Resource allocation on highly-distributed content delivery networks

Juan Vanerio (juan.vanerio@univie.ac.at - University of Vienna, Austria)
Stefan Schmid (stefan.schmid@tu-berlin.de - TU Berlin, Germany)

Introduction

Driven by the ever-increasing traffic demand for content and low latencies, storage resources are being deployed closer to the end users. From information-centric networks to 5G wireless systems, caching popular content close to the network edge can alleviate performance bottlenecks and enhance the end-user experience. This potential led to the proliferation of Content Delivery Networks (CDNs), a component of the Internet ecosystem that manages distributed caches.

Although classical caching techniques provide worst-case guarantees (e.g. Least-Recently-Used and its variants), current research has focused on finding sophisticated techniques achieving good performance on seen requests. We focus on the following (sub)-problems:

1. which items to cache at each device (content allocation); and
2. how to route content from devices to end-users (routing policy),

while considering that end-users are not spread too thin among caching devices. The overall problem is NP-Hard to solve and to approximate. Therefore it is a good candidate to be addressed with Machine Learning techniques.

Project Objective

- Decrease ROOT server traffic with respect to realizable baselines.
- Ability to make fast decisions.
- Leverage item popularity prediction.
- Provide quality of service to users.

Possible Machine Learning Approaches

- Static setting - Constrained search algorithm for allocation, π-routing.
- Slotted time (piece-wise static) - routing.
- Reinforcement Learning - long-run changing allocations, π-routing.

Heuristics:

1. For given \(X \), optimal routing minimizes traffic from ROOT.
2. Allocation: Place item with largest remaining value on device with largest remaining (bandwidth to space) ratio. Repeat.
3. Routing: (π) send request to the estimated argmin(requests) device.

Dynamic (Future Research!)

- Time-slotted or fully dynamic allocation, dynamic routing.
- Idea 1: Augment devices state with remaining bytes for each request.
- Idea 2: Compute a new graph with requests as nodes.

How would you approach the problem?

Willing to explore new ideas!