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Arne Ludwig, Jan Marcinkowski and Stefan Schmid



  

Update happens

● Network updates happen 
– Changing security policies

– Traffic Engineering

● Potential high damage if inconsistent
– Security policy violation

– Shared cloud resources



  

Strong vs weak consistency

Strong consistency¹ Weak consistency²

Alg:

- Two phase Commit
 → Either old or new route

Cons:

- Needs more switch memory
- Problematic with middleboxes  
  (changed headers)
- Very late first effects

Alg:

- dynamic updates (no tagging)
→ Mixed routes possible

Cons:

- Not arbitrarily mixed
→ Need for algorithms

1: Abstraction for network update (SIGCOMM'12)
2: On Consistent Updates in SDNs (HotNets'13)
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Eventual Consistency

Drop freedom

Memory limit

Loop freedom

Packet coherence

Bandwidth limit



  

The challenge: Fast and 
asynchronous updates

● Interactions take time (Kuźniar PAM'15, 
Dionysus SIGCOMM'14)

● Reach consistent state as soon as possible

→ Minimize the overall update time



  

Asynchronous updates

Controller
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Asynchronous updates - solution

Controller

Round:

Set of parallel updates.
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Asynchronous updates - solution

Controller Controller ACK

ACK

Controller Controller

ACK

Round: 1

Round: 2



  

Minimal number of rounds for loop-free updates?



  

Outline

● Model
● 2-rounds is easy
● 3-rounds is hard
● Takes up to n rounds
● It's good to relax



  

Trivial compression

Solid lines = current path
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Flow-specific path



  

Trivial compression

Solid lines = current path

Dashed lines = new path

Flow-specific path



  

Trivial compression

Solid lines = current path
Dashed lines = new path

Flow-specific path

Safe to be updated
Safe to be left untouched



  

Basic example



  

Basic example

● Forward (F) nodes → updateable
● Backward (B) nodes → not updateable

F (white)
B (black)



  

Basic example

● Forward (F) nodes → updateable
● Backward (B) nodes → not updateable

F (white)
B (black)



  

How to update a network in a (transiently) 
loop-free manner?



  

What about greedy?
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What about greedy?

● From         to         rounds



  

Reversed update pattern

● Standard:
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Reversed update pattern

● Standard:

● Reverse:

A valid update schedule for standard is a flipped 
valid update schedule for reverse!



  

Reversed update pattern

● Standard:

● Reverse:

● FF



  

Reversed update pattern

● Standard:
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Reversed update pattern

● Standard:

● Reverse:
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Reversed update pattern

● Standard:

● Reverse:

● FF, BB, FB, BF



  

2 rounds is easy

● No BB nodes → 2 round schedule exists



  

What about 3 rounds?

● 3 rounds is hard!



  

3 rounds is hard

● Where to update FF nodes?
● 3-SAT reduction
● Creating the gadgets
● Connecting the gadgets



  

Where to update FF nodes?

● BB nodes updated in 2nd round
● FB nodes can be moved to 1st round
● BF nodes can be moved to 3rd round

● Where to update FF nodes?



  

Where to update FF nodes?

● Remember greedy!



  

3-SAT reduction

● Create #X variables: 
● Assignment clauses: 
● Implication clauses:
● Exclusive clauses: 



  

3-SAT reduction

● Create #X variables: 
● Assignment clauses: 
● Implication clauses:
● Exclusive clauses: 

Positive  evaluation → update in first round

Negative evaluation → update in third round



  

Exclusive clause (example)



  

Exclusive clause (example)

FF (white), BB (black), B* (grey)



  

Exclusive clause (example)

FF (white), BB (black), B* (grey)



  

Exclusive clause (example)

FF (white), BB (black), B* (grey)



  

Big picture



  

Strong loop-freedom: worst case



  

Strong loop-freedom: worst case

● Update s, v2 in first round

Still packets on the way



  

Strong loop-freedom: worst case

● Update s, v2 in first round

Potential loop



  

Strong loop-freedom: worst case

● Update s, v2 in first round

Update all nodes 
one after the other



  

Strong loop-freedom: worst case

● Update s, v2 in first round

Update all nodes 
one after the other

~n Rounds for an Update!



  

Bad news so far! Time to relax.

● Prevent topological loops
– NP hard for 3 rounds

– Some instances need O(n) rounds

● Relaxed loop freedom
– Practical relevance only on path between s and d

– Fast to compute

– O(log n) rounds for every instance
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Peacock

● Shortcut 
– Reduce the distance between s and d

→ Pick longest ranging forward edges

● Prune
– Reduce the number of remaining nodes

→ Update every node which is not on the s-d path

c



  

Logical reduction

● Update of v1:



  

Logical reduction

● Update of v1:



  

Peacock c

Shortcut Prune Shortcut Prune



  

Peacock c

Shortcut Prune Shortcut Prune



  

Peacock c

Shortcut Prune Shortcut Prune



  

Peacock c

Shortcut Prune Shortcut Prune



  

Conclusion

● SDN introduces interesting algorithmic questions
● Strong LF: 

– Greedy arbitrarily bad (up to n rounds)

– 2 rounds easy

– 3 rounds hard

● Introduction of Relaxed LF:
– Peacock solves any scenario in O(log n) rounds

– Computational results indicate the #rounds grow

● Most related work: (Ludwig et al. HotNets'14, Mahajan 
et al. HotNets'13)
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