

Scheduling Loop-free Network Updates:
It's Good to Relax!

Arne Ludwig, Jan Marcinkowski and Stefan Schmid

Update happens

● Network updates happen
– Changing security policies

– Traffic Engineering

● Potential high damage if inconsistent
– Security policy violation

– Shared cloud resources

Strong vs weak consistency

Strong consistency¹ Weak consistency²

Alg:

- Two phase Commit
 → Either old or new route

Cons:

- Needs more switch memory
- Problematic with middleboxes
 (changed headers)
- Very late first effects

Alg:

- dynamic updates (no tagging)
→ Mixed routes possible

Cons:

- Not arbitrarily mixed
→ Need for algorithms

1: Abstraction for network update (SIGCOMM'12)
2: On Consistent Updates in SDNs (HotNets'13)

Strong vs weak consistency

Strong consistency¹ Weak consistency²

Alg:

- Two phase Commit
 → Either old or new route

Cons:

- Needs more switch memory
- Problematic with middleboxes
 (changed headers)
- Very late first effects

Alg:

- dynamic updates (no tagging)
→ Mixed routes possible

Cons:

- Not arbitrarily mixed
→ Need for algorithms

1: Abstraction for network update (SIGCOMM'12)
2: On Consistent Updates in SDNs (HotNets'13)

Strong vs weak consistency

Strong consistency¹ Weak consistency²

Alg:

- Two phase Commit
 → Either old or new route

Cons:

- Needs more switch memory
- Problematic with middleboxes
 (changed headers)
- Very late first effects

Alg:

- dynamic updates (no tagging)
→ Mixed routes possible

Cons:

- Not arbitrarily mixed
→ Need for algorithms

1: Abstraction for network update (SIGCOMM'12)
2: On Consistent Updates in SDNs (HotNets'13)

Eventual Consistency

Drop freedom

Memory limit

Loop freedom

Packet coherence

Bandwidth limit

The challenge: Fast and
asynchronous updates

● Interactions take time (Kuźniar PAM'15,
Dionysus SIGCOMM'14)

● Reach consistent state as soon as possible

→ Minimize the overall update time

Asynchronous updates

Controller

Asynchronous updates

Controller

Asynchronous updates

Controller

Asynchronous updates

Controller

Asynchronous updates

Controller

Asynchronous updates

Controller

Asynchronous updates - solution

Controller

Round:

Set of parallel updates.

Asynchronous updates - solution

Controller

Round:

Set of parallel updates.

Asynchronous updates - solution

Controller

Round:

Set of parallel updates.

Asynchronous updates - solution

Controller Controller ACK

ACK

Controller Controller

ACK

Round: 1

Round: 2

Minimal number of rounds for loop-free updates?

Outline

● Model
● 2-rounds is easy
● 3-rounds is hard
● Takes up to n rounds
● It's good to relax

Trivial compression

Solid lines = current path

Trivial compression

Solid lines = current path

Dashed lines = new path

Flow-specific path

Trivial compression

Solid lines = current path

Dashed lines = new path

Flow-specific path

Trivial compression

Solid lines = current path
Dashed lines = new path

Flow-specific path

Safe to be updated
Safe to be left untouched

Basic example

Basic example

● Forward (F) nodes → updateable
● Backward (B) nodes → not updateable

F (white)
B (black)

Basic example

● Forward (F) nodes → updateable
● Backward (B) nodes → not updateable

F (white)
B (black)

How to update a network in a (transiently)
loop-free manner?

What about greedy?

What about greedy?

What about greedy?

● From to rounds

Reversed update pattern

● Standard:

Reversed update pattern

● Standard:

● Reverse:

Reversed update pattern

● Standard:

● Reverse:

Reversed update pattern

● Standard:

● Reverse:

A valid update schedule for standard is a flipped
valid update schedule for reverse!

Reversed update pattern

● Standard:

● Reverse:

● FF

Reversed update pattern

● Standard:

● Reverse:

● FF, BB

Reversed update pattern

● Standard:

● Reverse:

● FF, BB, FB

Reversed update pattern

● Standard:

● Reverse:

● FF, BB, FB, BF

2 rounds is easy

● No BB nodes → 2 round schedule exists

What about 3 rounds?

● 3 rounds is hard!

3 rounds is hard

● Where to update FF nodes?
● 3-SAT reduction
● Creating the gadgets
● Connecting the gadgets

Where to update FF nodes?

● BB nodes updated in 2nd round
● FB nodes can be moved to 1st round
● BF nodes can be moved to 3rd round

● Where to update FF nodes?

Where to update FF nodes?

● Remember greedy!

3-SAT reduction

● Create #X variables:
● Assignment clauses:
● Implication clauses:
● Exclusive clauses:

3-SAT reduction

● Create #X variables:
● Assignment clauses:
● Implication clauses:
● Exclusive clauses:

Positive evaluation → update in first round

Negative evaluation → update in third round

Exclusive clause (example)

Exclusive clause (example)

FF (white), BB (black), B* (grey)

Exclusive clause (example)

FF (white), BB (black), B* (grey)

Exclusive clause (example)

FF (white), BB (black), B* (grey)

Big picture

Strong loop-freedom: worst case

Strong loop-freedom: worst case

● Update s, v2 in first round

Still packets on the way

Strong loop-freedom: worst case

● Update s, v2 in first round

Potential loop

Strong loop-freedom: worst case

● Update s, v2 in first round

Update all nodes
one after the other

Strong loop-freedom: worst case

● Update s, v2 in first round

Update all nodes
one after the other

~n Rounds for an Update!

Bad news so far! Time to relax.

● Prevent topological loops
– NP hard for 3 rounds

– Some instances need O(n) rounds

● Relaxed loop freedom
– Practical relevance only on path between s and d

– Fast to compute

– O(log n) rounds for every instance

Bad news so far! Time to relax.

● Prevent topological loops
– NP hard for 3 rounds

– Some instances need O(n) rounds

● Relaxed loop freedom
– Practical relevance only on path between s and d

– Fast to compute

– O(log n) rounds for every instance

Peacock

● Shortcut
– Reduce the distance between s and d

→ Pick longest ranging forward edges

● Prune
– Reduce the number of remaining nodes

→ Update every node which is not on the s-d path

c

Logical reduction

● Update of v1:

Logical reduction

● Update of v1:

Peacock c

Shortcut Prune Shortcut Prune

Peacock c

Shortcut Prune Shortcut Prune

Peacock c

Shortcut Prune Shortcut Prune

Peacock c

Shortcut Prune Shortcut Prune

Conclusion

● SDN introduces interesting algorithmic questions
● Strong LF:

– Greedy arbitrarily bad (up to n rounds)

– 2 rounds easy

– 3 rounds hard

● Introduction of Relaxed LF:
– Peacock solves any scenario in O(log n) rounds

– Computational results indicate the #rounds grow

● Most related work: (Ludwig et al. HotNets'14, Mahajan
et al. HotNets'13)

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 71

