
Brief Announcement: Minimizing Energy Solves Relative
Majority with a Cubic Number of States in Population Protocols

Tom-Lukas Breitkopf
TU Berlin

Berlin, Germany
t.breitkopf@tu-berlin.de

Julien Dallot
TU Berlin

Berlin, Germany
judafa@protonmail.com

Antoine El-Hayek
Institute of Science and Technology Austria

Klosterneuburg, Austria
antoine.el-hayek@ist.ac.at

Stefan Schmid
TU Berlin

Berlin, Germany
stefan.schmid@tu-berlin.de

ABSTRACT

This paper revisits a fundamental distributed computing problem
in the population protocol model. Provided 𝑛 agents each starting
with an input color in [𝑘], the relative majority problem asks to find
the predominant color. In the population protocol model, at each
time step, a scheduler selects two agents that first learn each other’s
states and then update their states based on what they learned.

We present the Circles protocol that solves the relative majority
problem with 𝑘3 states. It is always-correct under weakly fair sched-
uling. Not only does it improve upon the best known upper bound
of 𝑂 (𝑘7), but it also shows a strikingly simpler design inspired by
energy minimization in chemical settings.

CCS CONCEPTS

• Theory of computation→ Distributed algorithms.

KEYWORDS

Population protocols, 𝑘-majority problem

ACM Reference Format:

Tom-Lukas Breitkopf, Julien Dallot, Antoine El-Hayek, and Stefan Schmid.
2025. Brief Announcement: Minimizing Energy Solves Relative Majority
with a Cubic Number of States in Population Protocols . In ACM Symposium

on Principles of Distributed Computing (PODC ’25), June 16–20, 2025, Huatulco,

Mexico. ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3732772.
3733512

1 INTRODUCTION

Population protocols model a computation distributed across a
population of 𝑛 all-identical agents that interact in a chaotic, un-
predictable manner. The model was introduced by Angluin et al. in
2006 [2] to model a network of small sensors; since then, it attracted
a growing attention [1, 4, 7, 9] for its broad applications ranging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PODC ’25, June 16–20, 2025, Huatulco, Mexico

© 2025 Association for Computing Machinery.
ACM ISBN 979-8-4007-1885-4/25/06. . . $15.00
https://doi.org/10.1145/3732772.3733512

from dynamics in social groups [5] to chemical reactions [8, 12] as
well as its theoretical interest [3, 11].

Model. In this paper, we focus on the relative majority problem.
In this problem, each agent is initially assigned one input color

in 0, 1 . . . 𝑘 − 1 and the goal is to find the color with the greatest
support (we assume no ties). As part of the problem, a scheduler
also specifies an infinite sequence of pairwise interactions between
the agents. Then the protocol runs: pairs of agents interact one
after the other according to the planned schedule; when two agents
interact, they both 1) learn the state of the other agent and 2) update
their current state as the protocol specifies. Two agents with the
same state are perfectly identical: after it interacted, an agent’s new
state only depends on its previous own state and on the state of the
other agent it just interacted with.

Definition 1.1 (Configuration). A configuration is a complete
description of the population at a given time. As agents with the
same state are identical, we define a configuration as the multiset
that contains all the states of the population.

In the context of population protocols, we say that a protocol
solves the problem if, for all possible input color assignments and all
possible sequences of interactions, every agent eventually outputs
the correct majority color, forever. However, an unconstrained
scheduler makes the problem trivially impossible (by isolating some
agents for instance), we therefore assume that the scheduler is
weakly fair :

Definition 1.2 (Weakly Fair Scheduler). A weakly fair scheduler
produces interaction schedules where each possible interaction pair
happens infinitely often.

Contribution. We present Circles, an always-correct proto-
col that solves the relative majority problem under a weakly fair
scheduler. We designed Circles with an emphasis on state com-

plexity, which is the number of different states an agent can have.
Circles has a state complexity of 𝑘3, which improves upon the best
known upper bound of 𝑂 (𝑘7) [10] and narrows the gap with the
best known lower bound of Ω(𝑘2) [12]. The emphasis on state com-
plexity is motivated by applications where the memory space per
agent is severely limited: tiny sensors in a network [2] or molecules
in chemical applications [1, 7]. Circles is always correct under
a weakly fair scheduler and shows an elegant design inspired by
energy minimization in chemical settings.

ar
X

iv
:2

50
5.

02
78

5v
1

 [
cs

.D
C

]
 5

 M
ay

 2
02

5

https://orcid.org/0009-0008-2875-1945
https://orcid.org/0009-0008-1286-1373
https://orcid.org/0000-0003-4268-7368
https://orcid.org/0000-0002-7798-1711
https://doi.org/10.1145/3732772.3733512
https://doi.org/10.1145/3732772.3733512
https://doi.org/10.1145/3732772.3733512

PODC ’25, June 16–20, 2025, Huatulco, Mexico Tom-Lukas Breitkopf, Julien Dallot, Antoine El-Hayek, and Stefan Schmid

Notations We define a few notations used in the protocol’s
definition and proofs.

multisets. For sets 𝑆 and𝑇 we write 𝑆𝑇 to denote the set of func-
tions 𝑓 : 𝑇 → 𝑆 . If 𝑇 is finite we call the elements of N𝑇 multisets

over𝑇 . In this paper, the subset ⊆, the union ∪ and the set substrac-
tion \ operations are systematically generalized to multisets.

remainder. For 𝑥 ∈ Z and 𝑝 ∈ N∗, we define 𝑥 mod 𝑝 as the
remainder of the euclidean division of 𝑥 by 𝑝 . Note that this is a
number in N, not Z/𝑛Z.

ranges. Let 𝑥,𝑦 ∈ N such that 𝑥 ≤ 𝑦. [𝑥,𝑦] denotes the set
{𝑥, 𝑥 +1, . . . , 𝑦−1, 𝑦}, and (𝑥,𝑦) denotes the set {𝑥 +1, 𝑥 +2, . . . , 𝑦−
2, 𝑦 − 1}.

modulo ranges. Let 𝑥,𝑦 ∈ N. We define modulo ranges: [𝑥,𝑦]𝑝
denotes the set {𝑥 mod 𝑝, (𝑥 + 1) mod 𝑝, . . . , (𝑥 + (𝑦 − 𝑥) mod 𝑝 −
1) mod 𝑝, (𝑥 + (𝑦 − 𝑥) mod 𝑝) mod 𝑝}, and (𝑥,𝑦)𝑝 denotes the set
{(𝑥+1) mod 𝑝, (𝑥+2) mod 𝑝, . . . , (𝑥+(𝑦−𝑥) mod 𝑝−2) mod 𝑝, (𝑥+
(𝑦 − 𝑥) mod 𝑝 − 1) mod 𝑝}. For instance, [2, 7]10 = {2, 3, 4, 5, 6, 7}
and (8, 3)10 = {9, 0, 1, 2}.

bra-ket. We abuse the bra-ket notation, frequently used in quan-
tum mechanics, to note ordered pairs. For 𝑖, 𝑗 ∈ N, we write ⟨𝑖 | 𝑗⟩
simply to distinguish the different roles of 𝑖 and 𝑗 . For an agent
storing a bra-ket ⟨𝑖 | 𝑗⟩, we refer to 𝑖 as its bra and 𝑗 as its ket.

2 THE CIRCLES PROTOCOL

Wepresent thereafter theCircles protocol that runs in every agents:
its set of states, input function (to convert the input color into one
of the protocol’s states), output function (to ask an agent what the
majority color is) and the transition function (to specify how two
agents update their states when they interact).

• States: The set of states 𝑄 contains every triples (𝑖, 𝑗, 𝑜) ∈
[0, 𝑘 − 1]3. In the remainder of this paper we will use the
bra-ket notation ⟨𝑖 | 𝑗⟩ to refer to the first two numbers of the
triple, bra refers to 𝑖 and ket refers to 𝑗 , while out refers to 𝑜 .

• Input: each agent is initialized with ⟨𝑖 |𝑖⟩ and out = 𝑖 , where
𝑖 is the input color of the agent.

• Output: return out

• Transition function: We define weights for each bra-ket
⟨𝑖 | 𝑗⟩ as follows:

𝑤 (⟨𝑖 | 𝑗⟩) =
{
𝑘 if 𝑖 = 𝑗

(𝑗 − 𝑖) mod 𝑘 otherwise

Two agents 𝑎 and 𝑏 that interact perform two successive
operations:

(1) 𝑎 and 𝑏 exchange their kets in case this strictly decreases
the minimum weight of their two bra-kets.

(2) If either 𝑎 or 𝑏 is of the form ⟨𝑖 |𝑖⟩ for some 𝑖 ∈ [𝑘], set
out𝑎 = out𝑏 = 𝑖 .

3 PROOF OF CORRECTNESS

We prove the protocol’s correctness in Theorems 3.4 and 3.7, Theo-
rem 3.7 directly derives from Lemma 3.6. We beforehand introduce
Greedy Independent sets, a construction on the input colors used to
prove the protocol’s correctness, as well as two preliminary lemmas
3.2 and 3.3.

Definition 3.1 (Greedy Independent Sets). Consider the multiset
of input colors to our protocol. We partition this multiset into sets

𝐺1,𝐺2, . . . ,𝐺𝑞 as follows: store in 𝐺1 as many inputs as possible as
long as 𝐺1 does not contain two equal colors; then apply the same
on the remaining inputs to obtain 𝐺2, 𝐺3, and so on.

Lemma 3.2. (Majority Color). Assume that there exists a unique

color 𝜇 in relative majority, then it holds that 𝐺𝑞 = {𝜇} and there is
no 𝑗 ≠ 𝜇 and 𝑝 ∈ [1, 𝑞] such that 𝐺𝑝 = { 𝑗}.

Proof. Each time a set𝐺𝑝 is constructed according to Definition
3.1, any color whose count is not zero yet is added into 𝐺𝑝 and its
count is decremented by one. The color 𝜇 appears in the population
strictly more than any other, it therefore holds that ∀𝑝 ∈ [1, 𝑞],
𝜇 ∈ 𝐺𝑝 . Let now 𝑖 ∈ [0, 𝑘 − 1] be a color contained in a set 𝐺𝑝

for some 𝑝 ∈ [1, 𝑞]. It holds that ∀𝑙 ≤ 𝑝 , 𝑖 ∈ 𝐺𝑙 because color 𝑖 is
available to populated𝐺𝑝 so 𝑖 was also available when𝐺𝑙 was filled
earlier. It therefore cannot be that a color 𝑗 ≠ 𝜇 is contained in 𝐺𝑞

as 𝑗 would be contained in all sets 𝐺1 . . . 𝐺𝑞 and thus 𝑗 would also
be in relative majority, a contradiction. □

Lemma 3.3. (Global Braket Invariant). In every configuration and

for all 𝑖 ∈ [0, 𝑘 − 1], the number of bras ⟨𝑖 | and the number of kets

|𝑖⟩ are equal.

Proof. Every agent is initialized with bra-ket ⟨𝑖 |𝑖⟩ for some
𝑖 ∈ [0, 𝑘−1] and the claim initially holds. Agents subsequently only
ever update their bra-ket, by exchanging kets among each other.
The overall number of bras and kets in the population therefore
does not change during a computation. □

Theorem 3.4. (Stabilization). The agents exchange their kets a
finite number of times.

Proof. We call 𝜔 the smallest ordinal number greater than all
the integers. We prove the claim by exhibiting a non-negative quan-
tity that strictly decreases at each ket exchange. Given a configura-
tion 𝐶 , let𝑤1 (𝐶),𝑤2 (𝐶) . . .𝑤𝑛 (𝐶) be the bra-ket’s weights of each
agent sorted in increasing order. Define

𝑔(𝐶) = 𝜔𝑛−1 ·𝑤1 (𝐶) + 𝜔𝑛−2 ·𝑤2 (𝐶) + · · · + 𝜔 ·𝑤𝑛−1 + 1 ·𝑤𝑛

Assume that two agents exchange their kets. Let 𝑝 be the lowest
index such that𝑤𝑝 (𝐶) changes before and after the ket exchange.
By design of the protocol, 𝑤𝑝 (𝐶) strictly decreases. This implies
that 𝑔 strictly decreases when two agents exchange their kets. As an
ordinal number cannot decrease infinitely many times, the number
of ket exchanges is therefore finite. □

We define the following special sets of bra-kets only to formulate
Lemma 3.6.

Definition 3.5 (Circle Bra-ket Sets). For a given greedy indepen-
dent set 𝐺𝑝 with 𝑝 ∈ [1, 𝑞] (Definition 3.1), let 𝑔0, 𝑔1, . . . , 𝑔𝑚 be the
elements of 𝐺𝑝 sorted in increasing order and define

𝑓 (𝐺𝑝) = {⟨𝑔0 |𝑔1⟩ , ⟨𝑔1 |𝑔2⟩ , . . . , ⟨𝑔𝑚 |𝑔0⟩}

Lemma 3.6. After Stabilization (Theorem 3.4), let C be the multiset

of bra-kets of the agents. We have that:

C =
⋃

𝑝=1...𝑞
𝑓 (𝐺𝑝)

Relative Majority with Cubic State Complexity PODC ’25, June 16–20, 2025, Huatulco, Mexico

Proof. We prove the predicate 𝐻 (𝑟) by induction on 𝑟 ∈ [0, 𝑞]:⋃
𝑝=1...𝑟

𝑓 (𝐺𝑝) ⊆ C (𝐻 (𝑟))

The base case for 𝑟 = 0 is trivial. Let 𝑟 ∈ [0, 𝑞 − 1], we assume
that 𝐻 (𝑟) holds and show that 𝐻 (𝑟 + 1) also holds. We define the
subconfiguration C[𝑟 + 1] = C \ ∪𝑝=1...𝑟 𝑓 (𝐺𝑝).

Case 1: ∪𝑞
𝑝=𝑟+1𝐺𝑝 contains only elements from one color. Let 𝑖

be that color.
Then for any other color 𝑗 ≠ 𝑖 , there are at most 𝑟 many bras ⟨ 𝑗 |

and as many kets | 𝑗⟩, which are all included in ∪𝑝=1...𝑟 𝑓 (𝐺𝑝). Thus
all agents in C[𝑟 + 1] are of the form ⟨𝑖 |𝑖⟩. Since {⟨𝑖 |𝑖⟩} = 𝑓 (𝐺𝑟+1),
we have ∪𝑝=1...𝑟+1 𝑓 (𝐺𝑝) ⊆ C.

Case 2: There are at least two different colors in 𝐺𝑟+1.
We note 𝑔0, 𝑔1, . . . , 𝑔𝑚 the elements of 𝐺𝑟+1 sorted in increasing

order. Let 𝑙 ∈ [0,𝑚]. To lighten notations, wewill mean 𝑙+𝑠 mod𝑚+
1 each time we write 𝑙 + 𝑠 in the remainder of this proof. We prove
that, if there is no agent with bra-ket ⟨𝑔𝑙 |𝑔𝑙+1⟩ in 𝐶 [𝑟 + 1], then
there exist two agents whose interaction creates that bra-ket, a
contradiction with the stability hypothesis. First notice that ⟨𝑔𝑙 |
and |𝑔𝑙+1⟩ are in C[𝑟 + 1]. Indeed, note that there are at least 𝑟 + 1
many ⟨𝑔𝑙 | and 𝑟 + 1 many ⟨𝑔𝑙+1 | in C, as there are at least 𝑟 + 1
many agents with color 𝑔𝑙 and 𝑔𝑙+1 initially. By Theorem 3.3, this
means we have at least 𝑟 + 1 many |𝑔𝑙+1⟩ in C. Because each 𝑓𝑝 for
𝑝 ≤ 𝑟 contains exactly one ⟨𝑔𝑙 | and one |𝑔𝑙+1⟩, we have that both
⟨𝑔𝑙 | and |𝑔𝑙+1⟩ are in C[𝑟 + 1].

Assuming by contradiction that there is no agent with bra-ket
⟨𝑔𝑙 |𝑔𝑙+1⟩ in C[𝑟 + 1], then there exists an agent with bra-ket ⟨𝑔𝑙 | 𝑗⟩
and an agent with bra-ket ⟨𝑖 |𝑔𝑙+1⟩ in C[𝑟 + 1] for some 𝑖 and 𝑗 . We
show that those two agents exchange their kets if they interact.

Claim 1. 𝑖, 𝑗 ∉ (𝑔𝑙 , 𝑔𝑙+1)𝑚

Proof. By contradiction, assume that 𝑖 is in (𝑔𝑙 , 𝑔𝑙+1)𝑚 . A ⟨𝑖 | in
C[𝑟 + 1] indicates that 𝑖 had initially at least 𝑟 + 1 agents supporting
it, as by contradiction if it wasn’t the case, all the ⟨𝑖 | would have
been in ∪𝑟

𝑝=1 𝑓 (𝐺𝑝). By construction of𝐺𝑟+1, we must have that 𝑖 is
in𝐺𝑟+1, and thus, 𝑔𝑙 and 𝑔𝑙+1 are not consecutive in the ordered list
of 𝐺𝑟+1, a contradiction. The case 𝑗 ∈ (𝑔𝑙 , 𝑔𝑙+1)𝑚 is symmetric. □

If 𝑖 ≠ 𝑔𝑙+1, it holds by Claim 1 that

𝑤 (⟨𝑔𝑙 |𝑔𝑙+1⟩) = (𝑔𝑙+1 − 𝑔𝑙) mod 𝑘 < (𝑔𝑙+1 − 𝑖) mod 𝑘 = 𝑤 (⟨𝑖 |𝑔𝑙+1⟩)

Otherwise, if 𝑖 = 𝑔𝑙+1:

𝑤 (⟨𝑔𝑙 |𝑔𝑙+1⟩) = (𝑔𝑙+1 − 𝑔𝑙) mod 𝑘 < 𝑘 = 𝑤 (⟨𝑖 |𝑔𝑙+1⟩)

Similarly, if 𝑗 ≠ 𝑔𝑙 , it holds by Claim 1 that

𝑤 (⟨𝑔𝑙 |𝑔𝑙+1⟩) = (𝑔𝑙+1 − 𝑔𝑙) mod 𝑘 < (𝑗 − 𝑔𝑙) mod 𝑘 = 𝑤 (⟨𝑔𝑙 | 𝑗⟩)

Otherwise, if 𝑗 = 𝑔𝑙 :

𝑤 (⟨𝑔𝑙 |𝑔𝑙+1⟩) = (𝑔𝑙+1 − 𝑔𝑙) mod 𝑘 < 𝑘 = 𝑤 (⟨𝑔𝑙 | 𝑗⟩)

This proves that exchanging kets between ⟨𝑔𝑙 | 𝑗⟩ and ⟨𝑖 |𝑔𝑙+1⟩ re-
duces the minimum weight. An interaction between the two agents
eventually happens as the scheduler is weakly fair, this interaction
would therefore trigger a ket exchange, which is in contradiction
with the stability hypothesis: we deduce that ⟨𝑔𝑙 |𝑔𝑙+1⟩ ∈ C[𝑟 + 1],
which implies 𝑓 (𝐺𝑟+1) ⊆ C[𝑟 + 1] and therefore 𝐻 (𝑟 + 1) holds.

We proved by induction that 𝐻 (𝑞) holds:⋃
𝑝=1...𝑞

𝑓 (𝐺𝑝) ⊆ C

As | ∪𝑝=1...𝑞 𝑓 (𝐺𝑝) | = |C| we can rewrite 𝐻 (𝑞) as an equality and
the claim holds. □

Theorem 3.7. (Correctness). Assume that there exists a unique

color 𝜇 in relative majority. In the Circles protocol, all agents eventu-

ally output 𝜇 under a weakly fair scheduler.

Proof. By Lemma 3.6 and Lemma 3.2, after Stabilization (Theo-
rem 3.4), since we assumed that there is only one majority color,
there exists at least one agent in bra-ket ⟨𝜇 |𝜇⟩ and none in bra-ket
⟨ 𝑗 | 𝑗⟩ for 𝑗 ≠ 𝜇. The agent(s) with bra-ket ⟨𝜇 |𝜇⟩ will transmit their
output color to the rest of the population and the claim follows. □

4 EXTENSIONS

We plan to expand the functionalities of Circles to handle ties
and/or to operate in an unordered setting. Those extensions will be
published as a more complete version of the present work.

Handling ties.We can extend Circles to handle ties in multiple
ways. For instance, all agents can indicate a tie with a special state
(tie report), agree on one unique winning color (tie break), or output
their own color if their input color wins while the losers output
any winning color (tie share). It is possible to implement all those
ways to handle ties by adding simple extra-layer protocols on top
of Circles while keeping the state complexity at 𝑂 (𝑘3).

Unordered setting. The Circles protocol, which we introduce
in this work, relies on numerical representations of the colors in
order to compute some kind of distance between them. It can be
adapted to the unordered setting (in which agents are only able
to compare colors for equality and memorize them) using 𝑂 (𝑘4)
states. For that we propose a new protocol to generate an ordering
between colors using 𝑂 (𝑘2) states. Adapting a protocol proposed
in [6] we perform leader-election between all agents of the same
color (using the asymmetry of interactions) and have the leaders
increment a numeric label every time they meet another leader
with the same label. The non-leaders simply copy the label of their
leader. Similar to [12] we then combine the ordering protocol with
Circles by re-initializing agents of some color whenever their
numeric label (representing that color) changes. For that we need
to put agents into special states in which they wait to undo changes
they previously made to the population until they are “consistent”
again and ready to be re-initialized. In order to use as few states
as possible we do not explicitly store the output of the ordering
protocol, but write it directly to the bra of an agent.

ACKNOWLEDGMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (MoDynStruct, No. 101019564)
and the Austrian Science Fund (FWF) grant DOI 10.55776/I5982,
and grant DOI 10.55776/P33775 with additional funding from the
netidee SCIENCE Stiftung, 2020–2024 and the German Research
Foundation (DFG), grant 470029389 (FlexNets).

https://www.doi.org/10.55776/I5982
https://www.doi.org/10.55776/P33775

PODC ’25, June 16–20, 2025, Huatulco, Mexico Tom-Lukas Breitkopf, Julien Dallot, Antoine El-Hayek, and Stefan Schmid

REFERENCES

[1] Dan Alistarh and Rati Gelashvili. 2018. Recent Algorithmic Advances in Popula-
tion Protocols. ACM SIGACT News 49, 3 (2018), 63–73.

[2] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-
alta. 2006. Computation in networks of passively mobile finite-state sensors.
Distributed computing 18, 4 (2006), 235–253.

[3] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. 2007. The
computational power of population protocols. Distributed Computing 20 (2007),
279–304.

[4] Gregor Bankhamer, Petra Berenbrink, Felix Biermeier, Robert Elsässer, Hamed
Hosseinpour, Dominik Kaaser, and Peter Kling. 2022. Population Protocols
for Exact Plurality Consensus: How a small chance of failure helps to eliminate
insignificant opinions. In 41st Annual ACM Symposium on Principles of Distributed

Computing (PODC 2022). Salerno (Italy), 224–234.
[5] Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and

Riccardo Silvestri. 2015. Plurality consensus in the gossip model. In 26th Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA 2015). San Diego (USA),
371–390.

[6] Shukai Cai, Taisuke Izumi, and Koichi Wada. 2012. How to Prove Impossibility
Under Global Fairness: On Space Complexity of Self-Stabilizing Leader Election

on a Population Protocol Model. Theory of computing systems 50, 3 (2012), 433–
445.

[7] Philipp Czerner, Javier Esparza, and Jérôme Leroux. 2023. Lower bounds on the
state complexity of population protocols. Distributed computing 36, 3 (2023),
209–218.

[8] David Doty. 2014. Timing in chemical reaction networks. In 25th Annual ACM-

SIAM Symposium on Discrete Algorithms (SODA 2014). Portland (USA), 772–784.
[9] Robert Elsässer and Tomasz Radzik. 2018. Recent Results in Population Protocols

for Exact Majority and Leader Election. In The Distributed Computing Column,
Stefan Schmid (Ed.).

[10] Leszek Gąsieniec, David Hamilton, Russell Martin, Paul G. Spirakis, and Grzegorz
Stachowiak. 2017. Deterministic Population Protocols for Exact Majority and
Plurality. In 20th International Conference on Principles of Distributed Systems

(OPODIS 2016). Madrid (Spain), 14:1–14:14.
[11] Richard J. Lipton. 1976. The Reachability Problem Requires Exponential Space.

(1976).
[12] Emanuele Natale and Iliad Ramezani. 2019. On the Necessary Memory to Com-

pute the Plurality in Multi-Agent Systems. In 11th International Conference on

Algorithms and Complexity (CIAC 2019). Rome (Italy), 323–338. arXiv:1901.06549
http://arxiv.org/abs/1901.06549

https://arxiv.org/abs/1901.06549
http://arxiv.org/abs/1901.06549

	Abstract
	1 Introduction
	2 The Circles protocol
	3 Proof of correctness
	4 Extensions
	Acknowledgments
	References

