Competitive and Fair Throughput for Co-Existing Networks Under Adversarial Interference

PODC 2012

Andrea Richa (Arizona State U) Christian Scheideler (U of Paderborn) Stefan Schmid (TU Berlin/T-Labs) Jin Zhang (Arizona State U)

Co-existing wireless networks

- K>1 different, independent networks that share the same wireless spectrum
 - -*no collaboration* among different networks
 - transmission in one network is viewed as noise by other networks
 - E.g., networks use different encryption schemes

Possible scenarios

• Security Council, UN

Ad-hoc Emergency Service Networks

Challenges

- How to *differentiate* successful transmissions in a different network from collisions (concurrent transmissions)?
- How to guarantee *fairness*, within a single network, and among different networks?

Our results

- *s(i):* number of successful transmissions for network *i*
- Throughput: $\sum_{i} s(i)$
- Fairness: differences |s(i) s(j)| are small
- Medium Access Control (MAC) protocol: local algorithm that decides which nodes transmit at any time step

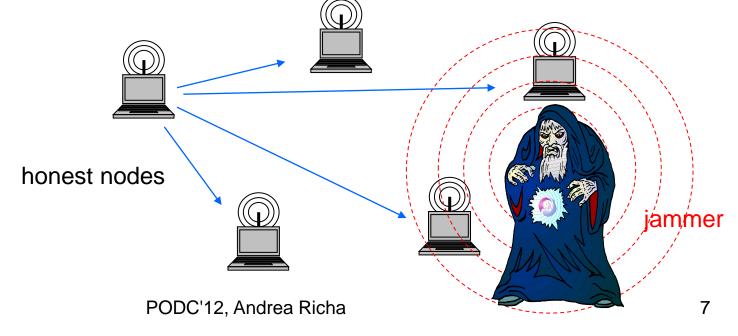
Our results: a jamming-resistant MAC protocol that can achieve *provably high throughput* and *fairness* in coexisting networks setting.

Why do we care?

- Spectrum resource is limited
- External interference
 - Unintentional: from other networks, collisions
 - Intentional: adversary
- Existing MAC protocols do *not* work well when coexisting networks are present

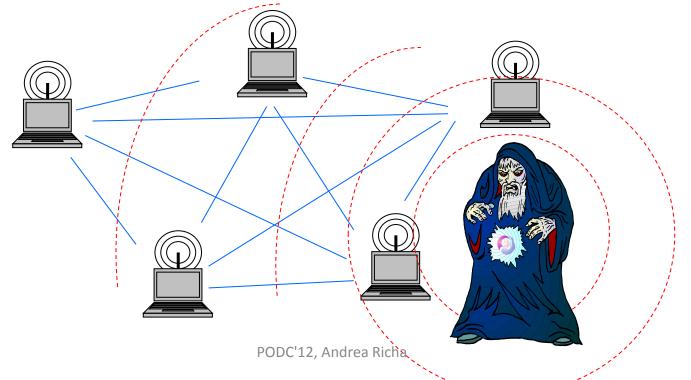
Adversarial physical layer jamming

- an adversary (jammer) listens to the open medium and broadcasts in the same frequency band as the networks
 - can lead to significant disruption of communication at low cost
 - used to model any external interference



Single-hop wireless network

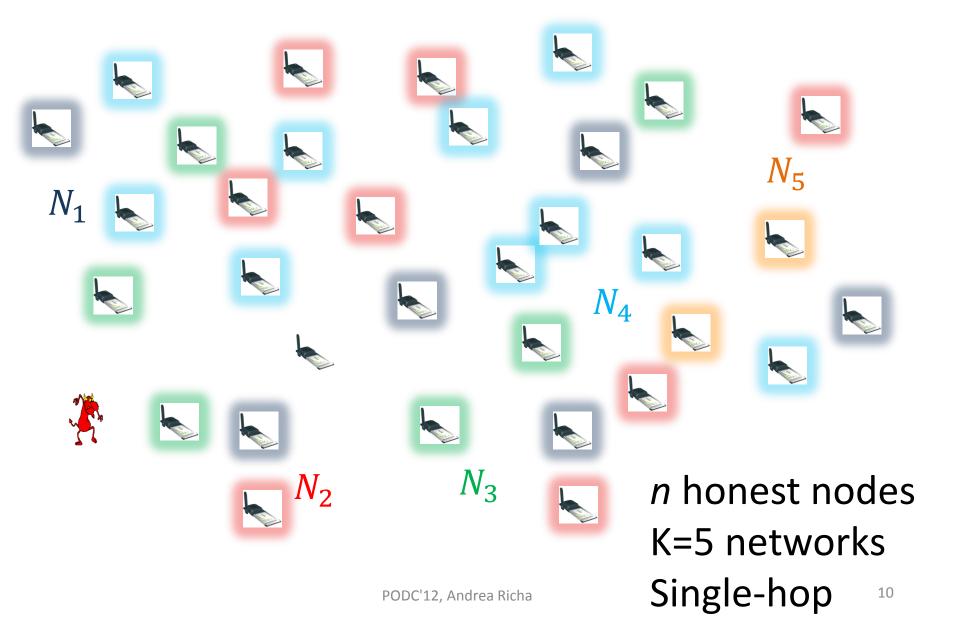
- *n* reliable honest nodes and a jammer; all nodes *within transmission range* of each other and of the jammer
- Nodes do *not* know *n*, nor the number of networks *K*



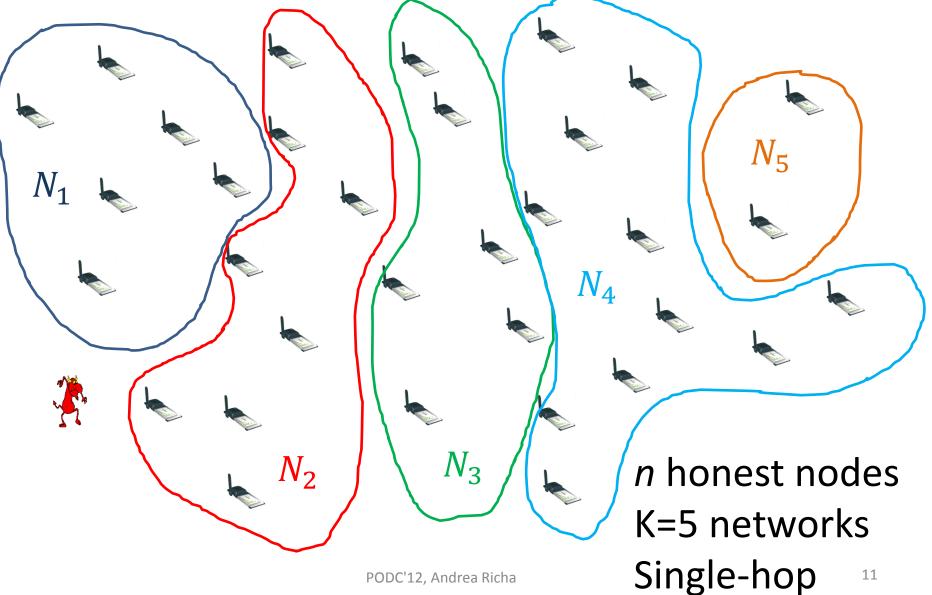
Wireless Communication Model

- at each time step, a node may decide to transmit a packet (nodes continuously contend to send packets)
- a node may transmit or sense the channel at any time step (half-duplex)

Co-existing Networks



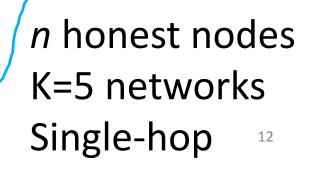
Co-existing Networks



Idle Channel

 N_1

F



 N_5

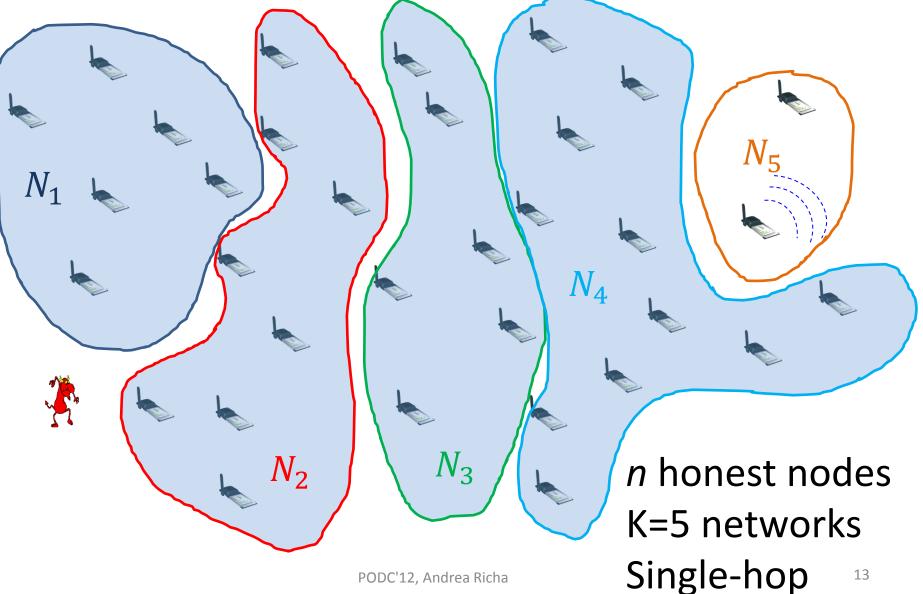
 N_4

PODC'12, Andrea Richa

 N_2

 N_3

Successful Transmission in N_5



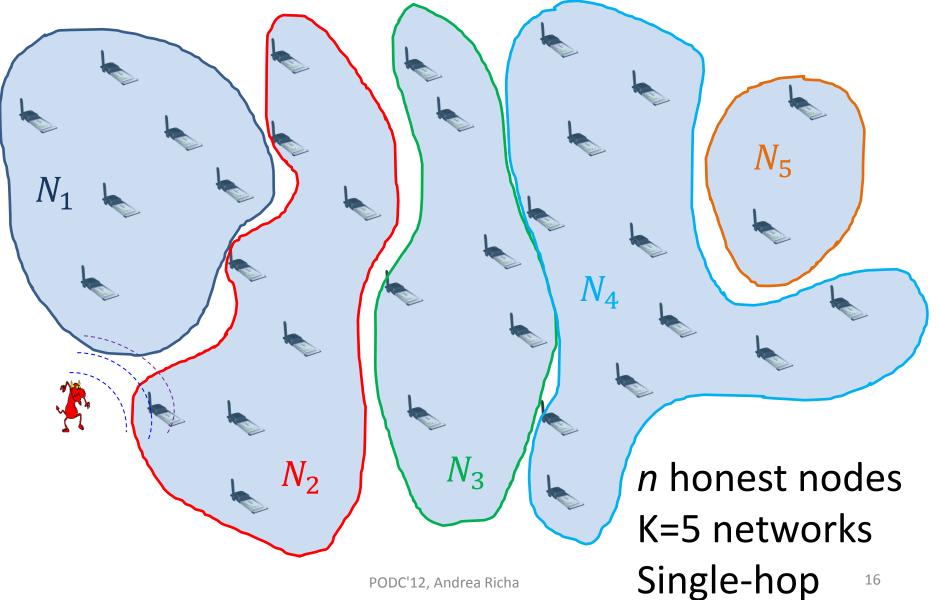
Busy Channel: Concurrent Transmissions

N_1 N_4 N_3 *n* honest nodes N_2 K=5 networks Single-hop 14

Busy Channel: Concurrent Transmissions

N_1 N_4 N_3 *n* honest nodes N_2 K=5 networks Single-hop 15

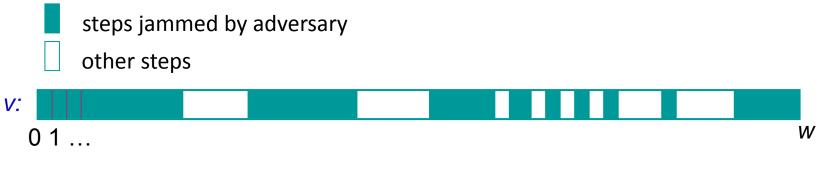
Busy Channel: Jamming



Adaptive adversary

• knows *protocol and entire history*

(T,1-ɛ)-bounded adversary: For every node v and every time window of size w ≥ T, v experiences ≤ (1- ɛ)w jammed time steps, for some constants T and 0 < ε < 1



Constant-competitive protocol

a protocol is called *constant-competitive* against a (*T*,1-ε)-bounded adversary if the nodes manage to perform *successful* transmissions in at least a *constant fraction* of the steps *not jammed* by the adversary, for any sufficiently large number of steps (w.h.p. or on expectation)

successful transmissions

steps jammed by adversary

other steps (idle channel, message collisions)

01...

W

Our contribution

 symmetric local-control MAC protocol, CoMAC, that is constant-competitive and fair against any (T,1-ε)-bounded adaptive adversary after Ω (T/ε) steps w.h.p., for any constant 0<ε<1 and any T.

(The adversary considered here is adaptive but non-reactive.)

Related Work

Medium Access in Co-existing Networks:

- Interference cancellation [Santoso, Tang, Vucetic, Jamalipour, Li, SICCS 2006]
- White spaces [Nychis, Chandra, Moscibroda, Tashev, Steenkiste, CoNEXT 2011]
 - No formal throughput nor fairness guarantees

Jamming model:

- [Awerbuch, R, Scheideler, PODC 2008]
- [R, Scheideler, Schmid, Zhang, DISC 2010, ICDCS 2011, MOBIHOC 2011]
 - Single network scenario

Basic approach: single network

- [ARS, PODC'08]
- a node v adapts its probability of transmission p_v based only on steps when an *idle channel (multiplicative increase)* or a successful transmission (multiplicative decrease) are observed

Basic approach: single network

- [ARS, PODC'08]
- a node v adapts its probability of transmission p_v based only on steps when an idle channel (multiplicative increase) or a successful transmission (multiplicative decrease) are observed
- Goal: achieve constant cumulative probability $p = \sum p_v$, which in turn implies constant probability of successful transmission



Why not previous jamming-resistant MAC protocols?

- Does not work in co-existing network settings
 - Individual networks aim to achieve constant cumulative probabilities, hence overall $p = \Theta(K)$.
 - Throughput degrades exponentially with the number of networks, i.e., $q_{success} \cong pe^{-p} = \Theta(K)e^{-\Theta(K)}$

• What is the problem?

Since successful transmissions are viewed as busy channels by other networks, p_v is *not decreased often enough* to balance the increases due to idle time steps

Basic Idea for co-existing networks

- A *less aggressive* approach to increase p_v when idle.
 - p_v is increased at an idle time step with a probability q_v that is *inversely proportional* to the *time elapsed* since last idle time step
 - Hard to analyze
 - Solution: transform into a deterministic rule.

CoMAC Protocol

- each node v maintains
 - $-p_{v}$: transmission probability
 - $-L_{v}$: the time elapsed since last idle time step
 - $-q_v$: used to determine *whether to increase* p_v *in an idle step*
 - $-T_{v}$: time window estimate
 - $-c_{v}$: counter
 - $-\gamma = O(1/(\log T + \log \log n))$
- Initially, $T_v = c_v = 1$, $q_v = 0$, $L_v = +\infty$ and $p_v = p_{max}$ (< 1).
- synchronized time steps (for ease of explanation)
- Nodes do not know n, K, ε or T

CoMAC Protocol

In each step:

- node v sends a message along with a tuple (p_v, c_v, T_v) with probability p_v . If v decides not to send a message then
 - If v senses an idle channel, then

 $p_v = \min\{(1+\gamma)p_v, p_{max}\},\ T_v = \max\{T_v - 1, 1\},$

- If v successfully receives a message along with the tuple $(p_{new}, c_{new}, T_{new})$, then $(p_v c_v, T_v) = (p_{new}/(1+\gamma), c_{new}, T_{new})$
- $c_v = c_v + 1$. If $c_v > T_v$ then
 - $-c_{v}=1$
 - if v did not sense an idle channel in the past T_v steps then $p_v = p_v/(1+\gamma)$ and $T_v = T_v + 2$

CoMAC Protocol

In each step:

- node v sends a message along with a tuple (p_v, c_v, T_v) with probability p_v . If v decides not to send a message then
 - If v senses an idle channel, then
 - $q_v = q_v + 1/L_v$. If $q_v >= 1$, then $p_v = \min\{(1 + \gamma)p_v, p_{max}\},$ $T_v = \max\{T_v - 1, 1\},$ $q_v = q_v$ -1, and update L_v (time since last idle step)
 - If v successfully receives a message along with the tuple $(p_{new}, c_{new}, T_{new})$, then $(p_v c_v, T_v) = (p_{new}/(1+\gamma), c_{new}, T_{new})$
- $c_v = c_v + 1$. If $c_v > T_v$ then
 - $-c_{v}=1$
 - if v did not sense an idle channel in the past T_v steps then $p_v = p_v/(1+\gamma)$ and $T_v = T_v + 2$

Our results

- Let *N*= *max*{*T*,*n*}
- Theorem. For any (*T*,1-ε)-bounded adaptive adversary, if executed for Ω(log *N* . max{*T*,log³ *N/(ε γ²)*}/ε) many time steps, CoMAC achieves, w.h.p.
 - Throughput: A constant-competitive throughput of Ω(ε² min{ε, 1/poly(K)})
 - Fairness: The difference between the minimum and the maximum cumulative probabilities of the individual co-existing networks is $O(K^2)$.

Proof sketch: Competitive Throughput

• We study the competitiveness of the protocol for $F = \Omega(\frac{1}{\epsilon} \log N \max\{T, \frac{1}{\epsilon \gamma^2} \log^3 N\}) \text{ many steps}$

If we can show competitiveness result for any such *F*, the theorem follows

• Use induction over sufficiently large time frames:

$$f = max\{T, \frac{\alpha\beta^2}{\epsilon\gamma^2}\log^3 N\}$$

$$F = \theta(\log N/\epsilon) \cdot f$$

Proof sketch: Competitive Throughput

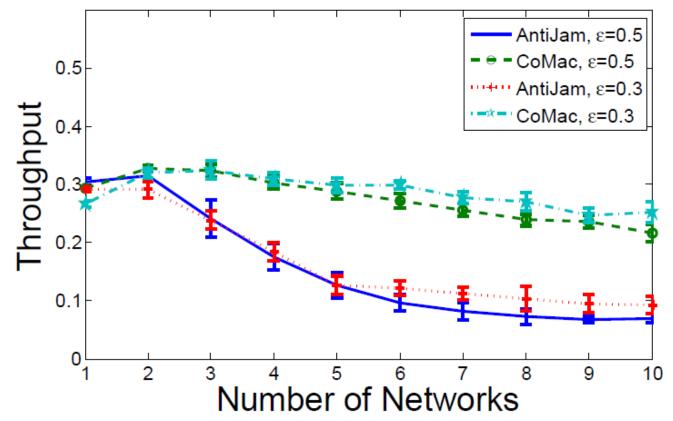
- $p \in \left[\frac{\epsilon \hat{p}}{4}, 36 \ln K\right]$ with moderate probability for at least a constant fraction of subframe I'
- $p \in \left[\frac{\epsilon \hat{p}}{4}, 36 \ln K\right]$ w.h.p., for at least a constant fraction of I (I contains logarithmic number of I')
- Hence, CoMAC achieves a competitive throughput of Ω(ε²min{ε, 1/poly(K)}) w.h.p., for any (T,1-ε)-bounded adaptive adversary.

Proof sketch: Fairness

- Potential Function: $\Phi = \sum_i |x_i x_{min}|$
 - where $x_i = log_{1+\gamma} P_i$, and $x_{min} = \min_i x_i$
 - $-P_i$ is the cumulative probability of network N_i
 - Only successful transmissions change the value of Φ
 - It takes at most $F = \Omega(\frac{1}{\epsilon}\log N \max\{T, \frac{1}{\epsilon\gamma^2}\log^3 N\})$ many steps w.h.p. until the difference between minimum and maximum cumulative probability of a network is at most $O(K^2)$

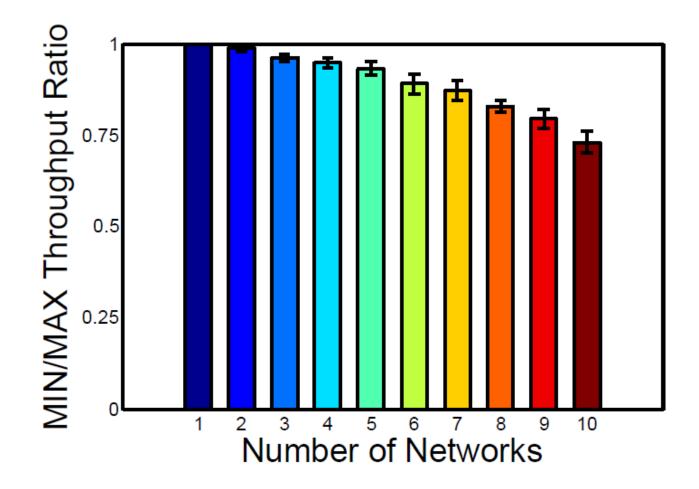
Simulations: CoMAC

Experiment 1: competitive throughput, compared to ANTIJAM



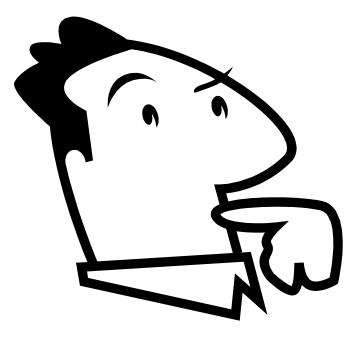
Simulations: CoMAC

Experiment 2: fairness



Future Work

- Can we have a MAC protocol in the presence of co-existing networks that is provably robust against an adaptive (and reactive) adversary under
 - SINR model?
 - Multihop networks?
- Can the protocol be modified so that no bound on loglog n and logT are required?



Questions?

Related Work

- Defenses against jamming:
- spread spectrum (FHSS & DSSS):
 - Our approach is orthogonal to broad spectrum techniques, and can be used in conjunction with those.
- random backoff:
 - adaptive adversary too powerful for MAC protocols based on random backoff or tournaments (including the standard MAC protocol of 802.11 [Bayraktaroglu, King, Liu, ... INFOCOM 2008])

Preliminaries

- each node v maintains
 - probability value p_v ,
 - time window threshold T_{v}
 - counter c_{v} , and
 - $-\gamma = O(1/(\log T + \log \log n))$
- Initially, $T_v = c_v = 1$ and $p_v = p_{max}$ (< 1/24).
- synchronized time steps (for ease of explanation)

ANTIJAM Protocol

In each step:

- node v sends a message along with a tuple (p_v, c_v, T_v) with probability p_v. If v decides not to send a message then
 - if v senses an idle channel, then $p_v = \min\{(1+\gamma)p_v, p_{max}\}$ and $T_v = \max\{T_v 1, 1\}$
 - if v successfully receives a message along with the tuple of $(p_{new}, c_{new}, T_{new})$, then $p_v = p_{new}/(1+\gamma)$, $c_v = c_{new}$, and $T_v = T_{new}$
- $c_v = c_v + 1$. If $c_v > T_v$ then - $c_v = 1$
 - if v did not sense an idle channel in the past T_v steps then $p_v = p_v/(1+\gamma)$ and $T_v = T_v + 2$

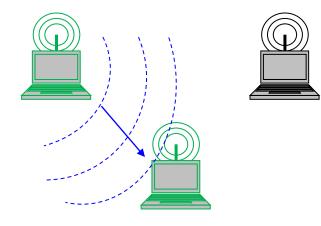
Wireless communication model

when sensing the channel a node v may
 – sense an idle channel

V

Wireless communication model

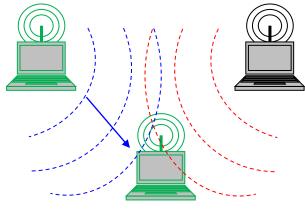
- when sensing the channel a node v may
 - sense an idle channel
 - receive a packet
 - Exactly one node in v 's network transmits



V

Wireless communication model

- when sensing the channel a node v may
 - sense an idle channel
 - receive a packet
 - sense a busy channel
 - When more than one node transmit, or a node outside v's network transmits



V

Simple (yet powerful) idea

- each node v sends a message at current time step with probability $p_v \le p_{max}$, for constant $0 < p_{max} << 1$. $p = \sum p_v$ (aggregate probability) q_{idle} = probability the channel is idle q_{succ} = probability that only one node is transmitting (successful transmission)
- Claim. q_{idle} . $p \leq q_{succ} \leq (q_{idle}, p)/(1-p_{max})$

if (number of times the channel is idle) = (number of successful transmissions) $\rightarrow p = \theta(1) \rightarrow q_{succ} = \theta(1)$ (what we want!)