
Brief Announcement: Deterministic Lower Bound
for Dynamic Balanced Graph Partitioning

Maciej Pacut

maciej.pacut@univie.ac.at

Faculty of Computer Science,

University of Vienna

Austria

Mahmoud Parham

mahmoud.parham@univie.ac.at

Faculty of Computer Science,

University of Vienna

Austria

Stefan Schmid

stefan_schmid@univie.ac.at

Faculty of Computer Science,

University of Vienna

Austria

ABSTRACT
Distributed applications, including batch processing, streaming,

scale-out databases, or machine learning, generate a significant

amount of network traffic. By collocating frequently communicat-

ing nodes (e.g., virtual machines) on the same clusters (e.g., server

or rack), we can reduce the network load and improve application

performance. However, the communication pattern of different ap-

plications is often unknown a priori and may change over time,

hence it needs to be learned in an online manner. This paper revisits

the online balanced partitioning problem (introduced by Avin et

al. at DISC 2016) that asks for an algorithm that strikes an optimal

tradeoff between the benefits of collocation (i.e., lower network

load) and its costs (i.e., migrations). Our first contribution is a sig-

nificantly improved deterministic lower bound of Ω(k · ℓ) on the

competitive ratio, where ℓ is the number of clusters and k is the

cluster size, even for a scenario in which the communication pat-

tern is static and can be perfectly partitioned; we also provide

an asymptotically tight upper bound of O(k · ℓ) for this scenario.

For k = 3, we contribute an asymptotically tight upper bound of

Θ(ℓ) for the general model in which the communication pattern

can change arbitrarily over time. In contrast to most prior work,

our algorithms respect all capacity constraints and do not require

resource augmentation.

CCS CONCEPTS
• Theory of computation → Online algorithms; • Networks
→ Network algorithms; • Computer systems organization
→ Distributed architectures.

KEYWORDS
online algorithms, competitive analysis, distributed computing,

graph partitioning, clustering, self-adjusting networks

ACM Reference Format:
Maciej Pacut, Mahmoud Parham, and Stefan Schmid. 2020. Brief Announce-

ment: Deterministic Lower Bound for Dynamic Balanced Graph Partitioning.

In Proceedings of ACM Symposium on Principles of Distributed Computing

2020 (PODC ’20). ACM, New York, NY, USA, 3 pages. https://doi.org/TBD

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’20, July 29-August 2, 2020, Toronto, Canada

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN TBD. . . $TBD

https://doi.org/TBD

1 INTRODUCTION
The popularity of data-centric, distributed applications has led to an

explosive growth of network traffic, especially in data centers [8, 9].

The performance of these distributed applications often critically

depends on the underlying network [7], and efficient operation of

these networks is important. At the same time, distributed systems

are often highly virtualized today, and provide interesting new

opportunities for resource optimization. In particular, it has become

possible to operate data centers in a more demand-aware manner:

by dynamically migrating nodes (e.g., virtual machines) which

communicate frequently topologically closer to each other, network

traffic can be reduced significantly. However, migrations entail

overhead and should be used moderately.

This paper studies the algorithmic problem underlying such

demand-aware optimizations, aiming to strike a balance between

the benefits of migrations (e.g., reduced network load) and their

costs. In particular, we are interested in an online variant of the

problem: since communication patterns can change over time, an

online algorithm needs to react dynamically to new traffic patterns,

and migrate nodes accordingly. Ideally, this algorithm should per-

form close to an optimal offline algorithm, without requiring any

information about future traffic demands.

Model. The dynamic balanced graph partitioning problem (BRP)

is a fundamental learning problem that finds applications in the

context of distributed systems optimization [4, 5]. We are given

a set V of n nodes (e.g., virtual machines or processes), initially

arbitrarily partitioned into ℓ clusters (e.g., servers or entire racks),

each of size k . The nodes interact using a sequence of pairwise

communication requests σ = (u1,v1), (u2,v2), (u3,v3), . . ., where
a pair (ut ,vt) indicates that nodes ut and vt exchange a certain
amount of data. Nodes in C ⊂ V are collocated if they reside in the

same cluster.

An algorithm serves a communication request between two

nodes either locally at cost 0 if they are collocated, or remotely at

cost 1 if they are located in different clusters. We refer to these

two types of requests as internal and external requests, respec-

tively. Before serving a request, an online algorithm may perform

a repartition, i.e., it may move (“migrate”) some nodes into clusters

different from their current clusters, while respecting the capacity

of every cluster. Afterward, the algorithm serves the request. The

cost of migrating a node from one cluster to another is α ∈ Z+. For
any algorithm ALG, its cost, denoted by ALG(σ), is the total cost
of communications and the cost of migrations performed by ALG

while serving the sequence σ .

https://doi.org/TBD
https://doi.org/TBD

PODC ’20, July 29-August 2, 2020, Toronto, Canada Maciej Pacut, Mahmoud Parham, and Stefan Schmid

Related work. The two works closest to ours are by Avin et al. (on

the general partitioning model) [4, 5] and by Henzinger et al. (on

the learning model) [6]. The static offline version of the partition-

ing problem, i.e., a problem variant where migration is not allowed,

where all requests are known in advance, and where the goal is to

find an assignment of n nodes to ℓ physical machines, each of capac-

ity n/ℓ, is known as the ℓ-balanced graph partitioning problem [2].

Dynamic graph partitioning problems are generally fundamental

in computer science, and arise in many different contexts [1, 10].

Contributions. This paper presents several new results on the dy-

namic graph partitioning problem without augmentation. For the

learning model, we present a lower bound of Ω(k ·ℓ) on the compet-

itive ratio of any online deterministic online algorithm (that holds

also in the general partitioning model). We complement this result

with an asymptotically optimal,O(k · ℓ)-competitive algorithm The

best known lower bounds so far were Ω(k) for the general parti-
tioning model [4, 5], and Ω(k) for the learning model [6]. For the

general partitioning model, we design an asymptotically optimal,

Θ(ℓ)-competitive algorithm for k = 3, improving the best known

upper bound so far O(ℓ2) [4, 5].

2 THE LEARNING MODEL
In this section, we study a learning variant of dynamic balanced

graph partitioning, where the communication pattern is static:

whether a pair of nodes ever communicate or not, is determined

a priori and is unknown to algorithms, and such pairs commu-

nicate forever. Any algorithm must eventually collocate pairs of

communicating nodes, as otherwise it cannot be competitive. As

in Henzinger et al. [6], we assume that the communication graph

admits a perfect partition, i.e., a partition in which no inter-cluster

request ever occurs. The algorithm’s objective is to learn the (static)

communication graph while serving all requests, and without exe-

cuting too many migrations.

2.1 Lower Bound
We present a lower bound Ω(k · ℓ) for the competitive ratio of any

deterministic online algorithm for the learning problem. Later, we

elaborate on how to efficiently transform it to a lower bound for

the general partitioning problem. The lower bound requires k ≥ 3.

In contrast, for k = 2 the learning problem is trivial: immediate

collocation of communicating pairs is 1-competitive.

Throughout this paper, we often refer to groups of communi-

cating nodes. We use this concept slightly differently in the lower

bound than the upper bounds. In our algorithms, we group nodes

with a communication history into components. In this section, we

group nodes that may ever communicate, into ground sets.

Given a perfect partition, every subset of nodes that belong to

the same cluster in this partition is a ground set. Any competitive

algorithm under the learning model maintains a perfect partition

of ground sets into clusters. On each inter-cluster request, a ground

set is revealed. An algorithm recovers the (hidden) perfect partition

gradually over inter-cluster requests, by merging pairs of ground

sets involved in these requests.

The adversary constructs ground sets depending on the choices

of a deterministic online algorithm. Once we construct a ground set,

it lasts until the end of the input sequence. We say that a ground

set is a singleton if it contains exactly one node, which is an isolated

node.

We start by constructing a ground set of sizek−1 on an arbitrarily
chosen cluster. In any partition, there must exist an isolated node

collocated with the ground set of size k − 1. We issue requests

between this node and some node that was initially collocated with

it. By repeating such requests, almost every node is once collocated

with the first ground set. In comparison, we show that there exists

an optimal offline algorithm OPT that performs only two node

exchanges ("swaps").

Theorem 2.1. The competitive ratio of any deterministic online

algorithm for the learning model of Dynamic Balanced Graph Parti-

tioning is at least Ω(k · ℓ) for any k ≥ 3 and ℓ ≥ 2.

Proof. Fix any online algorithm ALG. For a ground set C of

nodes that are initially collocated in one cluster, let I (C) denote the
cluster. We refer to I (C) as the cluster of origin, when C is clear

from the context. Initially, all nodes are isolated, i.e., each node is

in a singleton ground set. First, we choose a cluster arbitrarily and

create a ground set B of k−1 nodes in this cluster, and issue requests
between its nodes. Each cluster hosts exactly k nodes, and in any

feasible partition, a single isolated node must be collocated with

B. At any time, we refer to the isolated node currently collocated

with B as the pivot node. Let x0 denote the first pivot node.
Then, we join the pivot node to a larger ground set to force

its eviction. Precisely, we create a ground set {x0,y0}, where y0
is an arbitrary isolated node. Since ALG does not have {x0,y0}
collocated, the adversary issues an external request to this pair so

that ALG collocates it. ALG cannot collocate {x0,y0} with B (as B’s
size is k − 1), hence it collocates them in a different cluster. In order

to preserve a feasible partition of nodes after collocating {x0,y0},
ALG must replace x0 with another isolated node that becomes the

new pivot.

We proceed in similar steps by joining the current pivot node

to a ground set of the same origin residing in a different cluster.

Consider the step i , when the isolated node xi is collocated with

B. We issue a request between xi and some node in Ci , where Ci
is the largest ground set s.t. I (Ci) = I (xi),Ci , {x0,y0}. Then ALG

must collocate the new ground set {xi } ∪ Ci in one cluster. Any

feasible partition replaces xi with some isolated node xi+1, as the
new ground set {xi } ∪Ci may not be ever split. We terminate the

process once the number of remaining isolated nodes is less than

ℓ + 3. At each step i , the number of isolated nodes decreases either

by one or by two if Ci is a singleton. Therefore, once the process
terminates, in any case at least ℓ + 1 isolated nodes are left.

Next, we argue that a feasible partition exists when the process

terminates. This implies that a feasible partition exists after any

earlier step as well. Since there are at least ℓ + 1 isolated nodes

left, there must be two isolated nodes x∗ and y∗, with the same

cluster of origin, i.e., I ({x∗}) = I ({y∗}). Consider the partition P∗

obtained from the initial partition after swapping x0 and y0 with
x∗ and y∗ (respectively). In this partition, the ground set {x0,y0} is
collocated in the cluster I ({x∗,y∗}). Note that after the first request
{x0,y0}, we issue requests only between nodes that have the same

cluster of origin and all these nodes are collocated in P∗. Therefore
all ground sets constructed so far are collocated in P∗, and it is

a feasible partition.

Brief Announcement: Deterministic Lower Bound
for Dynamic Balanced Graph Partitioning PODC ’20, July 29-August 2, 2020, Toronto, Canada

Consider nodes x∗ and y∗ and the partition P∗ obtained pre-

viously. OPT moves to P∗ by performing only two node swaps.

Precisely, OPT collocates {x0,y0} by swapping them with x∗ and
y∗. No ground set is split in P∗ and OPT pays only for the two

swaps.

ALG performs at least one swap at each step i , and some ground

set grows. Consider any ground set C∗ , B after the termination.

This ground set has grown exactly |C∗ | − 1 times until the termina-

tion. Let S be the set of all ground sets after the process terminates.

Thus, S includes ground sets B, {x0,y0}, and (up to) ℓ + 2 singleton

ground sets. Among the remaining ground sets in S, no two ground

sets have the same origin. Otherwise, the smaller ground set is ei-

ther a singleton, which contradicts the bound ℓ+2 on the number of

singletons, or we have joined nodes to it at some step, contradicting

our choice of the largest Ci at step i . Hence, there are at most ℓ − 1

such ground sets, one per possible cluster of origin, excluding the

cluster containing B. Therefore, |S| ≤ 1+1+(ℓ+2)+(ℓ−1) = 2ℓ+3.

Note that among all non-singleton ground sets in S, only B does

not grow during the process. Thus, the total number of times that

a ground set in S has grown is

∑
C∗∈S

(|C∗ | − 1) − (k − 1) =
∑
C∗∈S

|C∗ | −
∑
C∗∈S

1 − (k − 1)

≥ kℓ − (2ℓ + 3) − (k − 1) = (k − 2)(ℓ − 1) − 4,

which bounds the number of swaps performed by ALG. The com-

petitive ratio is then ALG/OPT ≥ ((k − 2)(ℓ − 1) − 4)/2. □

2.2 Upper Bound
We present an asymptotically optimal algorithm for the learning

problem. The algorithm collocates a pair as soon as they com-

municate and it never separates them. In order to preserve collo-

cated pairs, we employ the concept of components, introduced by

Avin et al. [4, 5].

We maintain subsets of frequently communicating nodes as com-

ponents. Initially, each node constitutes a single-node component

which we refer to as a singleton component, and the node in such

component is an isolated node. We keep all nodes of a component

always collocated in the same cluster, i.e., when we move a node,

we move the whole component that contains it. A partition that

has every component collocated is a component respecting partition.

We maintain a balanced partition of our components as long as

such partition exists, a reminiscent of partitioning given integers

into sets of equal sum [3]. In contrast, our partition is time-varying:

two components are merged into one component once they com-

municate, and we adjust the partition accordingly.

Perfect Partition Learner algorithm. Now we describe the al-

gorithm PPL. On each inter-cluster request {u,v}, PPL creates new

components by merging the two components that contain nodes u
andv . In order to collocate nodes of the new component, PPLmoves

to a component respecting partition that minimizes the distance to

the initial partition.

Theorem 2.2. PPL is O(k · ℓ)-competitive.

3 GENERAL PARTITIONING MODEL:
OPTIMAL ALGORITHM FOR CLUSTERS OF
SIZE 3

Now we discuss the general online model where the request se-

quence can be arbitrary. The algorithm analyzed in this section

is a modified version of the algorithm DET proposed by Avin et

al. [4, 5], which for k = 3 is O(ℓ2)-competitive.

Component-based algorithm. The algorithm ALG3 partitions

nodes into components, and initially, each node is isolated (belongs

to its own component). For each pair of nodes {x,y}, ALG3 main-

tains a counter C {x ,y } and increments it on every external request

between x and y. Once C {x ,y } = α , ALG3 merges the components

ofu andv , and moves to the closest component respecting partition-

ing. If no such partitioning exists, ALG3 resets all components to

singleton components, resets all counters to 0, and ends the phase.

In our algorithm, we choose the closest partition after a compo-

nent merge instead of an arbitrary one. This allows to bound the

cost of repartition by a constant:

Lemma 3.1. In a single repartition of nodes, ALG3 exchanges at

most two pairs of nodes.

This modification alone is insufficient to obtainO(ℓ)-competitive

algorithm: pairs of nodes that did not reach the collocation threshold

α incur the cost O(ℓ2). We carefully analyse this cost and relate it

to the cost of OPT.

Theorem 3.2. The algorithm ALG3 is O(ℓ)-competitive.

ACKNOWLEDGMENTS
Research supported by ERC Consolidator project, Self-Adjusting

Networks (AdjustNet), grant agreement No. 864228, Horizon 2020,

2020-2025.

REFERENCES
[1] Dan Alistarh, Jennifer Iglesias, and Milan Vojnovic. Streaming min-max hyper-

graph partitioning. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and

R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages

1900–1908. Curran Associates, Inc., 2015.

[2] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. Theory of

Computing Systems, 39(6):929–939, 2006.

[3] George Andrews and Kimmo Eriksson. Integer Partitions. Cambridge University

Press.

[4] ChenAvin,Marcin Bienkowski, Andreas Loukas, Maciej Pacut, and Stefan Schmid.

Dynamic Balanced Graph Partitioning. SIAM Journal on Discrete Mathematics

(SIDMA), 2020.

[5] Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid. Online Balanced

Repartitioning. DISC, pages 243–256, 2016.

[6] Monika Henzinger, Stefan Neumann, and Stefan Schmid. Efficient distributed

workload (re-)embedding. In ACM SIGMETRICS / IFIP Performance 2019, 2019.

[7] Jeffrey C Mogul and Lucian Popa. What we talk about when we talk about

cloud network performance. ACM SIGCOMM Computer Communication Review,

42(5):44–48, 2012.

[8] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.

Inside the social network’s (datacenter) network. In Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication, pages 123–137,

2015.

[9] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. Jupiter

rising: A decade of clos topologies and centralized control in google’s datacenter

network. ACM SIGCOMM Computer Communication review, 45(4):183–197, 2015.

[10] Isabelle Stanton. Streaming balanced graph partitioning algorithms for random

graphs. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA ’14, pages 1287–1301, 2014.

	Abstract
	1 Introduction
	2 The Learning Model
	2.1 Lower Bound
	2.2 Upper Bound

	3 General Partitioning Model: Optimal Algorithm for Clusters of Size 3
	Acknowledgments
	References

