

ensure that users cannot knowingly bias the output to anyone’s disadvantage. As such, 95

users know their input was not knowingly “counteracted” by another user. 96

We can distinguish between three models for beacon operation, detailed below. In 97

the autocratic collector model, a beacon is run by a party which requires blind trust 98

from the users. As such, the computation is a black box with no possibility for proof of 99

honesty. An alternative is to use specialized MPC where users utilize Multi-Party 100

Computation (MPC) to collectively produce randomness, typically from their own 101

inputs. Given an honest majority, this type of beacon produces randomness that is not 102

biased against the participants. Despite significant work in the field, this approach is 103

difficult to scale to large groups since any addition or removal of a user requires a new 104

setup phase [10,11,20]. This type of beacon is therefore not well-suited for public 105

settings with vast numbers of users, but might fit in a controlled private context. 106

Finally, in a transparent authority model, a single entity collects inputs and publishes 107

them with a focus on transparency. Users can, by observing the beacon, verify that it 108

behaves according to the protocol. This does not directly prevent Byzantine behavior, 109

but rather makes it difficult to hide such behavior. This type also supports a wide 110

variety of implementations, and can be scaled to a public setting. In this paper, we 111

focus on transparent authorities and provide a scalable implementation of such a 112

randomness beacon. One of its crucial advantages is the fact that it does not require 113

users to register or run any computationally intensive operations. 114

The “zoo approach” [2], describes a protocol reminiscent of a beacon which collects 115

data from a variety of sources before running them through a verifiable delay function 116

called sloth. Sloth is a strictly sequential function which is orders of magnitude faster to 117

inverse for verification. The time-hardness prevents last-draw attacks, as attackers have 118

to dedicate large amounts of time to compute how to bias the output, during which new 119

inputs can render their efforts pointless. The sloth delay function is a also key part of 120
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our randomness beacon. However, the supporting structures driving the beacon are 121

designed differently and we analyse the security of both the protocol and the beacon 122

operator in more detail; in particular, we assume the beacon operator can be malicious. 123

A unicorn protocol is then used to combine input collection from multiple sources and 124

then compute the output of a delay function. This protocol resembles that of the 125

transparent authority beacon computation model, and is done by a single entity. Lenstra 126

and Wesolowski suggest feeding sloth with an aggregation of user inputs. Furthermore, 127

the authors present a protocol named trx, which utilizes the output of the unicorn 128

protocol. While they guarantee random unpredictable outputs even if all other users are 129

malicious, they do not explore the scenario of a malicious operator, who colludes with 130

adversarial users. We built upon their approach and design a system that can tolerate a 131

malicious beacon operator, while keeping the communication and computation cost for 132

users low. Other approaches that require users to register and entail a communication 133

complexity of O(n2) (e.g., [20]) and rely on the assumption of at most 1/3 Byzantine 134

nodes in the system. In contrast, in our system users need to interact with the beacon 135

operator two times, once to submit their input and once to obtain the output. If they 136

want to verify their input has been considered and the output is valid, the complexity is 137

in O(log n) due to the Merkle tree structure. 138

There exist other verifiable delay functions beyond sloth. Bünz et al. [19] evaluate 139

the computation and verification of delay functions based on modular square roots and 140

the hashing functions Keccak-256 (SHA3) and SHA-256. Subsequently, [24] formalized 141

the notion and present functions that achieve an exponential gap between evaluation 142

and verification time. Note that sloth could be replaced by these functions in our 143

implementation and most likely achieve better performance. Since the focus of this 144

paper is on more general system aspects, we omit an evaluation of these functions in 145

this paper. 146

3 Threat Analysis 147

We start by performing a threat analysis, considering possible threats to a generic 148

randomness beacon in order to understand the threat environment. 149

3.1 DREAD Analysis 150

Our analysis assumes the user input model of input as well as a beacon based on the 151

transparent authority model. In our setting, randomness is the fundamental resource 152

that adversaries would attempt to threaten and control. Thus we consider the 153

availability and integrity of the randomness beacon output to be the primary targets for 154

attackers. We furthermore distinguish between insiders and outsiders: an insider is 155

anyone with the capabilities of the beacon operator (for example the beacon operator 156

itself), but for all intents and purposes may as well be anyone gaining insider access to 157

the beacon, e.g., by hijacking it. Because the beacon operator should not be trusted 158

either, we see no reason to distinguish between a legitimate beacon operator, a 159

malicious beacon operator, or an adversary maliciously acquiring access to the inside of 160

the beacon. In this context, an outsider is anyone who can only influence the beacon 161

operation from the outside network, and thus does not have inside access. 162

In order to structure our threat analysis, we employ the well-known DREAD 163

framework (with a slight modification commonly used) [25]. In this framework, 164

potential threats are evaluated against five criteria and given a score on a simple scale 165

1 (indicating a low score) over 2 (indicating a medium score) to 3 (indicating a high 166

score). The individual scores are based on a qualitative assessment by the analyst. 167

Threats are then assigned a final DREAD score, comprising the sum of the individual 168
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scores, yielding a ranking of threats in which those with high (final) scores are those that 169

are considered the most dangerous, i.e., attacks that can cause a lot of damage and are 170

(relatively) easy to carry out score higher than threats that are unlikely or very difficult 171

to realize. It is important to note that these scores are qualitative and abstract and thus 172

mainly useful for relative ranking of threats and should not be assigned any particular 173

quantitative interpretation. The five individual evaluation criteria are as follows 174

1. Damage: How harmful would such an attack be? This includes considerations of 175

breach of safety, loss of privacy, financial loss. 176

2. Reproducibility: How easy is it to reproduce such an attack? This includes 177

robustness of exploits (e.g. portability of attack across platforms and platform 178

variations), (financial) cost of performing an attack. 179

3. Exploitability: How much (or rather, how little) work is required to launch the 180

attack (with the 3 being the least amount of work)? This includes the amount of 181

preparation for an attack, degree of specialisation needed for an attack, e.g., 182

custom designed attacks. 183

4. Affected users: How many users will be impacted? This is used as a rough 184

measure of the impact of the attack. 185

5. Discoverability: How easy is it to discover the vulnerability? This is an 186

estimate of the amount of work and resources necessary to detect a vulnerability. 187

Note that for some critical applications, it is recommended to assume the highest 188

score for discoverability to avoid “rewarding” security by obscurity. Indeed, most 189

of the threats detailed below, have high discoverability, as they are mostly obvious, 190

but may be hard or expensive to implement. 191

Table 1 summarizes the findings of our threat analysis and in the following we will 192

briefly describe these in more detail, using a shorthand notation for indicating the 193

(numerical) results of our DREAD analysis, e.g., “Input Flooding
D
2
R
3
E
2
A
3
D
3

Σ
13”, where 194

each of the capital letters refer to the corresponding DREAD category and Σ refers to 195

the total DREAD score, where anything equal to or above 12 is considered high risk. 196

Insider Outsider
Threats to availability Beacon shutdown (12) Input flooding (13)

Withholding output (12) Eclipse beacon (10)
Eclipse select users (8)

Threats to integrity Input manipulation (14) Input biasing (12)
Leak output (14) Output degradation (13)
Emit false output (11) Man in the middle (11)

Cyptography exploit (10)

Table 1. Attacks and their DREAD score.

3.1.1 Threats to availability 197

We start by describing some of the potential threats to availability. Such threats are 198

often hard to protect against and can have serious consequences for users and 199

applications that depend on timely computation of random numbers. 200

� Shutdown
D
2
R
2
E
2
A
3
D
3

Σ
12 A malicious beacon operator can shut the beacon down, 201

completely denying availability. This threat is impossible to prevent for a beacon 202
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run by a single operator, although the beacon operator will likely not get away 203

with it. 204

� Withholding Output
D
2
R
2
E
2
A
3
D
3

Σ
12 The operator can withhold outputs that are 205

not favorable to its interests. This threat is also quite significant and may be 206

difficult to detect/prove. 207

� Input Flooding
D
2
R
3
E
2
A
3
D
3

Σ
13 Outsiders can overwhelm the beacon with inputs to 208

prevent other users from contributing their own input, or simply perform a 209

Denial-of-Service (DoS) attack on the beacon server. This is a serious threat as 210

the attack is quite easy to execute. 211

� Eclipsing (Select) Users
D
2
R
1
E
1
A
1
D
3

Σ
8 An outsider can deny select users from 212

accessing the beacon to provide input or receive output. This is arguably a 213

smaller threat, as it is difficult to prevent a determined party from accessing the 214

beacon, and such an eclipse would still only affect that party. 215

� Eclipsing the Beacon
D
2
R
1
E
1
A
3
D
3

Σ
10 An outsider can deny all users from providing 216

input or receiving the output by infiltrating the inbound and outbound connection 217

to the beacon. This may be a difficult attack to execute, but if successful the 218

outsider can potentially eclipse the beacon from all users. 219

3.1.2 Threats to Integrity 220

These threats can be far more damaging than threats to availability if not detected: 221

Where availability is binary and users obviously cannot use a missing output, successful 222

integrity attacks provide an output, that appears legitimate, but is biased. We consider 223

using a biased output the worst thing for any user, which makes these threats critical. 224

� Input Biasing
D
3
R
2
E
2
A
3
D
2

Σ
12 An outsider can provide input that biases the output 225

to their benefit. In this attack the outsider constructs an input such that it affects 226

the output in a known way despite other users contributing input later. If the 227

outsider has the capability of providing the last input, it may launch a last-draw 228

attack. This is a severe threat to the beacon, as the adversary is able to freely 229

manipulate the output with their input, and violates the unpredictability of the 230

random number. The attack can be executed by anyone with access to the input 231

collectors given that they have the ability to pre-compute outputs. 232

� Input Manipulation
D
3
R
3
E
2
A
3
D
3

Σ
14 The operator can manipulate the input to bias 233

the output of the beacon. It can also selectively exclude inputs from certain users 234

to deny them availability. This threat is severe as the operator may manipulate 235

the inputs, in a way that cannot be detected. It is also easy for any operator 236

capable of pre-computing the output, and affects the randomness given to all 237

users. 238

� Output Degradation
D
2
R
3
E
3
A
2
D
3

Σ
13 Adversaries can supply “bad” input to reduce 239

the quality of the output. This is also a serious threat as it will affect the quality 240

of randomness provided to all users, a randomness which may not even be usable. 241

In addition, it is easy to do given access to the input collectors, and could even 242

happen by accident. 243

� Man in the Middle
D
3
R
1
E
1
A
3
D
3

Σ
11 Adversaries can intercept and change data sent 244

between user and beacon. This threat could be significantly damaging but also 245
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extremely hard to execute for adversaries. Due to the nature of beacons we 246

recommend using them when you need to agree on some random number — thus, 247

to intercept and manipulate inputs and outputs, the adversary would have to 248

distribute the manipulated number to all users, as they would otherwise disagree 249

on the numbers, leading to the manipulation being discovered. 250

� Emitting False Output
D
2
R
1
E
2
A
3
D
3

Σ
11 A malicious operator can output false 251

results of the computation that benefit him. While this is technically a threat to 252

the integrity of the beacon, the effects should be similar to those of a withholding 253

attack. This is due to the fact that simply publishing false output would rapidly 254

be discovered in a transparent authority beacon, making the output unusable, but 255

also removing any faith in the operator. 256

� Leaking Output
D
3
R
3
E
2
A
3
D
3

Σ
14 The operator can give access to the output earlier 257

to some parties than others — potentially selling early access. This threat can be 258

quite severe, as we do not know how early access can be granted compared to 259

when the randomness is used. It also violates the unpredictability property of the 260

beacon, and is easily executable for any malicious operator of the beacon. In the 261

worst case it would affect all users. 262

� Cryptography Exploit
D
3
R
2
E
1
A
3
D
1

Σ
10 Weaknesses or exploits may exist in the 263

cryptographic techniques that protect the beacon. While we estimate it will be 264

hard to find such exploits, hence the low discoverability score, they would likely 265

be relatively easy to apply once found, and would affect all users. In this case one 266

might also consider the effect quantum computers would have on the use of 267

cryptography, which could also threaten the beacon. 268

4 Design 269

This section describes our beacon design, aiming to mitigate the threats identified above. 270

4.1 Requirements 271

This section lists the requirements for a randomness beacon suitable for our security 272

goals and the threats that exist towards beacons. We decided on using the transparent 273

authority type of beacon, which requires a high level of transparency, and as such we 274

build requirements on top of that. 275

� Transparent Operation Users should be able to oversee that the beacon operates 276

according to the protocol and thus catch any deviations from it. Being able to 277

verify whether their own input has been used, allows users to determine whether 278

they should trust the output. Furthermore, users should be able to repeat the 279

process on their own computers as a means of verification. This also requires the 280

process to be deterministic. However, the output should still be unpredictable, 281

even to the beacon operator. 282

� Open and Secure Protocol Anyone should be able to easily contribute to the 283

beacon protocol to influence the random generation. There should be no 284

requirements imposed on users to limit their contribution rate besides denial of 285

service protection. The protocol should be secure meaning that even if only a 286

single user is honest, the output is still unpredictable. 287
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� Timely Publishing The protocol should enforce that input, output, and any data 288

needed for verification of an output is published as soon as possible to make the 289

beacon more transparent. By having a requirement of timeliness at the protocol 290

level, we restrict the time a malicious operator has available to diverge from 291

protocol before users will suspect them. 292

Giving users all the tools to replicate and oversee the process makes it difficult for 293

adversaries to covertly manipulate the beacon to their benefit, and allows users to 294

complete output computation themselves if the beacon stalls. This in turn 295

mitigates one of the greatest threats from the operator, input manipulation (see 296

below). A beacon that does not reveal which inputs were used before publishing 297

the output will essentially be admitting that they picked the inputs to bias the 298

output. 299

We should note that despite having this property the beacon does not guarantee 300

outputs on any specific wall-clock time, e.g., at 12:00:00, 12:01:00, and 12:02:00. 301

Instead, it will output as soon as possible after each period of input collection. 302

Barring any attacks, this will provide a regular stream of outputs. 303

� Practicality Scalability of all components is important to be suitable for many use 304

cases. Therefore, it should scale to at least several thousand users contributing 305

with user input in every output. It will be beneficial to allow different channels for 306

input and output, both to make the beacon easier to access for users, but also to 307

make it resilient to having any single channel attacked. We also consider fault 308

tolerance a valuable property to have, and having multiple channels still allows 309

users to input if one fails. 310

4.2 Service Oriented Architecture 311

To meet the requirements of modular input and output and fault tolerance, we use a 312

service oriented architecture (SOA) in the beacon design. This architecture splits the 313

system into services that each serve a single purpose. Communication between services 314

is done according to a well-defined protocol. In addition to scalability, a service oriented 315

architecture provides loose coupling and further simplifies fault tolerance since 316

individual services can easily be replicated. 317

A randomness beacon designed as a service oriented architecture consists of a 318

number of input collector services that collect input from many different sources. 319

An input processor service aggregates the input from all collectors and forwards it to 320

the computation service, which commits to the aggregated input and runs the 321

computation to generate an output. Finally, various publisher services publish the 322

commitment, output, and any relevant proofs to different outlets. Fig 1 illustrates this 323

architecture.

Input Collectors Publishers

Input
Processor

Computation

Fig 1. An abstract beacon architecture based on services. Solid boxes
illustrate services and arrows represent data flow.

324
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4.3 Security Design 325

A major security concern is the operator’s ability to predict or manipulate the output. 326

Our solution for this problem is to ensure that each published output is paired with a 327

commitment which can be used in the verification of the beacon. As a novel design 328

decision, the commitment must contain all data required for the computation and all 329

inputs. This is different from the approach based on a trusted operator where the 330

operator can work with the inputs [2]: In Unicorn, the beacon operator commits to an 331

input that is revealed when publishing the next output [2]. In order to replace the 332

operator and implement it in a distributed way, commits are useful. 333

The transparency allows any party, as a strategic choice, to compute the randomness 334

alongside the beacon operator. It ensures that the operator cannot cause much damage 335

by withholding output or by deciding not to open a traditional, e.g., hashed 336

commitment. This hence reduces the “value” of the output: depending on the timing, it 337

is less attractive to leak output, i.e., sell early access to the output, as everyone can just 338

compute it. Put differently, while this does not prevent the operator of performing a 339

withholding attack, it minimizes the effects of it. Note that the user has a choice here: 340

depending on the user’s preferences, it can choose to invest more resources and compute 341

the output from the commitment and obtain the valid output itself; as a different design 342

choice, the user may be fine with learning the output slightly later but efficiently. 343

To further decrease the possibilities of the operator trying different commitments 344

before releasing them, we use a verifiable delay function. Delay functions can be seen as 345

black box functions that require a given amount of time to run and are inherently 346

sequential, meaning they cannot benefit from parallel execution. It ensures that the 347

output cannot be instantly computed, and that the operator cannot try more than one 348

commitment before running out of time. As such, the operator is unable to perform the 349

input manipulation attack in a meaningful way. In order to avoid excessive computation 350

by users performing verification, delay functions used in randomness beacons should be 351

hard to compute and easy to verify, i.e., they must be asymmetrically hard. The 352

operator is of course able to exclude or change output, but not in a way that knowingly 353

benefits anyone because the effect of the manipulation is hidden behind the delay 354

function. 355

The delay function also protects against last-draw attacks, where an adversary 356

attempts to bias the output by crafting an input to produce favorable randomness. The 357

adversary needs to compute the result of adding a specific input as the last input. Delay 358

functions make this significantly more difficult to attempt due to the time needed to 359

compute the result. Given a delay function that takes five minutes to complete, an 360

adversary must dedicate five minutes of processor time to any given input he attempts 361

to use. This means he must dedicate large amounts of resources to perform any 362

significant number of attempts, and more importantly if a single input is added to the 363

beacon within that five minute period, all of his work will be null, and he will be forced 364

to restart. 365

We use the delay function sloth [2]. As mentioned earlier, there is no secret input to 366

the delay function in our design. Note that in [2], a different attacker model is used. 367

More precisely, the beacon operator wanted to safeguard against adversaries trying to 368

manipulate the outcome. In this work, we consider the beacon operator as potentially 369

malicious. Therefore, we proposed that the operator produced a commitment to a set of 370

inputs, while also revealing the inputs. This effectively means that anyone can calculate 371

the delay function, and potentially be faster than the operator. We deemed that by 372

having the operator include a secret input, to prevent anyone from computing the 373

outcome before himself, the trust implications are too severe, as a user would have to 374

trust that the operator did not try multiple secret values in parallel and chose the most 375

beneficial outcome. In our design, an adversary may know the outcome earlier than an 376
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honest participant that waits for the beacon operator to announce it. However, the 377

adversary cannot bias the outcome, as long as there is at least one honest party. This 378

can hence be considered a design tradeoff, as everyone can learn about the output 379

immediately by investing the resources to compute the value once the commits are 380

known. 381

Rational Trust Assumptions In our approach we want to push beyond the need 382

for honest operators and näıve users. To achieve this we extend the work of [2] to 383

quantify trusting the beacon and determine thresholds for reasonable behavior when 384

using delay functions. This provides a measure of rational trust, where users decide for 385

themselves if what they observe is adequate. 386

We present a property which, if satisfied, means a user can trust that the beacon
operator is not capable of fooling them. This property is true if the user determines
that nobody is able to compute the delay function in the time between the users input
and the user receiving the beacon’s commitment to the input for the delay function.
This can be condensed to

tCOMMITMENT − tINPUT < TDELAY FUNCTION

where tINPUT is the time when the user sent the input, tCOMMITMENT is when the user 387

received the commitment, and TDELAY FUNCTION is the fastest computation of the 388

delay function. So for users to be more likely to trust a beacon, the time between 389

sending the input and receiving the commitment must be significantly smaller than the 390

time between the commitment and the output. In fact, it must be smaller than the 391

shortest time the user thinks the operator could compute the delay function. 392

An example could be that a user believes that the world’s fastest computer can 393

compute the delay function in two minutes. In this case the users can trust the output 394

if they see a commit to a set of inputs containing their input within two minutes of their 395

input having been sent. This relation between the time taken to compute the delay 396

function and the time before a commitment is seen allows users to flexibly adjust their 397

willingness to trust the outcome has not been biased against them. 398

A similar threshold is also described by [2], where they advise a ratio of no more 399

than one fifth of the computation time spent collecting inputs. In their paper, the 400

authors furthermore state that participants will always try to minimize the time 401

between their input and the commitment. We see this as potentially problematic, since 402

such behavior can create congestion in the system, which might result in some inputs 403

not being used in the intended output computation. This means that users whose 404

inputs were not included cannot trust the output of the given beacon iteration. 405

4.4 Parallelization 406

Taking all this into consideration we present a beacon operation protocol which can be 407

adjusted to increase or decrease the ratio and thereby the limit for probabilistic trust. 408

The operation must be sequential which means that we must collect input before 409

computing the delay function. Accordingly, we propose to decouple input collection and 410

computation, and to parallelize the latter. This means that several delay functions run 411

in parallel, but are offset in time and on different input, illustrated in Fig 2 (left). 412

We observe that no input collection is run in parallel nor overlapping, which 413

resembles a constant stream of input collection. In addition, the computation resources 414

can be reused for future beacon computations, thereby eliminating the need for spinning 415

up new computation services, as depicted in Fig 2 (left), where the beacon would output 416

at each circle shown in the diagram. 417
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Fig 2. Parallelized beacon protocol, with offset input collection (left) and
stream input collection (right). Beacon output is published after
computation, last vertical lines (left) and circles (right).

4.4.1 Number of Computation Nodes 418

The number of computation nodes at least required in this fashion is given by the
duration of the delay function divided by the duration of input collection. As
computational times typically vary slightly, this can cause the beacon output to be more
skewed compared to the initial output frequency. To remedy this, we account for
possible extra time δ for each delay function. In this case,

Number of Nodes =

⌈
TDELAY FUNCTION + δ

TINPUT COLLECTION

⌉
If, for example, the delay function is guaranteed to finish at most 2 minutes later than 419

the expected time of 10 minutes, i.e., a worst-case time of 12 minutes, and the input 420

collection is 2 minutes, 6 nodes in total are necessary to guarantee a node is always 421

ready every 2 minutes. 422

5 Prototype Implementation 423

In this section we give a brief overview of the implementation of our beacon design. Our 424

prototype has been implemented mainly using Python 3 with a few subcomponents 425

written in C for performance. 426

The message passing infrastructure of our SOA is implemented using the ZeroMQ 427

framework for asynchronous message passing and concurrency (available at 428

http://zeromq.org) . We can directly employ the “publish/subscribe” pattern 429

provided by ZeroMQ between computation nodes and publisher. This pattern handles 430

the message routing based on subscription prefixes, resulting in less traffic on the 431

network. Furthermore, the fan-in for input collectors is implemented with a “push/pull” 432

socket pair which ensures fair operation, thereby avoiding starvation of components. 433

Lastly, ZeroMQ guarantees atomic delivery of messages, which means that we can 434

assume all parts of a message or none at all. 435

To avoid implementing heavy service discovery functionality and to simplify 436

configuration, we deploy proxies at key points in the pipeline: one between input 437

collectors and the input processor and one between computation and publishers. 438

5.1 System Interface 439

As previously mentioned, the system boundaries, i.e. where users and the outside world 440

interacts with the beacon, are handled by input collectors and publishers. We 441

implement these and the surrounding infrastructure, as well as vertical scaling if the 442

load becomes too high on a single component. 443

To limit the space of potential messages and message sizes passed around inside of 444

our system, we sanitize the user inputs by hashing them at the entry point with the 445
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SHA512 hashing algorithm. Realistically, allowing any input could be seen as an 446

invitation by some users to post messages or even files, e.g. illegal or inappropriate 447

content. Our choice of hashing at entry point will mitigate this. Given a substantial 448

number of users, receiving and hashing inputs may become a costly affair 449

performance-wise. Fortunately, the state of an input collector is only relevant to a single 450

input request, meaning that scaling and even distributing across many machines is a 451

trivial task. When we hash an input, as a convenience we return the hashed input as a 452

response. As such, they will later be able to confirm that their hashed input was used in 453

the output of the beacon. To allow users to verify correct hashing, the hashing 454

algorithm should be made publicly known. Currently we use the SHA512 hashing 455

algorithm since its digest size is 64 bytes, which gives us reasonably sized messages 456

flowing through the system, while still having 2512 possible different values. It could be 457

argued that the 32 bytes of SHA256 are more than enough for any use case. However, 458

SHA512 is actually roughly 1.5 times faster than SHA256 on a 64-bit CPU [26]. 459

Therefore, we see no reason to limit the possibilities to 2256, since we do not expect 512 460

bits per input to be too much data. We implement the system such that the chosen 461

hashing algorithm can be configured at beacon start. 462

5.2 Combining Inputs 463

One of the most important tasks of our implementation is to combine the (hashes of 464

the) collected input both as a preparation for the computation phase, but also to derive 465

commitment data that can be verified by users. As a novel contribution, our 466

implementation uses a Merkle tree for this purpose. A Merkle tree is a special binary 467

tree where the value of each node is the hash of the concatenation of its two children; 468

here the leaf nodes are the hashes of user inputs and the root node is then the 469

condensed output. 470

Merkle trees as commitment data allows third-party applications to provide 471

verification, since the inclusion of a given leaf node in a Merkle tree can be verified by 472

providing all siblings to the nodes on the path up to the root. This greatly limits the 473

amount of data which the user needs to fetch and process to O(log n) where n is the 474

number of leaf nodes in a Merkle tree. The commitment data consist of an ordered list 475

of the leaf nodes. 476

Another property of the Merkle tree is that, like hashing a concatenation of all 477

collected inputs, each leaf node equally affects the root node, due to the diffusion 478

property of the hashing algorithm. This means that any change to the set of inputs 479

changes the root node in the Merkle tree. 480

5.3 Parallel Computation 481

As discussed, we need parallel and time offset computations in the beacon. This is 482

achieved by letting the input processor handle the scheduling of computations: The 483

beacon is configured to process inputs at a lower bounded interval, which means that 484

the input processor will send work at fixed times, given an available computation 485

component. It should be noted that if no such computational component is available, 486

the input processor will just continue collecting input. If no computation service 487

becomes available within a given threshold, the input processor will give a warning to 488

the system operator. 489

The worker announcements and subsequent work assignments are facilitated with 490

ZeroMQ ’s “router/dealer” socket pair which allows asynchronous addressed messaging. 491

When a computational node connects to the input processor it sends a READY message, 492

receives an OK, and proceeds to wait for incoming work; this process, accompanied by 493

what follows inside the computational node, can be seen in Algorithm 1. The input 494
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Algorithm 1 Specification of computational node outlining the communica-
tion pattern with the input processor.

1 procedure Initialization( )
2 connectTo(input processor, publishing proxy)
3 end procedure
4 procedure MainLoop( )
5 repeat
6 sendToInputProcessor( READY )
7 if OK received before timeout then
8 W ← receiveWork( ) . blocking call
9 if W is valid then

10 sendToInputProcessor( OK )
11 startComputation(WINPUT)
12 sendToPublish(WCOMMIT)
13 wait for computation to finish
14 C ← collectComputationResult( )
15 sendToPublish(COUTPUT, CPROOF)
16 else
17 sendMessage( ERROR )
18 end if
19 else
20 continue
21 end if
22 until the end of time
23 end procedure

processor then keeps track of each announced worker, and when the time comes, sends 495

condensed processing output and commitment data to the next free worker. 496

If the worker does not acknowledge the work with an OK response, the inputs are 497

reprocessed, and the next free worker is assigned. This cycle continues until a worker 498

accepts the work, while new incoming inputs are included in each reprocessing of inputs. 499

Having duplex communication between the input processor and the computation nodes 500

is a practical compromise between a strict pipeline pattern and a monolithic input 501

processor/computation node. 502

5.4 Delay Function 503

For the computation phase we implement a delay function based on sloth, the function 504

proposed to be used in the unicorn protocol [2]. The general idea behind sloth is to 505

iterate through modular square root permutations of a large prime number and thereby 506

construct a time hard algorithm, while containing a trapdoor for fast reversal, i.e., 507

verification. Essentially, the verification calculates squares of the output from the 508

computation. When implementing delay functions in systems that rely on their time 509

guarantees, it is important to focus on performance, since an obvious yet undeployed 510

optimization of execution time would compromise the “time hardness” of the algorithm. 511

We implement sloth as a Python module with a C-extension for the actual algorithm. In 512

the C-extension the GNU MP library1 is used to perform integer arithmetics with large 513

numbers. 514

1https://gmplib.org/

May 2, 2020 13/23

https://gmplib.org/


6 Performance Evaluation 515

We conducted several experiments to explore potential system bottlenecks to gauge 516

reasonable throughput. We also investigate our chosen delay function sloth and different 517

configurations of it. 518

All experiments are executed on a server with an Intel Core i7-2600 CPU, which 519

runs at 3.40 GHz. The server has four cores and can hence run 4 simultaneous sloth 520

computations. We use SHA512 as the hashing algorithm in both the Merkle tree and in 521

the sloth delay function. 522

6.1 Bottleneck Analysis 523

We examine the potential bottlenecks which require the most effort to scale horizontally: 524

the proxies and the input processor. 525

6.1.1 Proxies 526

As discussed, our beacon contains two proxies. While the forward proxy between 527

computation and publishers is unproblematic in any real world randomness beacon 528

deployment (it only forwards outputs, commitments, and proofs), the stream proxy 529

situated between input collectors and input processors may become a bottleneck, as it 530

has to handle a constant stream of input messages. Recall that this proxy facilitates 531

fan-in and fan-out pipelining with fair message distribution using a round-robin strategy. 532

Hence, we test the throughput of the proxy in different configurations of input collectors 533

and input processors. For simplicity and benchmark consistency, we utilize “dummy” 534

components for this. The input collectors are referred to as pushers and fan in at the 535

proxy, while the input processors are called pullers and fan out. In the tests we 536

transmit messages which resemble those of an actual beacon in size, i.e. 64 bytes of 537

application data plus any ZeroMQ packaging; in this case one byte which serves as a 538

flags field, and one byte to denote the message length. 539

In Fig. 3 (left) we see how the aforementioned different configurations affect the 540

throughput of messages in the proxy. Firstly, every combination shows a throughput of 541

at least 200k messages per second: likely sufficient even for popular real world beacons. 542

It is the scenario of one pusher to sixteen pullers that results in the lowest throughput, 543

which can be caused by the overhead of the fair message distribution enforcement. 544

However, as we add pushers at sixteen pullers, a slight increase in throughput can be 545

seen, suggesting that fair distribution is easier with more suppliers. 546

Another observation we can make from Fig. 3 (left) is that increasing the number of 547

pushers does not affect the throughput as much as adding pullers does. This illustrates 548

that fan-out is a considerably more expensive task than fan-in — a fortunate fact, since 549

a deployment of our beacon most likely will consist of remarkably more pushers than 550

pullers. 551

We can conclude that the proxies in our system are unlikely to be bottlenecks, and 552

we should rather look further down the pipeline for issues; hence we next examine the 553

input processor. 554

6.1.2 Input Processor — Building Merkle Trees 555

The most expensive task in our input processor is building the Merkle tree. This task is 556

done periodically when it is time to compute a new random output. It is critical that 557

this computation is fast, as this step can extend the time between the last seen input 558

and publishing the commitment. As such, we examine how the number of leaves, i.e. 559

inputs, affects the building time of the Merkle tree. In Fig. 3 (right), a linear growth in 560
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Fig 3. Configuration effect on throughput of messages in proxy. (Left) 64
bytes message throughput per second of stream proxy, with different
numbers of pullers and pushers. (Right) Correlation between number of
leaves and the time it takes to build a Merkle tree with those leaves.

build time is seen as a factor of the number of leaves. The growth is slow and is 561

negligible in our beacon. Well over 2M leaves are needed to result in a build time over 562

3s. 563

Admittedly, the build time could be a problem if significantly many inputs are used. 564

However, in this case one might reimplement the input processor in a more performant 565

language than Python, e.g., C. In addition, the construction of Merkle trees is trivially 566

parallelized. Our evaluation results presented here do not take advantage of this fact. 567

Thus building subtrees in multiple processes and merging them to form the final tree 568

provide a significant speed-up with a factor close to the number of available CPU cores. 569

6.2 Sensitivity Analysis of sloth 570

The computation and verification time of the delay function, sloth, can be configured by 571

adjusting two parameters: (1) the number of bits of the prime number used in the 572

computation; and (2) the number of times to iterate through the permutation process of 573

said prime. 574

To evaluate the sloth delay function and its sensitivity on the parameters, we run a 575

series of tests of the algorithm. During the tests we sample multiple rounds with 576

random inputs and take the average. Fig. 4 (left) illustrates the correlation between the 577

two parameters, and the time it subsequently takes to do a computation with a given 578

combination of bits and iterations. An increase in the number of bits used for the prime 579

number results in an exponential growth of the computation time, while an increase in 580

number of iterations cause a linear growth. 581

While computation time is important for the delay function, another significant 582

metric is verification time — especially in relation to the computation time. 583

Fig. 4 (right) illustrates this relationship, where the z-axis shows how many more times 584

it takes to compute the output relative to how long it takes to verify. Although the data 585

is more scattered than in the previous figure, we see a trend where the growth of this 586

factor levels out just above one hundred. This means that in configurations with more 587

than roughly 3K iterations, the computation time is always more than two orders of 588

magnitude larger than the verification time. 589

We also observe that the number of bits does not affect the factor except for some 590

irregularities in the data. These irregularities are caused by the extra time it potentially 591

can take to initially find the prime number; an operation which can vary in time 592

depending on how close the numeric representation of the hashed input string is to a 593
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Computation time vs verification time with the logarithmic z-axis.

prime. Since larger primes (given by number of bits) can be more difficult to find, the 594

data fluctuates more at larger number of bits. 595

7 Blockchain Applications and Implementations 596

The big promise of blockchains is to facilitate business interactions between mutually 597

distrusting parties, ranging from virtual currency transfers to smart contracts, enabling 598

the trusted execution of arbitrary code. More precisely, the tamperproof nature of an 599

append-only distributed ledger realized by a blockchain protocol, forms the basis for 600

platforms to run smart contracts. In essence, a smart contract is a piece of code stored 601

at an address on the ledger. Sending a message to this address triggers the execution of 602

the code with the arguments in the message, and the resulting state is stored on the 603

ledger. A blockchain consensus protocol ensures that all parties agree on the operations 604

and their sequence, as well as the resulting state, despite the presence of malicious 605

participants and the lack of trust. 606

Since randomness beacons let parties that do not trust each other base decisions on 607

a trusted source of randomness, we study the implications of an implementation of our 608

beacon in a blockchain environment. Smart contracts between mutually distrusting 609

parties can benefit from unbiased trustworthy randomness to speed up computations 610

and break symmetries, e.g., in games. Since openness to any users is key in our design, 611

an implementation providing randomness on a public permissionless blockchain, which 612

allows any interested entity to participate, makes most sense. We first compare different 613

implementation options and then report on a blockchain-based implementation of a 614

lottery application using our beacon. 615

7.1 Design Choices 616

There are essentially two options for the implementation: 617

� The actual beacon operator is run as a smart contract. 618

� The beacon operator runs separately from the blockchain, but publishes some of 619

its artifacts as part of smart contract on the blockchain. 620

While a fully blockchain-based solution offers benefits in terms of decentralization 621

(no single point of trust/failure, more robust to attacks including DoS, ...), this solution 622

is costly as each computation in the smart contract consumes virtual currency. This ties 623
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the beacon into the monetary incentive structures that dictate smart contract behavior. 624

Due to the high cost, this option requires many users to compensate for the large 625

on-chain computation cost. 626

The second implementation option offers several variants with different trade-offs. 627

The verification can, for example, be done either on-chain in a smart contract, or by 628

each interested user on their own. This has the advantage that expensive on-chain 629

computations are avoided. Which artifacts and computation are on-chain and what 630

parameter size are appropriate is an application-specific tradeoff between security and 631

costs. 632

E.g., storage cost is proportional to the size of data stored on-chain, thus storing 633

(parts of the) data off-chain, e.g., one blockchain-backed distributed hashtables or IPFS, 634

may provide a solution with some guarantees that tampering with the commitment and 635

output will be detected, yet with a lower price tag.. 636

The time necessary for a proposed transaction to be in a block that can be 637

considered immutable may be highly variable depending on the nature of the underlying 638

blockchain. Since the time interval between submitting an input and receiving a 639

commitment from the beacon operator is the basis of trust for a user, the blockchain 640

latency must be taken into account when configuring the delay function. Moreover the 641

variability of the blockchain latency may tarnish the trust assumption of users. In 642

addition, since parts of the beacon would still be off-chain, those parts will depend on 643

an operator and are vulnerable to DoS attacks. 644

We study a lottery application based on our beacon, and to compare different 645

implementations more systematically, we consider the following 3 players: 646

� Owner - Runs the lottery (e.g., smart contract owner) 647

� User - Takes part in the lottery by sending a small payment to the lottery smart 648

contract 649

� Beacon - Beacon operator that provides a random value for the drawing of a lucky 650

winner 651

The main goal of the lottery owner is to shave off some of the users’ participation 652

payments as a reward. In other words, not all of the user payments are given to the 653

lucky winner, some of it is transferred to the lottery owner. Users only want to 654

participate in a lottery when they have a reason to trust that the random value 655

provided by the beacon is not biased, i.e., if they sent some input to the beacon to 656

influence the generated random value and received a commitment within their trust 657

time bound (on or off-chain). 658

We consider the following implementations, ordered by increasing on-chain smart 659

contract complexity: 660

� Maximum off-chain (OFF): In this implementation all beacon-related logic is 661

off-chain: only the lottery logic is on-chain. The users send their inputs to the 662

beacon off-chain and obtain the commitment off-chain. Thereafter they send the 663

lottery payment to the smart contract. When the off-chain beacon value 664

computation has finished, the lottery smart contract fetches the value with an 665

oracle. Using this value, it then determines the winner of the lottery. Users can 666

verify if the beacon matches the commitment and complain off-chain and decide 667

not to trust this beacon in the future. This has no influence on the outcome of the 668

current draw of the lottery. Both the owner and the winning user receive rewards 669

through the execution of the smart contract, while the beacon operator is 670

remunerated off-chain. 671
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Delay Function on-
chain

Delay Function off-chain, growing contract complexity

Step\Version Full on-chain
beacon

OFF ITV INP OPT

Preprocessing - - Beacon locks fund
and nonce on-chain
(to be released if
not enough users
participate within a
certain time frame)

Like ITV Like ITV

User Input On-chain, together
with lottery fee pay-
ment

Off-chain Off-chain On-chain, together
with lottery fee pay-
ment

Like INP

Beacon Commit-
ment

Not necessary Off-chain. After
users see their in-
put committed in
time, they send lot-
tery fee payment

Users send Merkle
root obtained off-
chain (with beacon
signature on root
and nonce) with lot-
tery fee payment to
contract

Commitment is
stored on-chain, if
delivered timely
and including
all inputs in the
commitment, else
users are refunded
and beacon loses
fund

Like INP

Beacon Compu-
tation

On-chain Off-chain, indepen-
dent of lottery

Off-chain, after
commitment is
stored on-chain.

Like ITV Like ITV

Beacon Output On-chain Store beacon value
on-chain

Like OFF Like OFF Like OFF

Post-processing - User verify beacon
and complain off-
chain, may decide
to not trust this
lottery in the fu-
ture (no influence
on outcome of this
draw)

On-chain verifica-
tion. If verification
is unsuccessful, bea-
con forfeits funds
and users get lot-
tery fees back

Like ITV If evidence sub-
mitted by user,
on-chain verifica-
tion, if successful,
users receive bea-
con funds and
lottery fees, beacon
forfeits funds

Reward Owner and win-
ning user receive re-
wards

Owner and win-
ning user receive re-
wards

Owner, beacon and
winning user re-
ceive rewards

Like ITV Like ITV

Pros Users do not have
to worry about ver-
ification

Simple to imple-
ment, low gas con-
sumption

Beacon compen-
sated for its service

Beacon compen-
sated, user only
needs to interact
with the contract

Beacon compen-
sated, verification
only executed on
chain if someone
complains

Cons Requires many
users to offset the
on-chain computa-
tion cost, simpler
and cheaper so-
lutions without
delay functions are
possible for this
scenario

Owner and user
must know and ad-
here to timing of
beacon, trust stems
from incentives to
repeat lottery exe-
cution. Beacon op-
erator remunerated
off-chain.

User interacts with
off-chain beacon op-
erator and smart
contract. All hon-
est users submit
the same data. Ver-
ification executed
on-chain for every
draw

Verification exe-
cuted on-chain for
every draw, even
though the beacon
would typically
be incentivised to
be honest in this
scenario

User must execute
verification off-
chain fast enough
to react within the
complaint window

Table 2. Lottery implementation options using the transparent randomness beacon.

� Adding beacon incentive and on-chain commitment (ITV): To allow the beacon 672
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operator to be compensated with the smart contract, the following changes can be 673

made to the simple contract proposed above. In a first step, the beacon publishes 674

its public key and a nonce and locks some funds in the smart contract. Users send 675

their input to the beacon off-chain and once they see their input included in the 676

commitment, they send (i) the Merkle tree root signed by the beacon operator 677

together with the nonce locked earlier and (ii) their participation payment to the 678

smart contract. In this scenario, the beacon operator submits the next beacon 679

value to the smart contract directly or it is fetched with an oracle call. The 680

verification of the correct execution of sloth on the Merkle root is performed 681

on-chain. The beacon loses its locked funds if verification fails. If the verification 682

succeeds, the owner, beacon and winner receive rewards. 683

� On-chain inputs (INP): This version moves the input inclusion verification done 684

by the user in the previous versions to the smart contract. In this case the user 685

can send their input on-chain together with the lottery payment and it is then up 686

to the beacon operator to send the corresponding commitment in time to avoid 687

losing its locked funds. Thus the user does not have to worry about the 688

commitment after selecting an input. Verification and reward distribution is 689

analogous to ITV. To reduce the cost for on-chain memory and computation, a 690

sequential commit representation is advantageous in this and the following variant. 691

� Optimistic (OPT): Since verification is costly and needs to be paid by the smart 692

contract owner, the beacon operator and the users, another option is to add a 693

complaint phase instead of carrying out the verification computation for every 694

draw. In this case, an entity can submit evidence within a certain time frame to 695

the smart contract that shows that the beacon value has not been computed 696

correctly. Upon the successful verification of the evidence, this entity then receives 697

part of the beacon funds currently stored in the contract, the beacon loses its 698

funds and all users get reimbursed an equal fraction of the remaining beacon 699

funds and their lottery fees. If the complaint phase expires without such evidence 700

being presented, the value is assumed to be valid and the winner, owner and 701

beacon operator are rewarded correspondingly. 702

The different variants as well as their advantages and disadvantages are summarized 703

in Table 2. 704

7.2 Implementation and Evaluation 705

We have implemented an Ethereum smart contract for the OFF and ITV models (INP 706

and OPT are very similar to ITV from an implementation point of view) on a private 707

test network and analyzed the gas costs for the implementations. In both the cases, the 708

smart contract uses an oracle service to obtain the necessary data from the beacon. 709

Fig 5 shows the gas costs for fetching the value from the beacon and drawing a 710

winner for different number of users in the lottery, for the OFF model. As expected, we 711

observe a linear increase of the gas cost with number of users. 712
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Size of Witness (bits) Size of Prime Modulus (bits) Iterations Gas
512 512 1024 159,129
1024 1024 1024 517,171
512 512 2048 368,844
1024 1024 2048 1,198,745

Table 3. Verification gas cost for different parameter sizes.

The main implementation difference between the OFF and the other variants is the 713

fact that in the later, the verification computation can be done on-chain. Thus we 714

compute the gas requirements for the verification (modular squaring for sloth 715

verification) in isolation. Using delay functions that require modular squaring for 716

verification in smart contracts is discouraged [19], owing to the high gas consumption. 717

But the addition of a ’pre-compiled’ contract to perform modular exponentiation as a 718

part of EIP198 [27] significantly reduces the gas cost required to perform verification. 719

The gas needed for modular exponentiation can be calculated based on the formula 720

given in [27]. 721

Table 3 shows the gas requirements for sloth verification performed for different sizes 722

of witness, prime modulus and number of iterations. The values in the last row of the 723

table show that for the largest evaluated witness and modulus sizes, the sloth 724

verification cost amounts to around 5 times the cost for the rest of the smart contract 725

with 70 users. For ITV and INP the lottery smart contract owner must set the 726

participation fee high enough to be able to make a profit despite the verification cost. 727

In the OPT variant, the verification computations are only executed on chain if 728

someone submits a complaint. Thus with OPT, the owner can set a much lower 729

participation fee as long as the locked funds by the beacon can cover the bounty and the 730

computation cost of a successfully verified complaint. 731

Note that in addition to the increase due to sloth verification computation, the 732

amount gas required for parsing, preprocessing and validating beacon inputs, 733

commitments, output and proof parameters including their signatures on chain has to 734

be considered. Parsing and preprocessing can be done in multiple ways (e.g., by making 735

multiple calls to the oracle to obtain each value individually, or making a single call and 736

parse the returned data on-chain, and so on). It also depends on how the beacon values 737

are encoded when sent to the contract. In addition to this, the gas costs to use the 738

oracle service depends on the amount of data fetched. However, this part of the gas cost 739

is dominated by far by the verification cost, so we do not report on these numbers. 740

7.3 Discussion 741

When using a blockchain to run (parts of) a randomness beacon, the incentive structure 742

of all involved parties needs to be considered in a security analysis, which may include 743

miners in public permissionless blockchains. As an example, for the trust assumption of 744

everyone being against the user, the user would have to mine blocks to guarantee 745

interaction with the beacon, which is a steep requirement. 746

We also note that using smart contracts interacting with an off-chain beacon, a 747

beacon can also be used on a deeper level of a distributed ledger, namely as a means to 748

speed up consensus with shared randomness. If all the members in a distributed 749

environment trust and agree on the random value generated by the beacon, it can be 750

used to select leaders, committees and/or rank block proposals in an otherwise 751

trust-lacking blockchain scenario. Recent consensus algorithms leverage this idea [28,29] 752

with MPC beacon generation. If and how a transparent authority beacon can be 753

applied in this context is an interesting open question. 754
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8 DREAD Robustness Analysis 755

Before concluding, we revisit the threats a randomness beacon is exposed to and discuss 756

how our proposed solution addresses them. Regarding the availability of a randomness 757

beacon we identified the following threats: beacon shutdown, withholding output, input 758

flooding, beacon and user eclipsing. In our design, the beacon operator’s role is to 759

provide a service on behalf of the users, yet each of the users could replace the beacon. 760

Thus a beacon shutdown or withholding attack is more an inconvenience than a severe 761

threat once the input has been submitted. If the beacon or part of it is implemented on 762

a smart contract platform, as proposed in the previous setting, the availability of the 763

chosen platform is crucial for the availability of the beacon. With respect to input 764

flooding, the stream proxies mitigates this threat to some extent as it separates the 765

computation from the input processing and state-of-the-art load balancing and DOS 766

prevention measures can be implemented for them. When implementing the input 767

collection part of the beacon on-chain (option INP, OPT or full), the DOS resistance of 768

the blockchain platform is inherited, which also holds for the eclipsing attacks. 769

Input manipulation, output degradation, man-in-the-middle, false or leaking output 770

and cryptographic exploits threaten the integrity of randomness beacons, The integrity 771

of our solution relies on cryptographic assumptions and thus input manipulation, output 772

degradation and biasing are only possible if the assumptions do not hold or if the design 773

and implementation of the cryptographic primitives contain bugs that can be exploited. 774

State-of-the-art man in the middle prevention mechanisms should be used for crucial 775

applications (not implemented in our version, since this is not the focus of this paper). 776

Since the beacon output can be verified, false output can be detected. In the case of a 777

blockchain implementation according to the options ITV, INP, OPT false output can be 778

punished with a forfeited deposit, while a correct full on-chain implementation 779

guarantees a correct output. Leaking output to interested parties earlier is possible, yet 780

the value of it is questionable, since every party could compute it itself if willing to 781

carry the cost. 782

9 Conclusion 783

We designed, implemented and evaluated a randomness beacon with sensible guarantees 784

for any single user; i.e. given their random input to the beacon, they can easily and 785

rapidly verify the computation, and decide if they deem it trustworthy. Our 786

implementation allows all users to run the delay function in parallel or instead of 787

beacon operator, thus mitigating the effect of a (maliciously or inadvertent) output 788

withholding attack. Our beacon is attractive for applications based on smart contracts 789

and distributed ledgers with minimal trust assumptions, illustrated with an Ethereum 790

lottery application. 791
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